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Amphitropic proteins (APs) are a subfamily of water-soluble peripherally
membrane-bound proteins that interact directly with the lipid membrane rather
than with intrinsic membrane proteins and are therefore strongly influenced by
membrane properties. When an AP interacts with a membrane containing an
integral membrane protein, a ternary protein-lipid-protein system is created.
Even in the absence of direct interactions between the amphitropic and integral
proteins, the two proteins can affect each other by modifying lipid membrane
properties, either at the global (i.e., whole-membrane) or local (i.e., confined
to a small area around the bound or integrated protein) scale. These lipid-
mediated protein-protein interactions are indirect and, therefore, difficult to
elucidate; independent experimental data are required to report on each
individual interaction to comprehend the whole system. Examples for which
comprehensive data are available are remarkably rare. In this article, we describe
howthesedifficultiescouldbesurmountedbyusing thechannel-forming integral
membraneproteingramicidinA(grA) reconstituted inaplanar lipidmembraneand
exposed to the amphitropic proteins dimeric tubulin or α-synuclein. Importantly,
there are no knowndirect interactions between these APs and grA, thus revealing
the role of the lipid membrane. Here, grA serves a dual role. First, grA reports
on the global properties of the lipid membrane; grA results, combined with the
well-understood tubulin-lipid interaction, yield a complete picture of themutual
effect of tubulin binding on the lipidmembrane. Second, the presence of the grA
conducting dimer alters the local membrane curvature and creates binding sites
for tubulin in an otherwise inert membrane composition.

KEYWORDS

tubulin, alpha-synuclein, gramicidin A, planar lipid membranes, ion channels,
amphitropic proteins, protein-lipid interactions, lipid packing stress

1 Introduction

The notion that lipids are not merely passive fillers of the space between membrane
proteins, but actively interacting with them, controlling protein conformational transitions
and affecting their function, is now well-accepted (Maer et al., 2022; Levental and Lyman,
2023). Proteins define lipids’ structural and compositional distributions in cell membranes,
and, conversely, lipids influence localization and properties of proteins. While some
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protein-lipid interactions involve chemical interactions between
lipids and specific protein residues, others involve indirect
interaction through perturbation of the lipid bilayer by proteins,
thereby affecting membrane properties such as curvature. This
has been shown for different families of integral membrane
proteins (IMPs) (Sprong et al., 2001; Phillips et al., 2009;
Corradi et al., 2019; Thakur et al., 2023), especially ion channels
and transporters (Sunshine and McNamee, 1994; Nielsen et al.,
1998; Kloda et al., 2007; Cordero-Morales and Vasquez, 2018). In
most cases, membrane lipid composition influences ion channel
gating properties and ligand binding (Gruner, 1985; Keller et al.,
1993; Bezrukov, 2000; van den Brink-van der Laan et al., 2004;
Rostovtseva et al., 2006; Sachs, 2010; Elinder and Liin, 2017;
Mlayeh et al., 2017; Maer et al., 2022; Beverley and Levitan, 2024),
by affecting channels’ protein-lipid interface.

The functionsof conventional ionchannels and transporters in the
plasmamembraneare regulatedby ligands, or smallmoleculesdirectly
interacting with the receptor binding site of channel protein [see e.g.,
Table 1 in a recent review (Cordero-Morales andVasquez, 2018)]. Less
studied are amphiphilic small molecules that modulate ion channel
behavior, not by directly interacting with channel-forming proteins,
but indirectly bymodifying the lipidmembrane properties (Cordero-
Morales and Vasquez, 2018). Not surprisingly, the effect of changes
in the bilayer pressure on membrane proteins, or the so-called “force-
from-lipid” effect, has been mostly studied on mechanosensitive or
stretch-activated ion channels (Sukharev et al., 2001; Gullingsrud and
Schulten, 2004; Sachs, 2010; Teng et al., 2015; Gerhold and Schwartz,
2016). A purified bacterial mechanosensitive channel of large
conductance (MscL), for example, remained mechanosensitive even
after reconstitution into model planar membranes (Martinac et al.,
1987). However, determination of the precise molecular mechanism
of how lipids modulate ion channel gating—through direct or
indirect interaction, activating or deactivating—is a challenging
task due to the structural complexity of the plasma membrane
ion channels, such as mechanotransduction channels, glutamate
receptor channels, transient receptor potential (TRP) channels, or
Ca2+-activated large-conductance K+ (BK) channels. To overcome
these apparent difficulties, the small ideally cation-selective channel
gramicidin A (grA) has been extensively studied since the early 1980s
(Elliott et al., 1983;LundbaekandAndersen,1999; Suchynaet al., 2004;
Andersen et al., 2005; Lundbaek et al., 2010;Weinrich et al., 2017). As
will be discussed later, the conductance and characteristic lifetime of
this small dimeric channel respond exceptionally well to the changes
in the bilayer charge, thickness, and lateral pressure distribution and
are thus valuable for reporting on the channel’s lipid environment.

Amphitropic proteins (AP) are a subfamily of peripherally
membrane-bound proteins that interact directly with the lipid
membrane rather than with intrinsic membrane proteins and
are therefore strongly influenced by lipid composition (Anderluh
and Lakey, 2008; Prinz, 2010; Holthuis and Menon, 2014).
APs are involved in various cell signaling pathways and lipid
trafficking (Cho and Stahelin, 2005; Monkhouse and Deane, 2024).
However, due to the transient nature of AP-membrane binding,
the molecular mechanisms of these interactions are generally
poorly understood. The effects of structurally and functionally
diverse amphiphiles on the properties of bilayer membranes were
described by Olaf Andersen and colleagues as changes in lipid
intrinsic curvature, which reflects the attractive and repulsive

forces between lipid molecules (Lundbaek and Andersen, 1999;
Andersen and Koeppe, 2007; Lundbaek et al., 2010). These forces
include electrostatic interactions between lipid headgroups and
hydrophobic interactions between the acyl chains and depend
on the “shape” of the lipid molecule and the lipid headgroup
dipole charge. For instance, the bilayers formed from lamellar
dioleoyl-phosphatidylcholine (DOPC) and nonlamellar dioleoyl-
phosphatidylethanolamine (DOPE) present a striking difference
in the lipid packing stress profile: the transition from DOPC to
DOPE was estimated as the change of ΔP ∼ 100 atm or 107

pascals in the lateral pressure in the hydrocarbon area of a planar
membrane (Bezrukov, 2000; Gullingsrud and Schulten, 2004). This
could be a result of the decrease of the cross-sectional area per lipid
molecule from 0.72 nm2 in lamellar DOPC (Kucerka et al., 2005)
to 0.645 nm2 in nonlamellar DOPE/DOPC (3:1 mol/mol) mixture
(Rand et al., 1990).This, in turn, causes some difference of ≈0.16 nm
in the hydrophobic thickness between DOPC and DOPE bilayers
(Rand et al., 1990; Kucerka et al., 2005) (Table 1).

When APs interact with a membrane containing IMPs, a
ternary protein-lipid-protein system is created (Figure 1). Even in
the absence of direct interactions between APs and IMPs, the
two proteins can affect each other by modifying lipid membrane
properties, either at the global (i.e., whole-membrane) or local (i.e.,
confined to a small area around the bound or integrated protein)
scale. These lipid-mediated protein-protein interactions are indirect
and, therefore, difficult to study; multiple experimental approaches
are required to clarify individual interactions contributing to the
whole system’s behavior.

In this review, we describe how these difficulties could be
surmounted by using a system of an IMP, the grA channel,
reconstituted in a planar lipid membrane (PLM) in the presence
of an AP, the water-soluble dimeric tubulin. Importantly, though
there are no known direct interactions between tubulin and grA,
tubulin absorption to the membrane surface modifies the channel
behavior, thus revealing the role of the lipid membrane. We
leverage our detailed understanding of the tubulin-lipid interaction
mechanism, as well as the self-reporting properties of the grA
channel, to understand how tubulin affects the properties of the lipid
membrane. We also discuss here the converse relationship, where
the presence of grA conducting dimer alters the local curvature and
creates binding sites for tubulin in an otherwise inert membrane
composition. We also compare the effect of the globular protein
tubulin on the grA channel with that of another well-studied AP, the
intrinsically disordered α-synuclein (αSyn).

The general structure of this review is shown in Figure 1. Global
and local effects are differentiated by their vertical position in the
figure, while the three components (AP, lipids, IMP) are distributed
horizontally. Arrows indicate the direction of effects (not chemical
equilibrium). In Section 2, we discuss the role of lipid composition
on tubulin membrane binding. Section 3 delves into the effect of
tubulin on the lipid membrane properties, as reported by the grA
lifetime. Section 4 explores what can be learned about global and
local membrane properties from the grA conductance. The use of
flickering in the grA conductance to detect the presence of tubulin
is discussed, with implications for the creation of local binding sites
for APs around IMPs, in case the latter significantly distorts the lipid
membrane structure. Finally, in Section 5, we compare the effects of
αSyn and tubulin on grA channel properties.
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TABLE 1 Tubulin effects on grA channel lifetime and conductance in PC and PE membranes.

Lipid Bilayer
thicknessa, nm

Area per lipid,
nm2

Lifetime, s Conductance, pS

No tubulin Tubulin
(30 nM)

No tubulin With tubulin
(30 nM)

DOPC (C-18:1) 3.67(b) 0.724 4.5 ± 1.0 3.2 ± 0.9 21.8 ± 0.4 21.1 ± 0.6

DOPE/DOPC (3:1)
(C-18:1)

3.83(c) 0.645 0.4 ± 0.05 2.3 ± 0.1 34.2 ± 0.5 28.1 ± 0.8

diC (22:1) PC 4.43(b) 0.693 0.11 ± 0.01 0.125 ± 0.08 19.1 ± 3.8 16.4 ± 4.3

DPhPC C-18-(CH3)4 3.64(d) 0.805 7.9 ± 0.4 39.5 ± 3.3 22 ± 0.7 18.9 ± 1.0

GrA channel parameters were measured in 1 M KCl at pH 7.4. Uncertainties are 68% confidence intervals of the mean derived from multiple repeated measurements [Adapted with
permission from Rostovtseva et al. (2024)].
aThe phosphate-phosphate thickness.
bFrom Kucerka et al. (2005).
cFrom Rand et al. (1990).
dFrom Tristram-Nagle et al. (2010).

FIGURE 1
Lipid-mediated protein-protein interactions between an amphitropic protein, dimeric tubulin, and an integral membrane protein, gramicidin A. Both
global and local membrane properties play a role and are reported on by the lifetime and conductance of the grA channel, respectively. Block arrows
denote a direction of influence and do not indicate chemical equilibrium. Sections in which the various interactions are discussed are denoted by §.
The lipid influence on gramicidin indicated in the upper right corner of the cartoon was shown to be reciprocal (Szule and Rand, 2003;
Hassan-Zadeh et al., 2017). However, the oppositely directed effect happens only at much higher gramicidin concentrations of one or larger molar
percent and is thus not relevant to our study. Created in BioRender.com.

2 Tubulin binding depends on lipid
composition

2.1 Tubulin

Tubulin is a prime example of an abundant cytosolic AP,
which has multiple functions in a cell. The major role of

dimeric tubulin is to serve as a building block of microtubules
(Nogales et al., 1998). It is also found to be associated with cellular,
particularly mitochondrial, membranes (Bernier-Valentin et al.,
1983; Carre et al., 2002; Rostovtseva et al., 2018) where dimeric
tubulin interacts with and regulates the Voltage Dependent Anion
Channel (VDAC), the most abundant metabolite channel at the
mitochondrial outer membrane (MOM). Tubulin is a compactly
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folded globular protein of 110-kDa molecular weight with a
well-defined α/β-heterodimeric structure (Nogales et al., 1998).
Each of its α- and β-subunits has a disordered, negatively charged
C-terminal tail (CTT) exposed at the protein surface. Using an
in vitro system of VDAC reconstituted to the PLM, it was shown
that tubulin could efficiently regulate VDAC conductance by the
highly negatively charged disordered CTT of either the α- or β-
subunit (Rostovtseva et al., 2018; Rostovtseva et al., 2021). Under
an applied transmembrane potential, the CTT is stochastically
captured by the VDAC pore and eventually escapes, resulting in a
transient decrease of channel conductance by 60% and a reversal
of the ionic selectivity from anionic to cationic (Gurnev et al.,
2011). This led to the proposal of a multistep model of tubulin-
VDAC interaction where the first step is tubulin binding to the
membrane, followed by a partial and reversible block of VDAC
pore by anionic tubulin CTT driven by the applied potential
(Rostovtseva et al., 2021). Experiments with isolated mitochondria
(Monge et al., 2008; Rostovtseva et al., 2008) and human hepatoma
live cells (Maldonado et al., 2010; Maldonado et al., 2013) further
confirmed that tubulin could modulate mitochondrial metabolism
by interacting with VDAC in vivo.

Importantly, in vitro studies showed that the tubulin-
VDAC interaction depends strongly on membrane lipid
composition (Rostovtseva et al., 2012). The mechanism of tubulin-
VDAC interaction is an important example of how membrane
lipids modulate ion channel conductance indirectly by changing the
effective concentration of membrane-bound channel-regulating AP.

2.2 Tubulin membrane interactions

The first observations of the reversible association of tubulin
with lipid membranes, and estimates of the binding constants, were
made in 1980s (Caron and Berlin, 1979; Bernier-Valentin et al.,
1983), thus establishing tubulin’s identity as an amphitropic protein.
Preferential binding to nonlamellar phosphatidylethanolamine (PE)
lipids was first observed as an increase in microtubule assembly
at surfaces containing PE lipids (Hargreaves and McLean, 1988).
Later, increased tubulin binding to PE-containing membranes was
demonstrated using the confocal microscopy of giant unilamellar
vesicles with fluorescently labeled tubulin (Rostovtseva et al., 2012)
(Figure 2A). It is particularly noteworthy that phosphatidylcholine
(PC) and PE lipids are the main components of the mitochondrial
outer membrane (Horvath and Daum, 2013). Besides the detection
of mitochondrial-associated tubulin in the neuroblastoma cells
(Carre et al., 2002) (Figure 2B), the physiological role(s) of
tubulin binding to the mitochondrial membranes remained
questionable until the new role of free dimeric tubulin as a potent
regulator of mitochondrial respiration through its interaction
with VDAC at the MOM was discovered (Monge et al., 2008;
Rostovtseva et al., 2008; Maldonado et al., 2010).

A recent study of tubulin binding to PE-richmembranes utilized
three biophysical techniques—surface plasmon resonance (SPR),
bilayer overtone analysis (BOA), and electrophysiology using the
blockage rate of a single VDAC channel as a probe for the tubulin
concentration—to reveal that even for a large globular protein
like tubulin, the observed membrane binding constant depends
strongly on the experimental design (Hoogerheide et al., 2017).

FIGURE 2
Dimeric tubulin is associated with liposome membranes and with the
mitochondrial outer membranes. (A) Tubulin-488 binds to the surface
of DOPE-containing giant unilamellar liposomes (GUVs). Left panel:
confocal image of GUVs prepared from DOPC/DOPE in a 7:3 M ratio
in the presence of 50 nM (M = mol/L) of bovine brain tubulin labeled
with HiLyte Fluor 488. The GUVs in the right panel are shown in white
light. Adapted with permission from Rostovtseva et al. (2012). © 2012
ASBMB. Currently published by Elsevier Inc; originally published by
American Society for Biochemistry and Molecular Biology. (B)
β3-Tubulin is colocalized with VDAC1 in neuroblastoma cells. The
image of Duolink in situ proximity ligation assay (PLA). Interaction
between β3-tubulin and VDAC is indicated by a red positive reaction.
Adapted with permission from Rostovtseva et al. (2018).

For example, SPR (Figure 3A) is performed on a solid supported
membrane with a large area relative to the buffer volume, while
BOA (Figure 3B) and electrophysiology experiments (Figure 3C) are
performed with reconstituted lipid membranes with a small active
area relative to the bathing buffer volume. Thus, it is unsurprising
that experimental results appear to differ across these techniques,
because the membrane binding site(s) may have multiple lipid
contacts and interact with a substantial area of the target membrane.
These disparate data can be collectively understood using a binding
model that assumes several equivalent lipid binding sites (Mosior
and McLaughin, 1992) and accounts for the differing geometries of
themeasurement cells for each technique. Applying such an analysis
to the SPR (Figure 3A), BOA (Figure 3B), and electrophysiology
(Figure 3C) data, the average number of lipid-protein binding
contacts was found to be ≈9, albeit broadly distributed (Figure 3D),
while the average strength of binding per binding site, or the molar
partition coefficient, was found to be K ≈ 0.72M (M = mol/L)
for PE lipids.
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FIGURE 3
Tubulin binding to lipid membranes depends strongly on the PE lipid concentration. (A) Surface plasmon resonance shows significantly more binding at
600 nM tubulin concentration in DOPE-rich membranes than pure DOPC membranes. (B) Bilayer overtone analysis reveals the slow increase in
transmembrane potential when tubulin is bound to one side of the membrane at increasing concentrations. (C) A single VDAC channel embedded in a
lipid membrane is exquisitely sensitive to the presence of tubulin. Red and blue curves show the rates of blockage at 25 mV and 20 mV applied
transmembrane potential, respectively. (D) The multisite interaction model encodes the lipid interaction site occupancy. The distribution of occupied
sites is shown here; on average, about nine lipids are bound to each tubulin molecule. In all panels, the dark (light) shaded areas show 68% (95%)
confidence intervals, while the solid lines show the median model prediction. Error bars on data are the standard error of the mean from multiple
independent experiments. Adapted with permission from Hoogerheide et al. (2017). Copyright (2017) National Academy of Sciences.

The structural basis for the observed lipid dependence was
determined using a combination of neutron reflectometry (NR) and
molecular dynamics (MD) simulations (Hoogerheide et al., 2017).
The sensitivity of neutron scattering techniques to light elements
allows the decomposition of ameasured reflectivity pattern into lipid
and protein components. The resulting distributions of headgroups,
acyl chains, and bound tubulin are shown in Figure 4 (top panel).
In this experiment, tubulin is present at a density of about 1 tubulin
molecule per 300 surface lipids. Notably, tubulin is fully peripheral,
sitting at the membrane surface without penetrating the acyl chain
region of the bilayer. At this low tubulin surface density, bilayer
thinning is miniscule; in the context of the NR model, the change
in bilayer thickness is −0.08+0.05−0.06Å (68% CI); the change is not
significant at the 95% confidence level.

When constrained by the known crystallographic structure of
the tubulin heterodimer, further analysis revealed that the NR data

are most consistent with a tilt angle of about 66° between the tubulin
dimeric axis and the membrane surface (Figure 4, middle panel);
however, NR could not determinewhich tubulin subunit was bound.
All-atom MD simulations (Hoogerheide et al., 2017) established
that only the α-subunit of the tubulin heterodimer can bind to a
pure PEmembrane (Figure 5A), via a highly conserved amphipathic
helix (Figure 5B). The structure of the tubulin-lipid complex is
remarkably similar to that obtained by NR (Figure 4, bottom panel).
Notably, pure PC membranes were unable to stably bind either
tubulin subunit in the simulations, consistent with the binding
assays (Figure 3).

Together, the neutron reflectometry, molecular dynamics,
and binding assays establish tubulin as a peripheral
membrane protein via a α-helical binding domain. Thus,
tubulin is an AP with a preference for PE-rich membrane
compositions.
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FIGURE 4
Composition space model for tubulin bound to a 1:1 DOPC:DOPE lipid membrane at 600 nM solution concentration, as derived from neutron
reflectivity experiments. Adapted with permission from Hoogerheide et al. (2017). Copyright (2017) National Academy of Sciences.

3 Tubulin redistributes the lateral
pressure of lipid packing

3.1 GrA as a reporter on lipid membrane
properties

The grA channel is a small ion channel formed by the trans-
bilayer association of two grAmonomers from each lipidmonolayer

into a conducting dimer (for a comprehensive review see, e.g.,
Andersen et al., 2005). It is a single-stranded β6,3-helical dimer
whose structure is known at atomic resolution (Arseniev et al., 1985;
Allen et al., 2003). The length of the conducting grA dimer, at
≈2.2 nm, is much less than the hydrophobic thickness of common
lipid bilayers (Elliott et al., 1983). Therefore, channel formation
requires locally bending the two lipid monolayers towards each
other, creating a disjoining force on the channel that varies with lipid
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FIGURE 5
Tubulin membrane-binding domain. (A) Orientation of α-tubulin on a DOPE membrane surface from all-atom MD simulations on the ANTON2
platform. (B) The binding motif appears to have amphipathic helical properties. Adapted with permission from Hoogerheide et al. (2017). Copyright
(2017) National Academy of Sciences.

membrane properties such as chemical composition, hydrophobic
thickness, membrane curvature, lipid packing stress, etc. Analysis
of the observable channel parameters—its ionic conductance and
the average lifetime of the conducting, dimeric state—thus reveals
changes in the lipid bilayer environment. Importantly, grA as an IMP
is thus “self-reporting” on its lipid environment.

Olaf Andersen and colleagues demonstrated in a number of
their works that grA lifetime could be a reliable measure of the
changes in bilayer intrinsic curvature, the repulsion/attraction forces
between lipid headgroups, hydrophobic thickness, and several other
parameters [for comprehensive reviews see (Lundbaek et al., 2010;
Maer et al., 2022)]. The ≈10 times difference in grA lifetime between
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FIGURE 6
Tubulin affects grA channel parameters in DOPE, but not in DOPC membranes. (A) Current traces of grA channels in DOPE and DOPC membrane
before (traces a and c) and after (traces b and d) addition of 30 nM and 50 nM tubulin, respectively. Tubulin notably increases grA lifetime and decreases
channel conductance in DOPE membranes. Tubulin also induces fast current flickering that can be better seen at a finer time scale in inset (ii) in
comparison with the control trace in inset (i). 50 nM of tubulin does not change grA channel parameters in DOPC membranes appreciably. The applied
voltage was 100 mV. Tubulin was added to the cis compartment. Current records were digitally filtered using an averaging time of 10 ms. Dashed lines
indicate zero current level, and dotted lines indicate the currents through single (or double, as in panel c) grA channels. The medium consisted of 1 M
KCl buffered with 5 mM HEPES at pH 7.4. (B,C) In DOPE membranes, tubulin increases grA lifetime (B) and decreases conductance (C) in a
dose-dependent manner that displays saturation at about 20 nM tubulin concentration. Tubulin has virtually no effect on channel lifetime and
conductance in DOPC membranes. Channel conductance is given as its ratio in the presence of tubulin to that in the absence of tubulin. Uncertainties
are 68% confidence intervals derived from multiple repeated measurements. Adapted with permission from Rostovtseva et al. (2024). © 2024 by the
authors. Licensee MDPI, Basel, Switzerland.

pure DOPC and DOPE membranes is convincing evidence of the
high sensitivity of grA dissociation kinetics to the bilayer mechanics
(Rostovtseva et al., 2008; Rostovtseva et al., 2024) (Figure 6A). GrA
lifetime exponentially decreases with the increase of DOPE/DOPC
ratio in lipid mixture (Rostovtseva et al., 2008).

A clear demonstration of the effect of hydrophobic thickness
on grA lifetime is shown in Table 1, where the grA lifetime
decreases with even a small increase of the bilayer thickness in
monounsaturated PC bilayers (Huang, 1986; Lundbaek, 2006). The
small difference of ≈0.16 nm in the thickness between DOPC
(Kucerka et al., 2005) and bilayers of DOPE/DOPC (3:1) mixtures

(Rand et al., 1990) (a pure nonlamellar DOPE does not form
liposomes) (Table 1), can only partially contribute to the 10-
fold difference in grA lifetime in these bilayers. It was also
shown that channel lifetime decreased ≈40 times, from 4.5 s to
0.11 s, if bilayer thickness increased by 0.76 nm when PC with
C(18:1) acyl chain in DOPC was replaced by PC with longer
acyl chain C(22:1) in dier-ucoylphosphatidylcholine (diC(22:1)PC),
respectively (Table 1) (Rostovtseva et al., 2024).

Hydrophobic thickness, however, is not the only determinant
of the grA lifetime. The grA lifetime was also changed when
monounsaturated acyl chains in DOPC lipid were replaced with
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phytanoyl chains in diphytanoyl-PC (DPhPC) (Rostovtseva et al.,
2024): the lifetime in DPhPC was ≈2 times longer (≈8 s) than in
DOPC (4.5 s), despite the thickness of both bilayers’ being essentially
the same at 3.64 nm and 3.67 nm, respectively (Kucerka et al.,
2005; Tristram-Nagle et al., 2010) (Table 1). These results can be
understood by the observations of Tristam-Nagle et al. (2010)
obtained using x-ray and neutron scattering and water permeability
measurements on unilamellar vesicles. The authors suggested that
from the biophysical perspective, DPhPC belongs to a different
family of lipids than phosphatidylcholines with linear chain
hydrocarbon chains. Notably, the bending modulus of DPhPC was
30% smaller than that of DOPC (Tristram-Nagle et al., 2010).
Thus, the grA lifetime reports on the mechanical properties of
the membrane, which include a contribution from the associated
bilayer deformation energy or the “phenomenological bilayer spring
constant” (Lundbaek and Andersen, 1999; Lundbaek et al., 2010),
membrane surface bending, the hydrophobic thickness, and the
lipid packing stress. We prefer to use a more broad term of lipid
packing stress (Bezrukov, 2000; van den Brink-van der Laan et al.,
2004) which includes the energetics of hydrophobic inclusions, such
as those introduced by protein-lipid interactions, and the energetics
of spontaneous formation of non-lamellar local structures. In
this framework, the increase of grA lifetime corresponds to a
reduction in the bilayer deformation energy for the formation of
the grA dimer in response to the change of the lipid packing stress
(Rostovtseva et al., 2008; Weinrich et al., 2009).

3.2 Effect of tubulin on membrane
properties reported by grA

As discussed previously, dimeric tubulin preferentially binds to
DOPE membranes. grA is the exemplary molecular probe to test if
bound tubulin changes lipid bilayer properties (Figure 1). Indeed,
the addition of tubulin to theDOPEmembranes resulted in a change
of grA channel parameters. Channel lifetime increased ≈10 times
with the addition of 30 nM tubulin (Figures 6A,B), and conductance
decreased by≈20% (Figure 6C) inDOPEmembranes. Conversely, in
DOPC membranes, both parameters remained virtually unchanged
(Rostovtseva et al., 2024). Similarly to DOPC membranes, tubulin
did not change the grA lifetime in diC(22:1) membranes (Table 1),
even though the grA lifetime in the membranes of the 18:1 PC
(DOPC) lipids is 10 times smaller than that in 22:1 PC lipids.
Channel conductance changed less dramatically than the lifetime,
but, in DOPE membranes, the presence of tubulin produced rapid
current fluctuations, with characteristic time ∼100 μs (compare
traces in insets i and ii in Figure 6A). These results, obtained by
using grA as a molecular probe, independently confirm tubulin’s
preference for binding to DOPE lipids, as described in Section 2.

Most striking was the effect of tubulin on grA lifetime in
DPhPC membranes: in the presence of 30 nM tubulin, the lifetime
increased ≈5 times, similar to its effect in DOPE membranes
(Table 1), despite presenting a PC headgroup at the membrane
surface. Based on these data, we can suggest that tubulin-membrane
binding depends not on specific interactions of tubulin with lipid
headgroups, but rather on its lipid-dependent ability to distort the
headgroup packing at the membrane surface and thus redistribute
the lateral pressure of lipid packing as depicted by pathways §2 and

3 in Figure 1. Importantly, this occurs without a significant change
in the hydrophobic thickness, as observed by NR (Section 2.2).

4 Global and local membrane
properties derived from the grA
channel lifetime and conductance

A characteristic effect of tubulin on grA channel is a
generation of fast flickering channel conductance in DOPE
(Figure 6A) and DPhPC membranes (Rostovtseva et al., 2024).
Considering that the grA channel does not “gate” in the
conventional sense used for ion channels gating, the origin of
this puzzling phenomenon was investigated following a model
proposed earlier by Armstrong and Cukierman (2002) and Ring
(1986), where the intensity of grA channel flickering was related
to the bilayer thickness. This hypothesis was tested recently
(Rostovtseva et al., 2024) in experiments using the membranes
formed from phosphatidylcholine with a C(22:1) unsaturated acyl
chain (diC(22:1)PC), whose hydrophobic thickness is 0.76 nm larger
than that ofDOPC (Table 1). As shown in Figure 7A, in diC(22:1)PC
membranes, the fluctuations between grA open and zero-
conductance levels are well-pronounced and time-resolved only in
the presence of tubulin. The corresponding power spectral densities
(Figure 7B) show a noticeable asymmetry in current blockages
with respect to the sign of the applied voltage. Such asymmetry
is a result of one-sided tubulin addition (30 nM tubulin in the cis
side) in these experiments. Similar asymmetry was also observed
in DPhPC and PC/PE membranes (Rostovtseva et al., 2024). A
natural interpretation of this asymmetry is that the positive potential
applied to the side of tubulin addition (cis side) pushes a positively
charged α-tubulin membrane binding domain (Figure 5) towards
the membrane plane, leading to a higher power spectral density
of tubulin-induced current fluctuations at positive voltage than at
negative (+200 vs. −200 mV in Figure 7B). Notably, the highest
spectral density, which corresponded to the highest frequency
of blockage events, was obtained in the thickest diC(22:1)PC
bilayers. Following the interpretation of grA conductance flickering
phenomena proposed by Armstrong and Cukierman (2002), the
current blockages could be understood as the result of tubulin-
induced modulations of the lipid funnel that forms the channel
entrance (cartoon in Figure 7C). Alternatively, the tubulin dimer
diffusing along the membrane surface could transiently block
the channel conductance while approaching the lipid funnel.
Interestingly, when instead of full-length tubulin, a synthetic peptide
comprising the helix H10 of α-tubulin–the identified membrane-
binding tubulin domain (Figure 5, see Section 2) – was used in
grA experiments, no effect on channel conductance or induction
of current flickering was observed (Rostovtseva et al., 2024). At the
same time, similar to the full-length tubulin, the synthetic peptide
also increased grA lifetime, but less effectively (≈4 times increase)
than tubulin, and in a much higher (μM) concentration range.

These results suggest that tubulin’s effect on channel
conductance and the generation of rapid conductance blockages
might have a different origin than the effect of tubulin on
grA lifetime. In Section 3.2, we explored how tubulin-induced
changes in global membrane properties affect grA lifetime:
smaller PE headgroups, as compared with PC headgroups,
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FIGURE 7
Tubulin induces fast blockage events down to zero-current in grA channels in a diC(22:1)PC membrane. (A) Current traces of a single grA channel in a
diC(22:1)PC bilayer before (trace a) and after (trace b) addition of 30 nM tubulin to the cis compartment. The addition of tubulin induces rapid events of
grA channel closure to a zero-current level, shown in trace c at a finer time scale. The applied voltage was 200 mV. The medium consisted of 1 M KCl
buffered with 5 mM HEPES at pH 7.4. Current records were filtered with a digital eight-pole Bessel filter at 2 kHz. (B) The power spectral density of
tubulin-induced current fluctuations depends on the polarity of the applied voltage. Solid lines represent the fits to Lorentzian spectra. (C) A cartoon of
the local effect of tubulin on grA conductance. In the case of diC(22:1)PC membranes, binding of tubulin dimers is limited to the regions of membranes
where headgroup packing is distorted by grA channel presence in the region of the lipid funnel forming the entrance to the channel. However, the
integral properties of the membrane remain unchanged, and grA lifetime is unaltered. Adapted with permission from Rostovtseva et al. (2024). © 2024
by the authors. Licensee MDPI, Basel, Switzerland.

appeared to be more prone to adjusting to the tubulin-induced
redistribution of the packing forces towards lipid hydrocarbon
chains. This flexibility of the PE headgroups provides conditions
for stronger tubulin α-helix anchoring (Figures 2, 3, 5) causing
the increase of grA lifetime (Figure 6). Notably, both full-length
tubulin and the synthetic peptide reduce the bilayer deformation
energy contribution of grA channel formation reflected in an
increased lifetime.

In the case of diC(22:1)PC membranes, binding of tubulin
dimers is limited to the regions of membranes where headgroup

packing is distorted (less dense, analogous to a smaller headgroup)
in the lipid funnel formed by the grA channel. This local change
in the membrane properties leads to stable binding of tubulin only
where grA channels have formed (pathways §4 in Figure 1). The
limitation to the region of the lipid funnel leads to the virtually
unchanged global properties of the membrane and thus unchanged
grA lifetime; however, the localized binding is clearly manifested via
transient channel blockages by the bulky body of the tubulin dimer.
The absence of conductance flickering in the presence of the α-
tubulin membrane binding peptide is not surprising considering its
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FIGURE 8
αSyn increases grA lifetime but does not change its conductance. (A)
Current traces of the channels in a DPhPC membrane before and after
the addition of 150 and 500 nM αSyn to the cis side of the membrane.
Current records were filtered with a digital eight-pole Bessel filter at
50 Hz. Dashed lines indicate zero current level; dotted lines show a
single channel current level. The membrane bathing solution
contained 150 mM KCl buffered with 5 mM HEPES at pH 7.4. The
applied voltage was 100 mV. (B) αSyn increases grA lifetime (blues
bars) in a dose-dependent manner but does not change conductance
appreciably (grey bars). The grey dashed line indicates average grA
channel conductance at all conditions. Bars and error bars are the
mean and standard deviation from the mean in 4–14 experiments.

drastically smaller size of 14 kDa compared with a 100 kDa tubulin
globule (Figure 7C) and, therefore, its inability to induce local
modulations near the channel entrances. In relatively thin DOPC
membranes, there is no measurable tubulin-induced flickering; by
contrast, in thicker diC(22:1)PCmembranes (Table 1), the flickering
is most pronounced. These results show that the deeper grA is
embedded into the bilayer, the larger the effect of tubulin on channel
conductance and flickering. This makes the possibility of direct
tubulin-grA interactions in our experiments extremely unlikely and
points towards local grA-induced lipid packing defects as the sites of
tubulin binding and the source of current fluctuations.

We can conclude that the tubulin-grA interaction studied here
is an example of a complex phenomenon in which protein binding

and protein-protein interactions are regulated by lipids. Both the
binding of APs and the incorporation of integral proteins into
the membrane alter its properties and, via this alteration, protein
function. Moreover, it is natural to expect that the effect of tubulin
binding on membrane mechanics is reciprocal.

5 Effect of α-synuclein on the lipid
membrane properties, as reported by
the grA lifetime

To further test our model of separation between global and local
effects of AP on lipid membranes and embedded IMPs, we used
another well-studied AP, αSyn. αSyn is a small, 14 kDa intrinsically
disordered neuronal protein highly expressed in the central nervous
system and constituting up to 1% of total cytosolic proteins in
normal brain cells (Kruger et al., 2000). It ismostly known as amajor
component of the Lewy bodies found in the brains of Parkinson’s
disease (PD) patients (Spillantini et al., 1997), the inclusions that
are a pathological hallmark of this neurodegenerative disorder
(Strohaker et al., 2019). Despite the obvious structural, functional,
and genetic differences between αSyn and tubulin, they both belong
to the AP family and are transiently associated with the cellular
membrane. Similar to tubulin, αSyn was also found associated with
mitochondrial membranes in vivo (Li et al., 2007; Nakamura et al.,
2008; Nakamura, 2013; Robotta et al., 2014; Rovini et al.,
2020) and with model membranes in vitro (Bodner et al., 2009;
Pfefferkorn et al., 2012). Despite the obvious differences between
tubulin—a compactly folded 110-kDa globular protein with a well-
defined crystal structure (Nogales et al., 1998)—and αSyn—an
unstructured 14-kD polypeptide—both proteins have one similarity
in their structures: a disordered, highly negatively charged CTT.
When tubulin or αSyn is added to the planar membrane bathing
solutions with reconstituted VDAC, they both induce characteristic
blockages of channel conductance (Rostovtseva et al., 2017;
Rostovtseva et al., 2021). The CTTs of either tubulin or αSyn are
the domains responsible for the reversible blockage of the VDAC
pore. It was shown that when CTT of either protein is captured
by VDAC pore, its selectivity is reversed to cationic, which is
opposite to the anion-selective open state (Gurnev et al., 2011;
Hoogerheide et al., 2017; Hoogerheide et al., 2018). Notably, the
first step of both proteins’ interaction with VDAC is their transient
binding to the membrane, followed by a partial and reversible block
of the VDAC pore by their anionic CTTs driven by the applied
potential. Therefore, the membrane binding of αSyn, as that of
tubulin, has an array of physiological implications.

Due to the apparent importance of αSyn in neurodegeneration,
an impressive amount of biophysical studies were devoted to αSyn
interaction with membranes (Eliezer et al., 2001; Ulmer et al.,
2005; Fusco et al., 2014; Fusco et al., 2017). One of the fascinating
features of this small protein is that while being disordered in bulk
solution, upon binding to the lipid membrane, αSyn’s N-terminal
domain adopts a helical structure (Eliezer et al., 2001; Ulmer et al.,
2005; Pfefferkorn et al., 2012; Fusco et al., 2014) with preferential
binding to anionic lipids. αSyn also has a pronounced binding
affinity to zwitterionic lipids (O'Leary et al., 2018; Jacobs et al.,
2019) with a preference non-lamellar lipids, such as PE (Jo et al.,
2000). Its membrane binding has a strong sensitivity to the
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membrane curvature and induces membranes remodeling, such as
tubulation (Jiang et al., 2013). In summary, lipids with small and/or
negatively charged headgroups enhance both binding affinity and
helix formation of αSyn’s N-terminal membrane-binding domain.
Therefore, αSyn seems to be an excellent AP candidate for testing
its ability to modify lipid bilayer using a grA sensor probe.

The results of the effect of αSyn on grA parameters are
shown in Figure 8. Similar to α-tubulin membrane-binding peptide
(Rostovtseva et al., 2024), αSyn increases channel lifetime in a
dose-dependent manner up to ≈5 times at 500 nM but does not
measurably change grA conductance (Figure 8B).The concentration
range at which αSyn affects grA is about 10 times higher than that
of tubulin (Figure 6), but much lower than the micromolar range
of α-tubulin synthetic peptide (Rostovtseva et al., 2024). We can
conclude that αSyn affects the global properties of lipid membrane
but, similarly to α-tubulin peptide, either does not sense the local
membrane curvature near grA entrance, or, more likely, does not
have a sufficiently bulky body to detectably disrupt ion flow through
the channel. These findings naturally raise the question of whether
large globular APs more effectively sense the local membrane
curvature, which could be a subject of further studies.

6 Conclusion

Here we have established the reciprocal lipid-mediated
interactions of an AP tubulin and an integral membrane protein grA
in the absence of direct protein-protein interactions.The implications
of these solely lipid-mediated interactions are broad, impinging on
protein-membrane binding assays, the action of membrane proteins,
and themechanismsof actionofmembrane-altering smallmolecules.

First, these results suggest that membrane deformation can play
a significant role in the binding of APs. In Section 2, we showed
that tubulin binding to a lipid membrane, as observed by three
different biophysical techniques, requires a multisite binding model
to unify the individual observations. The presence of PE lipids,
which alter the membrane properties to allow a greater degree
of hydrophobic interactions, is important. Then, in Section 3, we
showed that tubulinmodifies the global properties of themembrane,
which is expected in turn to alter tubulin’s binding propensity. These
observations imply that, when describing the mechanics of binding,
not only must the energetics of the multiplicity of binding sites be
accounted for, but also the energy ofmembrane alteration.The latter
is a collective, presumably protein sequence-dependent, effect.

Second, the lipid-mediated interactions between IMPs and
their AP partners analyzed here provide a pathway by which
the interactions between these proteins can be modulated in
vivo. For example, the voltage-gating properties of VDAC are not
significantly affected by the presence of tubulin with truncated
CTTs (Rostovtseva et al., 2008). However, considering that the lipid
composition of mitochondrial membranes is dynamic, especially
under conditions of oxidative stress (Crimi and Esposti, 2011),
or apoptosis (Kagan et al., 2004; Paradies et al., 2011), we
can suggest that mitochondrial membrane remodeling modulates
tubulin binding and, therefore, its regulatory interaction with
VDAC. Because mitochondrial membranes are known to undergo
dynamic remodeling in many cellular processes such as cell
proliferation in disease and healthy development, we speculate

that this type of regulation could be particularly relevant to other
mitochondrial membrane proteins.

Finally, some membrane-altering small molecules, such as
anesthetics, tricyclic antidepressants, and psychedelics, have
properties similar to APs (Kapoor et al., 2019; Castellanos et al.,
2020). The recognition of lipid-mediated protein-protein
interactions could be instrumental in understanding the off-target
action of some of these drugs on cell and organelle membranes
and, therefore, on membrane proteins residing in, or peripherally
associated with, those membranes.
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