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Objective: This study aims to identify and validate key genes involved in
the progression of myocardial infarction (MI) and to investigate their roles
in inflammatory response, immune regulation, and myocardial remodeling.
A systematic analysis will be conducted using bioinformatics and machine
learning methods.

Methods: Gene expression data of GSE60993, GSE61144, GSE66360 and
GSE48060 from four datasets were collected from the Gene Expression
Omnibus (GEO) database. Differentially expressed genes (DEGs) between
MI samples and normal samples were screened by the limma package.
Weighted gene co-expression network analysis (WGCNA) was employed to
identify genetic modules associated with MI. Core genes in key modules
were screened using LASSO regression and support vector machine recursive
feature elimination (SVM-RFE). These genes were then subjected to functional
enrichment analysis, including Kyoto Encyclopedia of Genes and Genomes
(KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA).
The CIBERSORT algorithm was utilized to evaluate immune cell infiltration
patterns. Finally, potential therapeutic targets were explored through drug-gene
interaction analysis using the DGIdb database.

Results: After correcting for batch effects across datasets, we identified 687
differentially expressed genes (DEGs), including 405 upregulated and 282
downregulated genes. WGCNA analysis identified a highly correlated module
with MI (turquoise module) containing 324 genes. Integrative machine learning
(LASSO regression and SVM-RFE) and validation identified five key MI-associated
genes: ANPEP, S100A9, MMP9, DAPK2, and FCAR. These genes were functionally
enriched in inflammatory and immune-related pathways and correlated with
immune cell infiltration, particularly neutrophils and macrophages. Notably,
S100A9, FCAR, and MMP9 emerged as druggable targets.

Conclusion: The five hub genes identified in this study (ANPEP, S100A9, MMP9,
DAPK2, and FCAR) significantly contribute to MI development by modulating
inflammatory responses and immune regulation. Their strong association with
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MI pathogenesis highlights their potential as diagnostic markers and therapeutic
targets, which may lead to new clinical applications for MI management.
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myocardial infarction, hub genes, inflammation, immune regulation, weighted gene
co-expression network analysis (WGCNA), cardiac remodeling, LASSO, drug-gene
interaction

Introduction

Myocardial Infarction (MI) is one of the most common
cardiovascular diseases worldwide (You et al., 2023; Reed et al.,
2017). Its pathogenesis is usually triggered by acute occlusion of
coronary arteries, resulting in prolonged local myocardial ischemia
and hypoxia, which leads to irreversible damage and necrosis
of cardiomyocytes, followed by triggers of a series of complex
molecular and cellular responses, such as inflammatory response,
immune regulation, apoptosis, and myocardial remodeling
(Oliveira et al., 2018; Ramos-Regalado et al., 2024; Liu G. et al.,
2024; Kim et al., 2024; Yuan et al., 2024).The inflammatory response
is one of the earliest and most important physiologic responses
after MI, both contributing to tissue repair but also potentially
exacerbating myocardial injury. Subsequent immune modulation
and apoptotic processes further affect cardiac function recovery
after myocardial injury, which in turn leads to the development of
cardiac insufficiency and chronic heart failure (Zhang et al., 2022;
Mahtta et al., 2020; Prabhu and Frangogiannis, 2016).

Although early diagnostic and therapeutic tools for MI have
progressed over the past decades, the underlying molecular
mechanisms have not been fully elucidated. This knowledge gap
continues to hinder the development of precise diagnostic and
therapeutic strategies (Berezin and Berezin, 2020). Consequently,
identifying key MI-associated genes and their molecular
pathways will deepen our understanding of disease pathogenesis
while revealing potential targets for personalized therapeutic
development.

In recent years, the widespread application of high-throughput
sequencing technologies and advanced bioinformatics approaches
has enabled increasing research focus on gene expression alterations
in myocardial infarction and their functional roles in disease
pathogenesis (Mujalli et al., 2020; Li et al., 2019). The identification
and functional analysis of differentially expressed genes (DEGs)
have been widely used to explore the molecular mechanisms
associated withMI (Tian et al., 2023;Wang and Dou, 2024). A study
has showed that ten core genes (Timp1, Sparc, Spp1, etc.) are directly
involved in the process of myocardial fibrosis and ventricular
remodeling after MI by regulating extracellular matrix remodeling
and macrophage-driven inflammatory responses (Wang et al.,
2022). Core genes such as ADPN promote M2 macrophage
polarization, reduce inflammatory responses, and enhance
lymphangiogenesis by regulation of the IL6/ADPN/HMGB1 axis,
thereby alleviating myocardial injury and improving clinical
prognosis after MI (Zheng et al., 2024). A comprehensive dissection
of MI pathogenesis, with particular emphasis on three pivotal
biological processes (inflammatory activation, immunemodulation,

and fibrotic transformation), is clinically imperative for advancing
precision cardiology.

In addition to inflammatory factors, matrix metalloproteinases
(MMPs) exert a pivotal role in myocardial remodeling after MI
(You et al., 2023; Mortezapour et al., 2023). MMPs promote
myocardial fibrosis and scarring by degrading the extracellular
matrix, which protects the heart from further damage to a certain
extent but may lead to cardiac insufficiency in the long term (Li and
Feldman, 2001; Frangogiannis, 2017). MMP9, whose expression is
significantly upregulated after MI, is thought to be closely linked
with ventricular remodeling and the development of heart failure
(You et al., 2023). In addition, Emerging evidence has established
that oxidative stress serves as a critical mediator in myocardial
ischemia-reperfusion injury (I/R), where excessive reactive oxygen
species (ROS) generation significantly exacerbates cardiomyocyte
damage and promotes apoptotic pathways (Krebber et al., 2020;
Boťanská et al., 2021). The application of antioxidants has been
shown to attenuatemyocardial injury afterMI, which also highlights
that modulation of oxidative stress pathways is one of the important
strategies for the future treatment of MI (Wang and Kang, 2020;
Jin and Kang, 2024). However, while genes such as S100A9 and
MMP9, and pathways such as NF-κB, are known to be involved in
MI, a comprehensive analysis that integrates multiple datasets and
employs a multi-stage computational pipeline (including WGCNA
and machine learning) to identify a robust signature of hub
regulatory genes and systematically characterize their collective
association with specific immune cell infiltrates and druggable
targets inMI remains a key area for advancement (Marinković et al.,
2020; Yang et al., 2024; Liu et al., 2020; Zhuang et al., 2023).

In this study, we performed an in-depth bioinformatics analysis
using publicly available gene expression microarray data from MI
patients and normal controls. First, DEGs between MI patients
and normal population were identified through multi-omics data
integration. Next, we performed Gene Ontology (GO) enrichment
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses of these differential genes, revealing the roles
of these genes in key BP such as inflammatory response, immune
regulation and myocardial fibrosis. In addition, the core genes
(hub genes) were screened by weighted gene co-expression network
analysis (WGCNA) combined with machine learning, and the
functions of these core geneswere further elucidated by construction
of protein interaction networks (PPIs). We also behaved immune
infiltration analysis of the core genes to explore their expression
patterns in different immune cells. Finally, through drug-gene
interaction analysis, we identified potential therapeutic targets,
rendering new biological basis and strategies for precision diagnosis
and personalized treatment of MI.

Frontiers in Molecular Biosciences 02 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1607096
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Yang et al. 10.3389/fmolb.2025.1607096

TABLE 1 Details of the GEO datasets included in the current study.

Dataset Samples (normal VS MI samples) Platform Tissue Group

GSE60993 7 VS 26 GPL6884 Blood Training set

GSE61144 7 VS 10 GPL6106 Blood Training set

GSE66360 50 VS 49 GPL570 CD146+ Circulating endothelial cells Training set

GSE48060 21 VS 31 GPL570 Blood Validation set

Data and methods

Data collection and analysis

The gene expression datasets analyzed in this study were
retrieved from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/), including four datasets,
GSE60993, GSE61144, GSE66360 and GSE48060. Among them,
the GSE60993, GSE61144 and GSE66360 datasets were used for
differential expression analysis, while the GSE48060 served as
an independent validation set for the validation of the analyzed
results of the reliability. The specific information of each dataset
was shown in Table 1. GSE60993 (Platform: GPL6884; Organism:
Homo sapiens) provided peripheral blood samples from 7 normal
controls and 26 patients with acute coronary syndrome (ACS).
For the purposes of this study, ACS patients, encompassing ST-
elevation myocardial infarction (STEMI), Non-ST-elevation MI
(NSTEMI), and unstable angina (UA), all presenting within 4 h
of chest pain onset, were collectively categorized as the MI group.
And the GSE61144 dataset (Platform: GPL6106; Organism: Homo
sapiens) contributed peripheral blood samples; 7 normal control
samples and 10 MI samples were included from this dataset for
our analysis. GSE66360 (Platform: GPL570; Organism: Homo
sapiens) involved the analysis of CD146+ circulating endothelial
cells (CECs) isolated from 50 healthy individuals (normal controls)
and 49 patients with acute myocardial infarction (MI samples). The
validation dataset, GSE48060 (Platform: GPL570; Organism: Homo
sapiens), was reserved as an independent external validation cohort.
This dataset consisted of peripheral blood samples from 21 control
subjects and 31 MI patients.

Gene expression data for each dataset (GSE60993, GSE61144,
GSE66360, andGSE48060)were retrieved from theGeneExpression
Omnibus (GEO) public database, typically as series matrix files.
Initial preprocessing steps were applied consistently to each dataset.
Probe identifiers were mapped to official gene symbols using
the corresponding platform annotation files (e.g., GPL6884 for
GSE60993, GPL6106 for GSE61144, GPL570 for GSE66360 and
GSE48060). In instanceswhere a single probe IDmapped tomultiple
gene symbols (often separated by “///” in annotation files), the first
gene symbol listed was retained for that probe. Following probe-to-
gene mapping, multiple probes could correspond to the same gene
symbol. To obtain a single expression value per gene, the expression
values of probesmapping to the same gene symbolwere summarized
by calculating their average using the avereps function within the
limma R package. Genes with no corresponding gene symbol after
annotation were removed.

To mitigate non-biological experimental variations in the
integrated training cohort (derived from datasets GSE60993,
GSE61144, and GSE66360), batch effects were corrected using
the ComBat function from the sva R package (Version 3.52.0).
This function was applied to the merged expression matrix, with
the dataset of origin for each sample designated as the batch
variable. The ComBat algorithm was implemented using its default
parametric empirical Bayes framework, without the inclusion of a
model matrix for specific biological covariates at this correction
stage. The successful reduction of batch-related data clustering was
confirmed by visual inspection of boxplots of the expression data
before and after correction.

Selection of DEGs

The limma package (Version 3.60.5) was applied to screen
for DEGs between MI samples and Normal samples, with DEGs
threshold at P< 0.01 and |log2(FC)| > 0.585. Subsequently, pheatmap
(Version 1.0.12) and ggplot2 (Version 3.5.1) to were taken to plot
volcano and heat maps, respectively.

WGCNA identifies key module genes

For further exploration of the potential biological functions
of DEGs, we performed WGCNA on the DEGs screened above.
WGCNA is a systems biology approach widely used to analyze gene
co-expression patterns among different samples (You et al., 2023).
By construction of gene co-expression networks, gene modules
with highly co-expressed genes could be identified with further
exploration of the relationship between these modules and MI.

Machine learning screening of hub genes
in key modules

In order to screen out core genes of the key modules in
WGCNA analysis, we applied LASSO regression analysis for
feature selection. First, the gene expression matrix and sample
classification information of the key modules of WGCNA were
read as independent and dependent variables respectively, ensued
with data conversion to matrix form and the dependent variables
to dichotomous variables (MI vs. Normal samples). The optimal
lambda value for the LASSO model was determined through 10-
fold cross-validation using the cv. glmnet function, with the mean
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squared error (MSE) serving as the evaluation metric. Based on this
parameter, we constructed the LASSO regressionmodel and showed
the trend of coefficients with lambda by regression path diagram.

The LASSO regression effectively contracted the regression
coefficients by L1 regularization and screened out the core genes
with significant contributions. We identified the core genes by
selecting those with non-zero coefficients under the optimal lambda
value in LASSO regression.

To assess the reliability of the core gene screening, we further
screened the core genes screened by LASSO using the SVM-RFE
method. SVM-RFE performs recursive feature elimination of the
genes by five-fold cross-validation (k = 5), which leads to the
screening of key gene features with high classification performance.

For exploration of the interactions and associations of hub genes
with other genes, gene association networks were constructed via
the GeneMANIA database. This database integrates a wide range of
functional association information, including physical interactions,
co-expression, and co-localization, which can comprehensively
predict the functions and interrelationships of genes (Warde-
Farley et al., 2010).

Consensus cluster analysis

Using consensus clustering analysis, we identified molecular
subtypes associated with the core genes screened. We used the
“ConsensusClusterPlus (1.58.0)” R package for consensus clustering
analysis, which clustered samples by the k-means algorithm and
evaluated the robustness of different numbers of clusters. The
optimal cluster count was assessed through 1,000 subsampling
replicates (80% samples per iteration, pItem = 0.8) with maxK = 9.
Euclidean distance was chosen as the distance calculation method
for clustering.

Through consensus clustering, we generated consensus
clustering heat maps, consensus cumulative distribution function
(CDF) maps, and incremental area maps. Sample Inconsistency
Consistency (IC) and Cluster Consistency (CLC) were calculated
for each possible number of clusters (k-value). Finally, based on
the analysis results, we selected the optimal number of clusters and
classified the samples.

Functional enrichment analysis

With the aim of assessing biological functions of the key
genes, the screened DEGs were subjected to GO functional
enrichment analysis and pathway enrichment analysis of KEGG
by clusterProfiler (Version 4.12.6) R package. For GO enrichment
analysis, we evaluated the enrichment of genes in three major
categories: BP, molecular function (MF), and cellular component
(CC) with a significance threshold of P < 0.05 for statistically
enriched terms.

Gene Set Enrichment Analysis (GSEA)
enrichment analysis

To explore the functional enrichment of differentially expressed
genes (DEGs), we conducted Gene Set Enrichment Analysis

(GSEA).Thismethod evaluates whether a predefined gene set shows
statistically significant enrichment in a ranked gene list, revealing
potential associations with specific biological pathways.The analysis
was performed using the clusterProfiler R package (v4.12.6), with
the MSigDB Hallmark gene sets as the reference. A significance
threshold of P < 0.05 was applied to identify enriched pathways.

Immune infiltration analysis

To assess immune cell composition, we performed immune
infiltration analysis using the CIBERSORT algorithm, which
quantifies the relative proportions of 22 immune cell types in the
samples. The differences in immune cell infiltration across groups
were visualized using box plots. Furthermore, we identified five key
genes (ANPEP, S100A9, MMP9, DAPK2, and FCAR) and evaluated
their correlations with immune cells using Pearson’s method. The
resulting associations were visualized as a correlation heatmap
generated with the corrplot R package.

Drug-gene interaction analysis

To explore the potential drug targets of hub genes, the screened
hub genes were analyzed for drug-gene interactions via the Drug-
Gene Interaction Database (DGIdb, https://www.dgidb.org/).

Statistical analysis

All statistical analyses were conducted using R software (v4.4.1).
The diagnostic performance of key genes was evaluated using
Receiver Operating Characteristic (ROC) curves, generated with
the pROC package (v1.18.5). The Area Under the Curve (AUC)
was computed for each gene, with P < 0.05 considered statistically
significant.

Results

Identification of DEGs in MI

Following batch effect correction across datasets, we conducted
differential expression analysis between myocardial infarction (MI)
and normal samples (Supplementary Figure S1). Using the limma
package, we identified 687 differentially expressed genes (DEGs)
with thresholds of |log2FC| > 0.585 and P < 0.05, including
405 upregulated and 282 downregulated genes (Figures 1A,B). To
elucidate their biological roles, GO and KEGG enrichment analyses
were performed. GO terms revealed significant enrichment in (1)
Positive regulation of cytokine production, (Reed et al., 2017),
Immune response-activating signaling pathway, (Oliveira et al.,
2018), Immune receptor activity (Supplementary Figure S2A). In
addition, KEGG analysis exhibited obvious enrichment in the
Cytokine-cytokine receptor interaction, NF-kappa B signaling and
Ribosome pathways (Supplementary Figure S2B).

In addition, we used GSEA to assess the enrichment of DEGs
in known functional pathways. GSEA analysis displayed that MI-
related pathways, including TNFA signaling via NFKB, Hypoxia,
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FIGURE 1
Differential gene expression and GSEA enrichment analysis in MI and Normal samples. (A) Volcano plot displays the distribution of DEGs between MI
and Normal groups. The DEGs were filtered using |log2 Fold Change| > 0.585 and P < 0.05 as the thresholds. Red and green dots represent significantly
upregulated and downregulated genes respectively. (B) Heatmap of the top DEGs between MI and Normal samples. Rows represent genes, and
columns represent samples. Red indicates upregulation, while blue denotes downregulation. (C) GSEA of DEGs. (D) Pathway-gene interaction network
from GSEA results. Circle sizes represent fold changes, and color intensity reflects statistical significance (P-value).

Inflammatory response, and KRAS signaling_up, were prominently
enriched in theMI group (Figure 1C).The pathway-gene interaction
network demonstrated that critical genes—including CXCL1,
PTGS2, and NFKBIA—were prominently clustered within the
TNFA/NFKB signaling pathway (Figure 1D). This finding suggests
these genes may serve as central regulators in the inflammatory and
immune mechanisms underlying MI. Hypoxia and Inflammatory
response pathways also contained multiple genes related to immune
response and stress response-related genes, such as ADM and IER3.

WGCNA key module identification

To systematically investigate the biological roles of DEGs, we
performed WGCNA to identify key modules associated with MI.

First, by analysis of the fit of different soft thresholds to the scale-
free network (Figure 2A) and the average connectivity between
genes, the most suitable soft threshold of 8 was identified to
ensure that the network had scale-free properties and maintained
high gene connectivity (Figures 2A,B). Next, we constructed gene
co-expression networks and enabled clustering analysis of gene
modules (Figure 2C). The heatmap of module-trait relationships
revealed that the turquoise module demonstrated the strongest
association with the MI group (correlation coefficient R = 0.61, P
= 1 × 1e-16), indicating that genes within this module likely play a
critical role in MI pathogenesis (Figure 2D).

Further analysis of the correlation betweenModuleMembership
(MM) and Gene Significance (GS) of the genes in the turquoise
module showed a strong positive correlation (R = 0.64,
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FIGURE 2
WGCNA for identifying key modules related to MI. (A) Scale-free topology fit index as a function of the soft-thresholding power. (B) Mean connectivity
analysis across different soft-thresholding powers. (C) Cluster dendrogram of genes, with modules indicated by different colors. Each branch
represents a gene, and similar genes are grouped into modules. (D) Heatmap of module-trait relationships registering the correlation between different
gene modules and MI phenotype. (E) Scatter plot of module membership vs. gene significance in the turquoise module.

P = 9.9e-39) (Figure 2E), suggesting that the module of genes
both occupy important positions in the network and also have
significant functions in the BP of MI.

GO and KEGG analyses were applied to the 324 turquoise
module genes to decipher their potential roles in MI-related
pathways and functions. The GO enrichment results (Figure 3A)
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FIGURE 3
Functional enrichment analysis of genes in the turquoise module. (A) GO enrichment analysis of 324 genes in the turquoise module. (B) KEGG pathway
analysis of 324 genes in the turquoise module.

revealed significant enrichment in immune response and innate
immunity activation-related biological processes, including
(You et al., 2023) Response to molecule of bacterial origin,
(Reed et al., 2017), Phagocytosis, (Oliveira et al., 2018), Positive
regulation of cytokine production (Ramos-Regalado et al., 2024)
Myeloid leukocyte activation and so on. Meanwhile, in terms
of CC, these genes were enriched in organelles such as tertiary
granule, secretory granule membrane, and cytoplasmic vesicle
lumen. Besides, when it comes to MF, they were significantly
enriched in pattern recognition receptor activity, immune receptor
activity, and organic acid binding, etc. KEGG pathway analysis
showed significant enrichment of these pathways (Figure 3B): NF-
kappa B signaling pathway, TNF signaling pathway, IL-17 signaling
pathway, B cell receptor signaling pathway, C-type lectin receptor
signaling pathway, Lipid and atherosclerosis, and Phagosome,
etc. These pathways were closely related to immune responses,
inflammatory responses, and pathological processes associated
with cardiovascular diseases, rendering important clues to further
understand the molecular mechanisms of these genes in MI.

Machine learning identifies hub genes

In order to screen for core genes significantly associated with
MI in the turquoise module, we behaved LASSO regression analyses

on the 324 genes included in this module. These mentioned genes
were screened for subsequent analysis by selection of the optimal
lambda values during cross-validation (Figures 4A,B). Results of
the correlation network map of the 17 genes screened showed
strong interactions between multiple core genes, such as a stronger
association between ANPEP, MMP9, S100A9, PMAIP1, DAPK2
and FCAR (Figure 4C). Subsequently, an interaction network of
these 17 core genes with 20 related genes was constructed via
GeneMANIA, displaying the main involvement in Co-expression,
Co-localization, Predicted and Shared protein domains (Figure 4D).
Next, Subsequent analysis demonstrated significant differential
expression of these candidate genes betweenMI patients and normal
group (Figure 4E). In particular, the genes further screened by SVM-
RFE exhibted high classification performance with results of SVM
analysis were demonstrated in Figures 4F,G.

In the validation set (GSE48060), we identified expression
levels of five genes (ANPEP, S100A9, MMP9 and DAPK2)
were equally significant between the two groups (Figure 4H),
which were identified as hub genes with their diagnostic
performance evaluated by ROC curve analysis. The results
indicated that these genes demonstrated a moderate ability to
distinguish MI samples from normal samples. The corresponding
Area Under the Curve (AUC) values were ANPEP: 0.674,
S100A9: 0.757, MMP9: 0.696, DAPK2: 0.728, and FCAR: 0.717,
respectively (Figure 4I).
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FIGURE 4
LASSO regression and SVM-RFE analysis to identify hub genes in the turquoise module. (A) The LASSO regression model used to identify core genes
from the 324 genes in the turquoise module. (B) LASSO coefficient profiles for each gene as the regularization strength (lambda) varies. (C) Correlation
network of the 17 selected genes from LASSO. (D) GeneMANIA network of the 17 hub genes and 20 related genes, displaying interactions based on
co-expression, co-localization, predictions, and shared protein domains. (E) Boxplot analysis of the 17 genes’ expression levels in MI and normal
groups, revealing significant differences between the two groups. (F) The cross-validation error curve from the SVM-RFE analysis, registering the
optimal number of features for classification. (G) The accuracy curve from SVM-RFE analysis, indicating the number of features providing the best
classification performance. (H) Boxplots of the five hub genes (ANPEP, S100A9, MMP9, DAPK2, and FCAR) showing significant differences in expression
between MI and normal samples in the validation dataset (GSE48060). (I) ROC for the five hub genes, demonstrating their diagnostic ability in
distinguishing MI from normal samples.

Cointegration analysis

Using the expression patterns of five hub genes, we performed
consensus clustering analysis, which identified two distinct
molecular clusters with significantly differential gene expression
profiles (Figures 5A–D). Heatmaps and box plots showed expressive
differences between cluster 1 and cluster 2 (Figures 5E,F).
Among them, expression levels of ANPEP, S100A9, MMP9,
DAPK2, and FCAR were prominently higher in cluster 2.
Overall, expression levels of these five hub genes were usually
higher in cluster 2 than in cluster 1, providing new insights
into the molecular typing of MI and potentially informing
personalized therapy in the future.

Immune infiltration analysis

Functional enrichment analysis of the five hub genes (ANPEP,
S100A9, MMP9, DAPK2, FCAR) revealed their significant
involvement in BP related to regulation of intrinsic apoptotic
signaling pathway, neutrophil chemotaxis, Toll-like receptor binding
and so on (Figure 6A). Such mentioned biological functions
are closely linked with inflammatory and immune response
mechanisms of MI.

The immune infiltration analysis demonstrated significant
differences (P < 0.05) in the compositional distribution of 22
immune cell types between the MI and control groups (Figure 6B).
Results of box plot registered that the infiltration of immune
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FIGURE 5
Consensus clustering analysis based on the expression of the five hub genes. (A) Consensus CDF plot for k = 2 to 9 clusters, denoting the CDF across
consensus indices. (B) Consensus matrix for k = 2, presenting the stable and distinct clusters identified. (C) Delta area plot, indicating the relative
change in area under the CDF curve for each k value. (D) Tracking plot showing the cluster stability across different values of k. (E) Heatmap of the
expression of the five hub genes (ANPEP, S100A9, MMP9, DAPK2, FCAR) across the two identified clusters. (F) Boxplot illustrating the significant
differences in the expression of the five hub genes between cluster 1 and cluster 2.

cells such as Dendritic cells activated, Neutrophils, Mast cells
activated and T cells follicular helper was significantly increased
in the MI group (Figure 6C). As shown in Figure 6D, correlations
between the five hub genes and immune cells were further
analyzed. Hub genes were significantly positively correlated
with Neutrophils, Monocytes, and Dendritic. cells.activated, and
significantly positively correlated with T. cells.gamma.delta, T.
cells.CD4. memory.resting and B. cells.memory significantly
negatively correlated. These findings revealed the potential role
of hub genes in immune regulation and provide new clues for
understanding immune mechanisms in MI.

Drug-gene interaction analysis to screen
potential drugs

Through drug-gene interaction analysis, we screened a number
of potential drugs associated with S100A9, FCAR and MMP9.
According to results in Table 2, the S100A9 gene registered high
interaction scores with two drugs, namely, TASQUINIMOD and
PAQUINIMOD (Interaction Score = 26.25384), suggesting that
these drugs might be potential targets for S100A9.

As for the FCAR gene, SK1-I and COMPOUND 28 presented
the highest interaction score (Interaction Score = 4.375639),
meanwhile, the interaction CARBOXYLATED GLUCOSAMINE
and ANDECALIXIMAB with MMP9 (Interaction Score =
4.200614), indicating that these drugs may play a role in the
treatment of MI by targeting FCAR and MMP9 genes.

Discussion

MI is one of the leading causes of death worldwide, placing
a huge burden on life quality of patients and socioeconomic
status. An in-depth understanding of its pathogenesis makes
contributions to developing effective preventive and therapeutic
strategies. While some of the identified hub genes, such as S100A9
and MMP9, and their associated pathways like NF-κB and TNF
signaling, are individually well-documented in MI pathogenesis,
the distinct contribution of this study lies in its integrative
multi-dataset approach and machine learning-based prioritization.
By systematically analyzing four GEO datasets and employing
a pipeline encompassing WGCNA to identify clinically relevant
modules followed by LASSO and SVM-RFE for robust feature
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FIGURE 6
GO enrichment and immune infiltration analysis of hub genes. (A) GO functional enrichment analysis of the five hub genes (ANPEP, S100A9, MMP9,
DAPK2, FCAR). (B) Stacked bar plot depicting the composition of 22 immune cell types in MI and Normal groups, highlighting significant differences in
immune cell proportions. (C) Boxplot comparing immune cell infiltration levels between MI and Normal groups. (D) Correlation heatmap of the five
hub genes with immune cells.

selection, we have identified a specific five-gene signature (ANPEP,
S100A9, FCAR, MMP9, and DAPK2) as centrally implicated. Our
subsequent analysis provides novel insights into the collective
association of this signature with specific immune cell infiltration
patterns and highlights potential targeted therapeutic avenues based
on these prioritised genes. ROC analysis of these 5 core genes
performed that these genes possessed good diagnostic efficacy in
patients with MI with high AUC values, which further confirmed
their potential diagnostic value in MI.

Furthermore, through GO enrichment analysis, we investigated
the biological functions and pathways of these hub genes.The results
revealed their significant enrichment in inflammatory response,
immune regulation, apoptosis, and extracellular matrix remodeling
– all pathways critically involved in the pathological progression
of myocardial infarction. Inflammatory response and immune
regulation after MI leverage crucial roles in the development
and progression of the disease. During the acute phase of MI,

cardiomyocyte necrosis and hypoxia trigger the massive release of
damage-associated molecular patterns (DAMPs), which potently
activate the innate immune system, especially the recruitment of
neutrophils and macrophages (You et al., 2023). By secretion of
cytokines and chemokines, these immune cells contribute to the
expansion of the inflammatory response and play a dual role in the
process of tissue repair: on the one hand, they contribute to the
removal of necrotic tissue, but on the other hand, they may also
lead to cardiac fibrosis and dysfunction through hyperactivation
(Frangogiannis, 2014). Enrichment analysis paraded significant
enrichment of several inflammation- and immune-related signaling
pathways, such as the NF-κB signaling pathway and the TNF
signaling pathway, which are thought to exert an significant role
in inflammatory expansion and tissue repair after MI (Martí-
Carvajal et al., 2024; Dong et al., 2024).

The immune infiltration profiling further elucidated the pivotal
functions of key immune cells - particularly neutrophils and
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TABLE 2 Potential drug-gene interactions based on DGIdb analysis
(Interaction Score >2.0).

Gene Drug Interaction score

S100A9 TASQUINIMOD 26.25384

S100A9 PAQUINIMOD 26.25384

FCAR SK1-I 4.375639

FCAR COMPOUND 28 4.375639

MMP9 CARBOXYLATED GLUCOSAMINE 4.200614

MMP9 ANDECALIXIMAB 4.200614

FCAR COMPOUND 59 2.18782

FCAR SLM6071469 2.18782

FCAR MP-A08 2.18782

FCAR COMPOUND 49 2.18782

FCAR COMPOUND 27D 2.18782

FCAR SLC4101431 2.18782

FCAR PF-543 2.18782

FCAR COMPOUND 55 2.18782

FCAR COMPOUND 60 2.18782

MMP9 DP-B99 2.100307

macrophages - in myocardial infarction progression: neutrophils
and macrophages. Neutrophils are one of the first cells to infiltrate
in the early stages of MI, and they promote the inflammatory
response and tissue damage by releasing ROS and protein hydrolases
(Ma et al., 2013). As the inflammatory response progresses,
macrophages play a key role in the differentiation and repair
process in the late stage of MI (Tugal et al., 2013). Early M1-type
macrophages mainly promote inflammatory responses, whereas
late M2-type macrophages facilitate tissue repair and fibrosis
(Shiraishi et al., 2016; Wynn and Vannella, 2016). Therefore,
modulation of neutrophil and macrophage activity may become an
important therapeutic target to attenuate inflammatory injury and
promote cardiac function recovery after MI.

ANPEP is an aminopeptidase that can participate in the
processing of various peptides, including angiotensin III and
IV, and plays an important role in angiogenesis (Rangel et al.,
2007; Vaswani et al., 2015). ANPEP expression is upregulated
in the plasma of patients with nonalcoholic fatty liver disease
(NAFLD) and cirrhosis, suggesting that it may be involved in the
progression of NAFLD and may serve as a potential drug target
(Niu et al., 2019). However, ANPEP expression is downregulated
in sacubitril/valsartan-resistant (SVR) patients with heart failure,
indicating that it may be involved in the development of SVR
and serve as a potential therapeutic target or biomarker (Su et al.,
2023). FCAR encodes a transmembrane glycoprotein receptor in

the Fc region of IgA that is highly expressed in neutrophils
(You et al., 2023), which is consistent with the results of our
immune infiltration analysis: FCARwas significantly associatedwith
neutrophils, confirming the important role of FCAR in neutrophils.
In addition, FCAR gene expression levels were significantly elevated
in patients with sepsis, which may play as a potential biomarker
for the diagnosis of sepsis and be involved in the formation of
neutrophil extracellular traps (NETs) (You et al., 2023; Zhang and
Zhang, 2024). Notably, the function of receptors in immune cells,
such as FCAR, may be significantly modulated by their localization
within specialized membrane microdomains known as lipid rafts.
These lipid rafts serve as critical signaling platforms in immune
cells, concentrating receptors and downstream signaling molecules,
thereby influencing processes such as vascular inflammation and
thrombosis, as comprehensively reviewed in the context of diseases
involving autoantibodies (Capozzi et al., 2023). Given the pivotal
role of neutrophils in MI and the high expression of FCAR on
these cells, FCAR-mediated signaling during MI may depend on
its association with lipid rafts, potentially impacting neutrophil
activation and the formation of NETs—the latter being recognized
contributors to MI pathology. Future studies could explore the role
of FCAR localization in lipid rafts within neutrophils during MI.

S100 family proteins, especially S100A9, have been shown
to exert a key role in inflammatory regulation and disease
progression (Shabani et al., 2018). In a variety of tumors, S100A9
forms a heterodimer with S100A8, S100A8/A9, which interferes
with the tumor microenvironment and metabolism, promotes
tumorigenesis, progression and metastasis, and serves as a tumor
diagnostic and prognostic marker as well as a potential therapeutic
target (Wang et al., 2018; Ye et al., 2019; Chung et al., 2023).
Furthermore, in hepatocellular carcinoma, S100A9 accelerates
tumor progression by recruiting ubiquitin specific peptidase
10 (USP10) and Phosphoglycerate Mutase Family Member 5
(PGMFM5) to form a trimer that facilitates mitochondrial fission
and ROS production (Zhong et al., 2022). In obesity-related
diseases, S100A9 activates the NFκB signaling pathway by binding
to TLR4, inhibiting the differentiation of M2-like macrophages
and enhancing pro-inflammatory functions, bring about increased
inflammation and impaired wound repair (Franz et al., 2022).
The pro-inflammatory signaling cascades initiated by S100A9,
particularly its engagement with receptors such as Toll-like Receptor
4 (TLR4), may also be spatially regulated by lipid rafts. These
membrane microdomains are considered organizing centers for
receptor signaling in immune cells, playing a role in vascular
inflammation and thrombosis (Capozzi et al., 2023). The review
by Capozzi et al. highlights that TLR4 signaling can occur within
lipid rafts, suggesting that during MI, the interaction of S100A9
with TLR4 on macrophages and neutrophils might be modulated
by the integrity and composition of these rafts. This organization
could be critical for the full activation of downstream pathways,
such asNF-κB, thereby influencing the intensity of the inflammatory
response and subsequent cardiac remodeling post-MI. Investigating
the dependence of S100A9-TLR4 signaling on lipid raft integrity in
the context of MI could offer new therapeutic avenues. Similarly,
in sepsis-induced acute liver injury, S100A9 exacerbates liver
dysfunction and injury by regulation of AKT-AMPK-dependent
mitochondrial energy metabolism (Zhang et al., 2023). The above
studies further demonstrate the proinflammatory role of S100A9 in
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multiple organs, revealing its pathogenic role in inflammation and
related diseases. In heart-related diseases, S100A9 also plays a crucial
role in post-MI inflammation and repair. It has been discovered that
S100A9 hi macrophages promote the acute inflammatory response
and fibrotic process after MI by activation of Myd88/NFκB/NLRP3
and Tgf-β/p-smad3 signaling pathways (Marinković et al., 2020;
Shen S. et al., 2024). In addition, S100A9 inhibitsAtg9a transcription
via prevention of its entry into the nucleus through binding to
HIF-1α, which in turn inhibits autophagy and leads to cardiac
dysfunction (Zhi et al., 2023). Our immune infiltration analysis
provides further mechanistic insight, revealing a significant positive
correlation between S100A9 expression and the infiltration of
neutrophils, monocytes, and activated dendritic cells within the
MI microenvironment. This specific association highlights S100A9
as a key mediator orchestrating the complex interplay of these
pro-inflammatory myeloid cells during acute myocardial injury
and the subsequent repair phase. Such insights into the specific
immune context are critical for guiding therapeutic strategies. The
identification herein of TASQUINIMOD and PAQUINIMOD as
high-confidence interacting drugs for S100A9 (Interaction Score
= 26.25) offers a particularly promising avenue. These agents,
recognized for immunomodulatory effects that include S100A9
targeting, could potentially mitigate MI-induced inflammation
(Jin et al., 2022; Talley et al., 2021). Specifically, they may act
by attenuating S100A9-driven activation and recruitment of these
key myeloid cells. This potential mechanism, underscored by
our integrative analysis which links S100A9’s specific immune
correlations with its druggability, warrants further investigation in
the specific context of MI. All these findings render a theoretical
basis for future therapeutic strategies targeting S100A9, which are
expected to improve the prognosis of MI patients.

MMP9 exacerbates atherosclerosis, myocardial fibrosis, cardiac
injury by extracellular matrix degrade and autophagy inhibition,
as well as plays a pivotal role in the progression of various
diseases, serving as an important target for the treatment of
cardiovascular disease (Bassiouni et al., 2021; Zhang, 2022). During
the onset and progression of MI, MMP9 gene polymorphisms
and expression regulation have an important impact on the
disease process. It has been revealed that the MMP9 rs3918242
polymorphism is associated with atherosclerotic plaque rupture
and significantly increases the risk of MI (Rodríguez-Pérez et al.,
2016). Besides, MMP9 exerts a key role in cardiac remodeling
after MI with its downregulation of expression thought to be
able to improve cardiac contractile function and attenuate cardiac
damage (Goerg et al., 2021). Further, MMP9 not only plays an
important role in the acute phase of MI, but also exacerbates
the progression of chronic heart failure by inhibiting autophagic
flux. Inhibition of MMP9 is able to inhibit the mTOR pathway by
activating AMPKα, Beclin-1, and Atg7 pathways, thereby increasing
autophagic flux, which in turn improves cardiac remodeling and
enhances cardio-protection (Nandi et al., 2020). MMP9 exerts an
important impact on atherosclerotic plaque formation and vascular
remodeling, contributing to plaque rupture and exacerbating
inflammatory responses with its down-regulation being effective
in attenuating the progression of atherosclerosis and reducing the
risk of cardiovascular disease (Ma et al., 2023). In our study, the
expression level of MMP9 was significantly increased in the MI
group, further validating its critical role in the occurrence and

progression of MI, which offered potential clinical applications
for therapeutic strategies targeting MMP9 and might open new
avenues for intervention and treatment of cardiovascular diseases.
Besides, this pro-inflammatory and matrix-remodeling role of
MMP9 may intersect with other enzymatic systems implicated in
vascular injury and thrombosis, such as heparanase. Heparanase,
an endo-β-D-glucuronidase, is increasingly recognized as a
critical modulator of endothelial dysfunction, inflammation, and
thrombotic processes through its capacity to cleave heparan
sulfate proteoglycans, thereby releasing bioactive molecules and
altering the extracellular matrix and cell surface properties
(Vlodavsky et al., 2021). A previous study demonstrated that
pharmacological inhibition of heparanase significantly reduced
tissue factor (TF) expression in both platelets and endothelial cells,
key players in coagulation activation (Capozzi et al., 2021). Given
that MMP9 contributes to vascular remodeling, plaque instability,
and inflammation—processes often culminating in thrombotic
events initiated by TF exposure—a potential mechanistic link
with heparanase is conceivable in MI. For instance, MMP9-
mediated degradation of the ECM could expose heparan sulfate
for heparanase action or vice-versa, synergistically promoting
a pro-inflammatory and procoagulant microenvironment. Both
enzymes can influence endothelial activation and leukocyte
trafficking (Bräuninger et al., 2023).Thus, the combined activities of
MMP9 and heparanase might cooperatively drive MI pathogenesis
by amplifying ECM degradation, inflammation, and the thrombotic
cascade. Future research could explore this potential enzymatic
crosstalk.

Furthermore, our study provides novel insights into MMP9’s
immunomodulatory context in MI by demonstrating its strong
positive correlation with the infiltration levels of neutrophils,
monocytes, and activated dendritic cells. This suggests that MMP9
expression is closely linked to the heightened activity of these
crucial immune cells involved in MI-associated inflammation and
subsequent tissue remodeling. The potential therapeutic relevance
of MMP9 in this specific immune setting is underscored by our
drug-gene interaction analysis, which identified CARBOXYLATED
GLUCOSAMINE and ANDECALIXIMAB (an anti-MMP9
antibody) as interacting drugs (Mortezapour et al., 2023; Allen et al.,
2022). Targeting MMP9 with such agents could therefore not only
modulate ECM degradation but also distinctly impact the MMP9-
dependent functions of these key infiltrating immune cells, offering
a refined strategy for mitigating adverse cardiac remodeling in MI.
These specific drug-gene-immune cell associations represent an
advancement beyond general knowledge of MMP9’s role.

DAPK2 is a Ca2+ -regulated serine/threonine kinase that
leverages an important role in apoptosis and autophagy (Ber et al.,
2015; Saberiyan et al., 2024). Existing studies have shown that
DAPK2 serves as an important part in the development of a
variety of diseases. In a rat model of diabetic cardiomyopathy,
MIAT and circMAP3K5 upregulate DAPK2 expression through
competitive binding to miR-22-3p, which in turn promotes
cardiomyocyte apoptosis (Zhou et al., 2017; Shen M. et al., 2024).
In ischemia/reperfusion injury (CI/R), DAPK2 is a direct target
of miR-133a-3p and its expression is upregulated in cerebral
ischemia/reperfusion injury, miR-133a-3p can attenuate CI/R injury
by inhibiting the expression of DAPK2, which suggests that DAPK2
may be a potential target for the treatment of CI/R injury (Yang et al.,
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2023). In addition, altered DAPK2 gene expression serves as a
potential biomarker for the diagnosis of a variety of diseases such
as Parkinson’s disease, colorectal cancer, and gliomas (Bao et al.,
2024; Li et al., 2024; Xu et al., 2020). This point further supports the
broad regulatory function of DAPK2 in multiple pathological states.
Consistent with these findings, the present study demonstrated a
significant increase in DAPK2 mRNA expression levels in patients
withMIwith ROC analysis showedAUC= 0.728, indicating its good
diagnostic value in the diagnosis of MI.

In addition, this study screened potential therapeutic agents
targeting S100A9, FCAR and MMP9 by DGIdb drug-gene
interaction analysis.The discovery of these drugs, particularly when
viewed in conjunction with the specific immune cell correlations of
their target genes highlighted in our study, provides a new potential
direction for personalized treatment of MI. S100A9 participates
in inflammatory response, and its targeting drugs may attenuate
myocardial injury by inhibiting inflammatory pathways, potentially
mediated by neutrophils, monocytes, and activated dendritic cells
with which it strongly correlates (Liu J. et al., 2024). Drugs targeting
FCAR may play a role in the late phase of MI by modulating the
immune response, whereas drugs targeting MMP9 are expected
to improve cardiac function by reducing myocardial fibrosis and
potentially bymodulating the activity of associated immune cells like
neutrophils andmacrophages (Nian et al., 2023; Gentek andHoeffel,
2017). However, although these drugs register potential targeting
effects, the feasibility and efficacy of their clinical application need
to be verified though further experimental and clinical trials. Such
studies of drug-gene interactions have brought new hope for the
precision treatment of MI, however, how to translate these findings
into clinical applications remains a future research priority.

This study also has some limitations. First, although we screened
and integrated gene expression data of MI from multiple datasets,
there may be some bias due to the limitation of sample size. The
batch effect, although corrected by the algorithm, may still have
a non-negligible impact on the analysis results. Therefore, further
validation should be carried out in the future in combination
with larger-scale, multicenter data from a unified platform. Second,
this study lacks detailed clinical characterization information to
combine clinical variables with gene expression data, which limits
the application scenarios of themodel. Introduction of more clinical
information, especially the history and course data of individual
patients, will help improve the diagnostic and predictive ability
of the model. Besides, based on the mRNA level, our analyses
failed to render necessary and direct reflection of protein function
or its specific role in MI, and more experimental validation at
the protein level is needed subsequently. Finally, although we
identified potential drug targets, the effectiveness of these drugs
in clinical applications still needs require further investigation
to confirm.

In summary, through a systematic and integrative
bioinformatics and machine learning approach applied to multiple
MI datasets, this study identified and validated a robust five-hub
gene signature (ANPEP, S100A9, MMP9, DAPK2, and FCAR).
Beyond confirming their general involvement in MI, our work
provides novel insights by specifically linking this signature to
distinct immune cell infiltration patterns—particularly highlighting
strong correlations with neutrophils, monocytes, and activated
dendritic cells for key genes like S100A9 and MMP9. Furthermore,

we have contextualized the therapeutic potential of these hub
genes by identifying specific drug-gene interactions, offering a
more refined understanding of how agents targeting S100A9
and MMP9 might exert their effects within the specific immune
microenvironment of MI. These findings not only advance our
perspective on the molecular mechanisms of MI, but also lay
the foundation for future personalized treatment strategies.
However, the specific regulatory mechanisms of the core genes
and clinical effects of drug actions still need further verification in
the future.
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SUPPLEMENTARY FIGURE S1
Removal of batch effects across different datasets. (A) Boxplot before batch
effect removal shows significant variability in gene expression distributions
between the MI and Normal groups across different datasets. (B) Boxplot after
batch effect removal exhibits the adjusted and normalized gene expression
distributions across the MI and Normal groups.

SUPPLEMENTARY FIGURE S2
Functional enrichment analysis of DEGs. (A) GO enrichment analysis of DEGs. (B)
KEGG pathway enrichment analysis of DEG.
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