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Introduction: As of mid-2024, COVID-19 has affected over 676 million people
worldwide, leading to more than 6.8 million deaths. Numerous studies have
documented metabolic changes occurring during both the acute phase of
the disease and the recovery phase, which, in some cases, contribute to the
development of long COVID syndrome.

Aims and methods: In this study, we aimed to evaluate clinical, laboratory, and
comprehensive metabolomic data from hospitalized COVID-19 patients during
the second, third and fourth waves (Alpha, Delta, and Omicron). A targeted, fully
quantitative metabolomics assay (TMIC MEGA Assay) was used to measure 529
metabolites and lipids in plasma samples. The metabolomic profiles of these
patients were compared according to different and relevant factors impacting
COVID-19 outcome, such as age, sex, comorbidities, and vaccination status.

Results: Among the 21 classes of compounds evaluated in this study, amino
acids and lipids were the most dysregulated when comparing age, sex,
comorbidities, vaccination status, and the different epidemiological waves.
This is the most comprehensive analysis in Mexico providing absolute
quantitative data for 529 metabolites and lipids measured in hospitalized
COVID-19 patients, which could be used to monitor their metabolic status
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and clinical outcomes associated with COVID-19 infection or with long
COVID syndrome.
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1 Introduction

COVID-19 (Coronavirus Disease 2019) is an infectious
disease caused by the SARS-CoV-2 virus (Severe acute respiratory
syndrome coronavirus 2) (Khan et al., 2020). The disease rapidly
spread worldwide andwas declared a pandemic by theWorldHealth
Organization (WHO) in January 2020 (Loza et al., 2023). As of mid-
2024, SARS-CoV-2 has infected more than 676.6 million people and
caused more than 6.8 million deaths globally (Dong et al., 2020).
In Latin America, more than 193 million cases and 2.9 million
deaths have been reported, with Mexico accounting for over 7.6
million infections and approximately 334,000 deaths. This made the
fourth most affected country in Latin America and the nineteenth
worldwide (Organization PAH, 2023).

Systematic reviews and meta-analyses of metabolomic studies
on COVID-19 have identified several consistent biomarkers
associated with the disease’s progression, severity, and outcomes.
These metabolite biomarkers provide insights into the metabolic
disruptions caused by SARS-CoV-2 infection, reflecting various
biological processes affected by COVID-19, such as immune
response, inflammation, energy metabolism, oxidative stress,
and liver dysfunction. Their consistency across different
studies suggests their potential use in understanding disease
mechanisms, predicting disease severity, and developing therapeutic
strategies. The most frequently reported metabolomic biomarkers
across various systematic reviews include amino acids and
polyamines (tryptophan, kynurenine, glutamine, glutamate,
arginine, ornithine, phenylalanine, tyrosine, branched-chain
amino acids [BCAAs], and spermine, spermidine, among others);
phosphoethanolamines (PE.O 18:0/18:1 and PE. P 16:0/18:1);
lipids (lysophosphocholines [LPCs], phosphatidylcholines [PCs],
free fatty acids [FFAs], and sphingolipids, such as some
hexosylceramides); energy metabolism markers, including sugars
and derivatives (glucose, arabinose, maltose, ribose, lactate);
oxidative stress biomarkers (uric acid, glutathione); and bile acids
(primary and secondary bile acids) (Pang et al., 2021; López-
Hernández et al., 2021; Bourgin et al., 2023; Danlos et al., 2021;
Lodge et al., 2023; Bruzzone et al., 2023).

Several epidemiological waves of COVID-19 have been reported
worldwide.The exact number can vary depending on the country or
region, butmost of them experienced at least four to sixmajorwaves,
driven by the emergence of new variants and changes in public
health measures. In Mexico, the second wave (late 2020 to early
2021) was dominated for Alpha variant (B.1.1.519), and the third
wave (mid-2021) was dominated by the Delta variant (B.1.617.2),
which was more transmissible and associated with a more severe
disease compared to Alpha. The Delta variant led to higher
hospitalization rates, especially among unvaccinated individuals,
and showed some ability to partially evade immunity from previous
infection or vaccination, contributing to higher transmission rates

globally. The fourth wave (late 2021 to early 2022) was driven by
the Omicron variant (B.1.1.529) and its subvariants. Omicron was
highly transmissible—significantly more than Delta—but generally
associated with milder disease, especially in vaccinated individuals.
Omicron exhibited a much greater ability to evade immunity from
both past infection and vaccination, leading to high numbers of
breakthrough infections and reinfections.This variant caused a large
spike in cases worldwide, but with relatively lower rates of severe
disease, hospitalizations, and deaths in vaccinated populations
(Loza et al., 2023; Yang et al., 2024). However, most research
characterizing the plasmametabolome of COVID-19 patients aimed
at finding predictive biomarkers was conducted with the second
circulating SARS-CoV-2 variant (Alpha).

The combined impact of more targeted therapies, increased
vaccination rates, changes in hospital procedures, natural immunity
from prior infections, and the persistence of significant metabolic
alterations (leading to more comorbidities) even 2 years after the
initial infection are all factors that collectively influence the plasma
metabolome of patients across different waves of infection.

In the present manuscript, we aimed to evaluate a significant
number of clinical characteristics, routine laboratory tests, and
metabolomic features (totaling ∼580 measurements) collected from
42 patients hospitalized during the third and fourth COVID-
19 waves in Mexico. We provide a broad description of the
general clinical and metabolic state of these patients during active
infection and treatment. Targeted metabolomics was performed
using the TMIC MEGA Assay, providing quantitative values
for 529 metabolites and lipids (Zhang et al., 2024). Patients
from the third and fourth waves were compared, as well as
those from the second COVID-19 wave recruited in the same
hospital during 2020. Additionally, we compared key factors
influencing COVID-19 outcomes, such as comorbidities, age, sex,
and vaccination status. To our knowledge, this is the first study
conducted in Mexico with such a comprehensive metabolomics
approach to characterize moderate to severe COVID-19 in different
epidemiological waves.

2 Materials and methods

2.1 Patients’ enrollment and sample
collection

Ninety-three patients exhibiting clinical symptoms of COVID-
19 were admitted to the Respiratory Triage Unit at the Hospital
General de Zacatecas No. 1 of the Instituto Mexicano del Seguro
Social (IMSS) between October 1, 2021 and February 23, 2022.
Among these, 42 patients tested positive for SARS-CoV-2 via RT-
qPCR tests. These patients were hospitalized for a maximum of 21
days and included in the present study. Blood samples for plasma
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analyses were collected within 2 days (on average) of admission
by brachial venipuncture using BD Vacutainer®Tubes with EDTA
followed by centrifugation at 2500 x g during 15 min at 4°C. We
processed the samples no longer than 30 min after extraction,
following recommendations from the ISO23118:2021 (Thachil et al.,
2024). For the study, we arbitrarily grouped the patients according
to 1) vaccination status (vaccinated and non-vaccinated); 2) survival
(survivors and non-survivors); 3) respiratory function impairment
(pneumonia and non-pneumonia); 4) sex (male and female); 5)
age (< 60 years and >60 years); and comorbidities (obesity/diabetes
and non-obesity/diabetes), since these have been the variables that
have systematically shown correlation with COVID-19 outcomes in
most of the countries. The clinical information was retrieved under
institutional authorization fromelectronicmedical records using the
IMSS databases and was stored in a password-protected database
(Table 1). Additionally, we compared three of the epidemiological
waves described in Mexico, classifying the patients according
the criteria defined by Loza et al. (2023) for each circulating
viral variable: Alpha (B.1.1.519): late 2020 to early 2021; Delta
(B.1.617.2): mid-2021; Omicron (B.1.1.529): late 2021- early 2022.
Metabolomics data from 82 patients measured in a previous study
(analyzed with the TMIC PRIME assay) (López-Hernández et al.,
2021) were used as reference for the epidemiological wave Alpha.
This study was conducted in accordance with the Declaration
of Helsinki (World Medical, 2001), with the experimental
protocols approved by the IMSS research and ethics committees
(registration number R-2022–3301-038 and R-2020-785-068). All
participants were informed in writing about the collection of
their samples for research purposes and given the right to refuse
participation.

2.2 Targeted plasma metabolomics analysis

A targeted, quantitative metabolomics approach was employed
to analyze the samples using direct flow injection mass
spectrometry (DFI-MS) combined with liquid chromatography
tandem mass spectrometry (LC-MS/MS). This custom LC/DFI-
MS/MS assay is able to absolutely quantify up to 721 different
endogenous metabolites from 40 μL of plasma, including
amino acids and amino acid derivatives, biogenic amines,
ceramides, cholesterol esters, diacylglycerols, acylcarnitines,
glycerophospholipids, sphingomyelins, triacylglycerols, organic
acids and nucleotide/nucleosides. A more detailed list of all
measuredmetabolites and the assay’s calibration/validation protocol
is provided elsewhere (Zhang et al., 2024). To minimize for pre-
analytical issues associated to sample collection and processing, this
quantitative method has been consistently applied to all the samples
collected in our lab since 2020 and used to analyze more than
3000 serum/plasma samples since 2020, covering a wide number
of clinical metabolomics/exposomics studies worldwide. All the
procedures are subjected to strict quality control parameters and
NIST human plasma reference material SRM 1950 is used in each
batch, with less than 20% of residual standard deviation. Therefore,
biological variations are larger than the technical variations that
takes place in different determinations. A full list of the metabolites
analyzed can be found in Supplementary Table S1.

2.3 Stock solutions, internal standard
(ISTD) mixtures, calibration curve
standards, and quality control (QC)
standards

Isotope-labeled ISTDs and chemical derivatization reagents
were used for accurate metabolite quantification. Chemicals
were individually weighed on a Sartorius CPA225D semimicro
electronic balance (Mississauga, ON, CA) with a precision of
0.0001 g. Stock solutions with defined analyte concentrations
were prepared by dissolving the weighed chemicals in appropriate
solvents. Seven calibration curve standards (Cal1 to Cal7), were
prepared by mixing and diluting stock solutions to covering
various concentration ranges according to their known or
expected normal/pathological concentrations in human samples.
For amino acids, amino acid derivatives, biogenic amines,
nucleotide/nucleosides and organic acids, three QC standards
with different concentrations were prepared by diluting the
Cal7 standard solution with the same solvents as preparing the
calibration standards.

2.4 Sample preparation

Before analysis, samples were thawed on ice, in the dark,
vortexed thoroughly for 15 s and centrifuged at 13,000 × g
for 10 min. The assay required 40 μL of plasma per sample
(30 μL for organic acids, 10 μL for DFI analysis and amine-
containing compounds) and used a 96-well plate for high-
throughput analysis. The first 14 wells were used for a double blank,
three blank samples (Phosphate-buffered saline, Fisher Scientific,
Ottawa, ON, CA), seven calibration solutions, and three QC
samples. Two sample preparations panels with different pre-column
derivatization reactions were applied: 1) phenylisothiocyanate
(PITC) derivatization panel, and 2) 3-nitrophenylhydrazines (3-
NPH) derivatization panel. No derivatization was required for the
FIA analysis.

2.5 LC/DFI-MS/MS analysis

Mass spectrometric analysis was performed using an ABSciex
5500 QTrap® tandem mass spectrometry instrument (MS) (Applied
Biosystems/MDS Analytical Technologies, Foster City, CA)
equipped with an Agilent 1290 series UHPLC system (Agilent
Technologies, Palo Alto, CA). An Agilent reversed-phase Zorbax
Eclipse XDB C18 column (3.0 mm × 100 mm, 3.5 μm particle size,
80 Å pore size) with a Phenomenex (Torrance, CA)A SecurityGuard
C18 guard column (4.0 mm × 3.0 mm) was used for LC-MS/MS.
The analysis software was Analyst 1.7.2 (Applied Biosystems/MDS
Analytical Technologies, Foster City, CA). Data analysis was
performed using MultiQuantTM 3.0.3 (Applied Biosystems/MDS
Analytical Technologies, Foster City, CA).

The HPLC parameters used for the LC-MS/MS analysis of the
PITC panel were as follows: Solvent A was 0.2% (v/v) formic acid in
water, and Solvent B was 0.2% (v/v) formic acid in acetonitrile. The
gradient profile for this solvent run was t = 0 min, 0% B; t = 0.5 min,
0% B; t = 5.5 min, 95% B; t = 6.5 min, 95% B; t = 7.0 min, 0% B; and
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TABLE 1 Baseline clinical characteristics of the study population, for each stratification.

Variable Vaccinated
n = 25/
non-vaccinated
n = 17

Survivors
n = 23/
non-survivors
n = 19

Pneumonia
n = 27/
no pneumonia
n = 15

Male n = 22/
female n =
20

<60 years
n = 24/
> 60 years
n = 18

O + D
n = 10/
non-O + D
n = 9

Age, x̄ ±SD (years) 56 (47.5–71)/53
(45–74.5) p = 0.65

60.4 ± 16.1/55.7 ±
13.1 p = 0.31

59.2 ± 15.8/56.6 ±
13.2 p = 0.59

59.2 ± 15.7/57.3 ±
14.1 p = 0.67

47.1 ± 7.1/73.2 ±
7.1 p < 0.0001

60.2 ± 13/47 ± 8.2
p = 0.0184

Male gender, n (%) 10 (40)/12 (70)
p = 0.05

10 (43)/12 (63)
p = 0.20

14 (52)/8 (53)
p = 0.93

22 (100)/0 (0)
p < 0.0001

12 (50)/10 (56)
p = 0.72

5 (50)/2 (22)
p = 0.21

Smoking, n (%) 7 (28)/8 (47)
p = 0.20

8 (35)/7 (37)
p = 0.89

9 (33)/6 (40)
p = 0.67

10 (45)/5 (25)
p = 0.17

6 (25)/9 (50)
p = 0.09

2 (20)/2 (22)
p = 0.90

Sudden onset of
symptoms, n (%)

4 (16)/8 (47.1)
p = 0.03

6 (26)/6 (32)
p = 0.69

6 (22)/6 (40)
p = 0.22

9 (41)/3 (15)
p = 0.06

4 (17)/8 (44)
p = 0.0486

1 (10)/1 (11)
p = 0.94

Intubated, n (%) 5 (20)/5 (29)
p = 0.48

1 (4)/9 (47)
p = 0.0011

9 (33.3)/1 (7)
p = 0.052

5 (23)/5 (25)
p = 0.86

8 (33)/2 (11)
p = 0.09

2 (20)/3 (33)
p = 0.51

Pneumonia
diagnosis, n (%)

15 (60)/12 (70)
p = 0.48

13 (56.)/14 (74)
p = 0.25

27 (100)/0 (0)
p < 0.0001

14 (64)/13 (65)
p = 0.93

15 (62)/12 (67)
p = 0.78

5 (50)/7 (78)
p = 0.21

Survived, n (%) 17 (68)/6 (35)
p = 0.0366

23 (100)/0 (0)
p < 0.0001

13 (48)/10 (67)
p = 0.25

10 (45)/13 (65)
p = 0.20

11 (46)/12 (67)
p = 0.18

6 (60)/5 (56)
p = 0.84

Vaccinated, n (%) 25 (100)/0 (0)
p < 0.0001

17 (74)/8 (42)
p = 0.0366

15 (56)/10 (67)
p = 0.48

10 (45)/15 (75)
p = 0.051

15 (62)/10 (56)
p = 0.65

10 (100)/7 (78)
p = 0.11

Diabetes 15 (60)/8 (47)
p = 0.41

11 (48)/12 (63)
p = 0.32

11 (41)/12 (80)
p = 0.0143

15 (68)/8 (40)
p = 0.07

10 (42)/13 (72)
p = 0.0490

10 (100)/0 (0)
p < 0.0001

Hypertension 18 (72)/13 (76)
p = 0.75

18 (78)/13 (68)
p = 0.47

20 (74)/11 (73)
p = 0.96

17 (77)/14 (70)
p = 0.59

15 (62)/16 (89)
p = 0.05

10 (100)/5 (56)
p = 0.02

Obesity 13 (52)/7 (41)
p = 0.49

13 (56)/7 (37)
p = 0.20

14 (52)/6 (40)
p = 0.46

10 (45)/10 (50)
p = 0.77

12 (50)/8 (44)
p = 0.77\2

10 (100)/0 (0)
p < 0.0001

Obesity and
Diabetes (O + D)

10 (40)/0 (0)
p = 0.0028

6 (26)/4 (21)
p = 0.70

5 (18)/5 (33)
p = 0.28

5 (23)/5 (25)
p = 0.86

6 (25)/4 (22)
p = 0.83

10 (100)/0 (0)
p < 0.0001

COPD 3 (12)/2 (12)
p = 0.98

5 (22)/0 (0)
p = 0.0304

2 (7)/3 (20)
p = 0.23

3 (14)/2 (10)
p = 0.72

2 (8)/3 (17)
p = 0.41

3 (30)/0 (0)
p = 0.07

Cardiovascular
Disease

14 (56)/11 (65)
p = 0.57

14 (61)/11 (58)
p = 0.84

15 (56)/10 (67)
p = 0.48

15 (68)/10 (50)
p = 0.23

14 (58)/11 (61)
p = 0.86

8 (80)/4 (44)
p = 0.11

Chronic renal
failure

6 (24)/8 (47.1)
p = 0.12

6 (26)/8 (42)
p = 0.27

6 (22)/8 (53)
p = 0.0404

9 (41)/5 (25)
p = 0.27

8 (33)/6 (33)
p > 0.99

1 (10)/4 (44)
p = 0.09

Fever 9 (36)/5 (29)
p = 0.66

6 (26)/8 (42)
p = 0.27

12 (44)/2 (13)
p = 0.0404

8 (36)/6 (30)
p = 0.66

10 (42)/4 (22)
p = 0.18

4 (40)/4 (44)
p = 0.84

Cough 19 (76)/9 (53)
p = 0.12

13 (56)/15 (79)
p = 0.12

17 (63)/11 (73)
p = 0.49

14 (64)/14 (70)
p = 0.99

17 (71)/11 (61)
p = 0.51

7 (70)/7 (78)
p > 0.99

Headache 14 (56)/3 (18)
p = 0.0129

8 (35)/9 (47)
p = 0.41

13 (48)/4 (27)
p = 0.17

7 (32)/10 (50)
p = 0.23

12 (50)/5 (28)
p = 0.15

6 (60)/7 (78)
p = 0.40

Dyspnea 18 (72)/10 (59)
p = 0.37

16 (70)/12 (63)
p = 0.66

22 (81)/6 (40)
p = 0.0063

15 (68)/10 (50)
p = 0.23

17 (71)/11 (61)
p = 0.51

8 (80)/8 (89)
p = 0.59

Diarrhea 4 (16)/3 (18)
p = 0.89

3 (13)/4 (21)
p = 0.49

4 (13)/3 (20)
p = 0.66

3 (13.6)/4 (20)
p = 0.58

2 (8)/5 (28)
p = 0.09

1 (10)/0 (0)
p = 0.33

(Continued on the following page)
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TABLE 1 (Continued) Baseline clinical characteristics of the study population, for each stratification.

Variable Vaccinated
n = 25/
non-vaccinated
n = 17

Survivors
n = 23/
non-survivors
n = 19

Pneumonia
n = 27/
no pneumonia
n = 15

Male n = 22/
female n =
20

<60 years
n = 24/
> 60 years
n = 18

O + D
n = 10/
non-O + D
n = 9

Chest tightness 10 (40)/2 (12)
p = 0.0468

9 (39)/3 (16)
p = 0.09

6 (22)/6 (40)
p = 0.22

3 (14)/9 (45)
p = 0.0246

5 (21)/7 (39)
p = 0.20

1 (10)/3 (33)
p = 0.21

Chills 9 (36)/3 (18)
p = 0.20

5 (22)/7 (37)
p = 0.28

10 (37)/2 (13)
p = 0.10

5 (23)/7 (35)
p = 0.38

9 (37)/3 (17)
p = 0.14

2 (20)/5 (56)
p = 0.11

Pharyngalgia 10 (40)/4 (23)
p = 0.27

9 (39)/5 (26)
p = 0.38

7 (26)/7 (47)
p = 0.17

6 (27)/8 (40)
p = 0.38

6 (25)/8 (44)
p = 0.18

2 (20)/3 (33)
p = 0.51

Myalgia 15 (60)/7 (41)
p = 0.23

11 (48)/11 (58)
p = 0.51

17 (63)/5 (33)
p = 0.06

12 (55)/10 (50)
p = 0.77

9 (37)/13 (72)
p = 0.0258

6 (60)/4 (44)
p = 0.50

Arthralgias 14 (56)/6 (35)
p = 0.19

11 (48)/9 (47)
p = 0.98

15 (56)/5 (33)
p = 0.17

11 (50)/9 (45)
p = 0.74

7 (29)/13 (72)
p = 0.0057

6 (60)/3 (33)
p = 0.24

Rhinorrhea 6 (24)/1 (6)
p = 0.12

3 (13)/4 (21)
p = 0.49

6 (22)/1 (7)
p = 0.19

3 (14)/4 (20)
p = 0.58

3 (12)/4 (22)
p = 0.40

4 (40)/1 (11)
p = 0.15

Polypnea 1 (4)/3 (18)
p = 0.14

4 (17)/0 (0)
p = 0.06

4 (15)/0 (0)
p = 0.12

3 (14)/1 (5)
p = 0.34

2 (8)/2 (11)
p = 0.76

0 (0)/1 (11)
p = 0.28

Anosmya 1 (4)/0 (0)
p = 0.40

1 (5)/0 (0)
p = 0.36

0 (0)/1 (7)
p = 0.17

1(5)/0 (0)
p = 0.33

0 (0)/1 (6)
p = 0.24

1 (10)/0 (0)
p = 0.33

Dysgeusia 1 (4)/0 (0)
p = 0.40

1 (5)/0 (0)
p = 0.36

0 (0)/1 (7)
p = 0.17

1 (5)/0 (0)
p = 0.33

0 (0)/1 (6)
p = 0.24

1 (10)/0 (0)
p = 0.33

Vomit 4 (16)/2 (12)
p = 0.70

4 (17)/2 (10)
p = 0.53

4 (15)/2 (13)
p = 0.89

1 (5)/5 (25)
p = 0.058

3 (12)/3 (17)
p = 0.70

0 (0)/2 (22)
p = 0.11

Abdominal pain 6 (24)/5 (29)
p = 0.69

7 (30)/4 (21)
p = 0.49

4 (15)/7 (47)
p = 0.0245

5 (23)/6 (30)
p = 0.59

8 (33)/3 (17)
p = 0.22

3 (30)/3 (33)
p = 0.88

Cyanosis 3 (12)/4 (23)
p = 0.32

4 (17)/3 (16)
p = 0.89

1 (4)/6 (40)
p = 0.0025

4 (18)/3 (15)
p = 0.78

4 (17)/3 (17)
p > 0.99

0 (0)/1 (11)
p = 0.28

Discomfort 8 (32)/8 (47)
p = 0.32

9 (39)/7 (37)
p = 0.88

11 (41)/5 (33)
p = 0.63

10 (45)/6 (30)
p = 0.30

8 (33)/8 (44)
p = 0.46

3 (30)/3 (33)
p = 0.88

Laboratory data, x ̄ ±SD or x͂ (IQR)

Erythrocytes (1 ×
106/mL)

4.5 ± 1/4.2 ± 1.1
p = 0.42

4.6 ± 1/4.2 ± 1.1
p = 0.21

4.5 ± 1.1/4.2 ± 1
p = 0.33

4.6 (3.8–5.2)/4.5
(3.8–4.7) p = 0.35

4.3 ± 1.2/4.4 ± 0.8
p = 0.74

5 ± 0.7/3.6 ± 1.2
p = 0.0096

Hemoglobin (g/dL) 12.9 ± 3.3/12.3 ± 2.6 p =
0.53

12.9 ± 3.3/12.5 ± 2.7
p = 0.67

13 ± 3/12.1 ± 3
p = 0.37

13.3 ± 3.1/12 ± 2.7
p = 0.15

12.5 ± 3.3/13.0 ±
2.6 p = 0.58

14.9 ± 2.1/10.3 ±
2.6 p = 0.0007

Platelets (1 ×
103/mL)

248.5 ± 116.1/269.2 ±
104.3 p = 0.56

245.3 ± 91.6/270.7 ±
130.2 p = 0.47

253.4 ± 116.3/264.2 ±
102.1 p = 0.77

262.6 ± 109.4/251.3
± 114.1 p = 0.75

258.3 ± 107/255.3 ±
118.5 p = 0.93

204
(154–244.5)/236
(208.5–341) p =
0.25

Leukocytes (×103) 10.9 ± 5.3/1.4 ± 3.8
p = 0.72

10.5 ± 4.8/11.7 ± 4.6
p = 0.42

12.1 ± 5/9.2 ± 5
p = 0.06

10.4 ± 3.5/11.8 ±
5.7 p = 0.33

10.7 ± 4.3/11.6 ±
5.3 p = 0.58

12.4 ± 6/10.6 ± 5.4
p = 0.51

Lymphocytes (%) 7 (4.2–13)/8.3
(4.9–13.3) p = 0.36

7.6 (4.6–13.6)/7.7
(3.8–13.3) p = 0.78

7 (4.1–11.4)/12.1
(5.8–13.6) p = 0.22

8.2 (4.3–13.2)/7.0
(4.6–16.7) p = 0.79

11.4 (5.7–15.5)/5.1
(4.2–7.5) p =
0.0101

7.3 ± 5.1/17.6 ±
10.6 p = 0.0249

Monocytes (%) 5.6 (3.5–7.3)/4.2
(2.6–5.7) p = 0.07

5.6 ± 3.2/4.7 ± 1.7
p = 0.33

4.4 (3–6.3)/4.8
(3.5–6.2) p = 0.68

4.8
(4–6.6)/4.5(2.9–6.3)
p = 0.56

5 (4.2–6.9)/4
(2.3–6.1) p = 0.11

5 ± 2/6.4 ± 3.4
p = 0.33

(Continued on the following page)
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TABLE 1 (Continued) Baseline clinical characteristics of the study population, for each stratification.

Variable Vaccinated
n = 25/
non-vaccinated
n = 17

Survivors
n = 23/
non-survivors
n = 19

Pneumonia
n = 27/
no pneumonia
n = 15

Male n = 22/
female n =
20

<60 years
n = 24/
> 60 years
n = 18

O + D
n = 10/
non-O + D
n = 9

Neutrophils (%) 86.4 (76.5–92.1)/87
(80.8–90.2) p = 0.80

87.5 (75.5–90.9)/85.4
(80.8–93.3) p = 0.53

88.5 (78.2–92.4)/81.8
(79.3–88.5) p = 0.28

83 (79.9–90.4)/87.3
(76.3–92.5) p =
0.65

80.8
(76.4–88.8)/89.9
(85.9–92.2) p =
0.0244

85.1 ± 8.5/76.5 ± 13
p = 0.16

Glucose (mg/dL) 141 (101–228)/136
(118–200) p = 0.62

122 (90–224)/151
(130–210) p = 0.22

136 (97–189)/169
(119–267) p = 0.24

151 (121–215)/137
(87–211) p = 0.50

130 (93–200)/155
(126–243) p = 0.12

213 ± 86/99 ± 30
p = 0.0017

Creatinine (mg/dL) 0.85 (0.7–1.15)/1.5
(0.7–3.5) p = 0.17

0.8 (0.7–1.3)/1.2
(0.7–3.5) p = 0.06

1 (0.6–2)/1 (0.7–3.5)
p = 0.21

1 (0.8–3.5)/0.8
(0.6–1.2) p =
0.0262

0.95
(0.65–2.45)/0.9
(0.7–2.45) p = 0.39

1 (0.8–1.5)/0.9
(0.6–5.4) p = 0.81

Urea (mg/dL) 51.3 (29.5–89.2)/105
(57–173) p = 0.0219

57.4 (30.1–99.5)/83.5
(46.7–173) p = 0.24

64.4 (30.7–121)/78.3
(49.3–173) p = 0.45

92.5
(50.1–173)/50.5
(26.5–79.2) p =
0.0118

74.1
(27.5–114.8)/66.4
(46.4–179.4) p =
0.29

79.2
(50.2–114.6)/50.5
(21.2–130.2) p =
0.27

Reported physiological injuries, n (%)

Kidney injury 12 (48)/9 (53)
p = 0.75

10 (43)/11 (58)
p = 0.35

8 (30)/11 (73)
p = 0.0064

12 (55)/9 (45)
p = 0.54

13 (54)/8 (44)
p = 0.53

4 (40)/5 (56)
p = 0.50

Liver injury 6 (24)/0 (0)
p = 0.0291

4 (17)/2 (10)
p = 0.53

2 (7)/4 (27)
p = 0.09

2 (9)/4 (20)
p = 0.31

3 (12)/3 (17)
p = 0.70

3 (30)/0 (0)
p = 0.07

Vascular injury 9 (36)/11 (65)
p = 0.07

9 (39)/11 (58)
p = 0.22

13 (48)/5 (33)
p = 0.35

10 (45)/10 (50)
p = 0.77

9 (37)/11 (61)
p = 0.13

2 (20)/4 (44)
p = 0.25

CNS injury 2 (8)/1 (6)
p = 0.79

2 (8)/1 (5)
p = 0.69

1 (4)/2 (13)
p = 0.24

0 (0)/3 (15)
p = 0.06

1 (4)/2 (11)
p = 0.39

0 (0)/1 (11)
p = 0.28

Student and Mann-Whitney tests were used for continuous data and Pearson and Fisher test for nominal data. Significant values (p ≤ 0.05) are highlighted in bold.

t = 9.5 min, 0% B. The column oven temperature was set at 50°C.
The flow rate was 500 μL/min, and the sample injection volume
was 10 μL.

For DFI-MS/MS analysis, the UHPLC autosampler was directly
connected to the MS ion source using red PEEK tubing. The DFI
buffer mentioned above was used as the mobile phase, with the
flow rate programmed as follows: t = 0 min, 30 μL/min; t = 1.6 min,
30 μL/min; t = 2.4 min; 200 μL/min; t = 2.8 min, 200 μL/min;
and t = 3.0 min, 30 μL/min. The sample injection volume was
20 μL.

For the analysis of organic acids by LC-MS/MS, the solvents
used were Solvent A, 0.01% (v/v) formic acid in water and Solvent
B, 0.01% (v/v) formic acid in acetonitrile. The gradient profile was
as follows: t = 0 min, 25% B; t = 6.0 min, 65% B; t = 6.3 min, 90%
B; t = 6.5 min, 100% B; t = 7.0 min, 100% B; t = 7.5 min, 25% B; t
= 12.0 min, 25% B. The column oven temperature was set to 40°C.
The flow rate was 400 μL/min, and the sample injection volume was
10 μL.

2.6 Statistical analysis

Central tendency (mean and median) and dispersion (standard
deviation and interquartile range) measures were used for

continuous data to describe and compare clinical and laboratory
variables of patients between different categories; for nominal
variables, frequencies and percentages were used. Shapiro-Wilk was
used to assess the normality. For normally distributed data, Student
t-tests were used to identify mean differences; non-parametric
Mann-Whitney tests were used for non-parametric data. For
nominal variables, Pearson Chi2 and exact Fisher tests were used
to identify statistically significant differences (p ≤ 0.05). Analyses
and tables were generated using GraphPad Prism version 8.0.1 for
Windows (GraphPad Software, La Jolla California USA).

Metabolite analysis was performed using MetaboAnalyst 6.0
(Pang et al., 2024). Metabolites with more than 20% missing
values were excluded from further analysis following the commonly
recommended 80% rule (Bijlsma et al., 2006). For the remaining
metabolites, values below the limit of detection (LOD)were imputed
using 1/5 of theminimumpositive value for each variable (Wei et al.,
2018). The data were log-transformed and auto-scaled to generate
appropriate Gaussian distributions. Volcano plots were used to
visualize the statistical significance (p-value) of changes and the
magnitude of those changes (fold change, FC). Since we were
interested in capturing relatively small but meaningful changes in
metabolites absolute concentrations, we defined a FC> 1.2. To adjust
formultiple corrections, a FalseDiscovery Rate (FDR) cut-off of 0.05
was defined.
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Principal component analysis (PCA) and two-dimension partial
least squares discriminant analysis (2-D PLS-DA) scores plots
were used to compare plasma metabolite data across and between
study groups; 10-fold cross validation and 1000-fold permutation
tests were used to minimize the possibility that the observed
separation of the PLS-DA was due to chance. Variable importance
in projection (VIP) and heat maps were also plotted. Significant
features were considered when having a VIP score >1.5 and
FDR <0.05.

3 Results

3.1 Clinical features

Table 1 describes the main clinical characteristics of patients
classified according to vaccination status, survival percentage,
respiratory function impairment, sex, age, and comorbidities. The
average age of the patients was 58 years, with 52.4% being male
and 59.5% vaccinated prior to infection. The vaccines administered
includedAd5-nCoV-S fromCanSino (n = 2), BNT162b2 fromPfizer
BioNTech (n = 13), Sinovac-CoronaVac from Sinovac Biotech (n
= 1), ChAdOx1-S from Oxford/AstraZeneca (n = 2), ChAdOx1-S
from Oxford/AstraZeneca plus BNT162b2 from Pfizer BioNTech
(n = 2), mRNA-1273 from Moderna plus BNT162b2 from Pfizer
BioNTech (n = 2), and three patients had a vaccination report
without specifying the manufacture.

3.2 Targeted plasma metabolomics analysis

Table 2 describes the number of metabolites for each family
evaluated, as well as the number of compounds that remained in the
analysis after the filtering process. A total of 636 metabolites were
quantified using the targeted metabolomics assay. After removing
those metabolites with values below the limit of detection (LOD)
in more than 20% of the samples, 529 metabolites remained in
the analysis. For each of the studied comparisons in the third and
fourth waves (vaccination status, survival percentage, respiratory
function impairment, sex, age, and comorbidities), no significant
clustering between each group was observed by multivariate
statistics (PCA and PLS-DA, data not shown).Therefore, we focused
on the univariate statistics to detect any significant variation in
concentrations values that can be considered for clinical monitoring
of the patients.

Figure 1 shows the volcano plots for different group
comparisons. When comparing vaccinated vs. non-vaccinated
patients, 7 metabolites were upregulated, while three were
downregulated (Figure 1A). The comparison of survivors vs. non-
survivor showed 10 metabolites upregulated and 9 downregulated,
with the following two metabolites being identified as most
significantly different: acylcarnitine C14:2OH (p = 0.0056,
increased, F.C. = 1.2) and citrulline (p = 0.0056, decreased, F.C. =
0.63) (Figure 1B). In patients who were diagnosed with pneumonia,
19 metabolites were upregulated while 9 were downregulated
with the most significantly altered metabolites being the fatty
acid 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF)
(p = 0.0054, increased, F.C. = 3.68), glutaric acid (p = 0.006,

TABLE 2 Chemical classes and mtabolites included and detected by the
TMIC MEGA Assay in the samples evaluated.

Chemical class Number of
metabolites

included in the
assay

Number of
metabolites

that remained
in the analysis

Amino acids and
derivatives

64 54

Organic acids 53 39

Biogenic amines 19 9

Nucleobases and
nucleosides

22 8

Catecholamines 4 0

Kynurenine-tryptophan
pathway metabolites

9 4

Ketone and keto acids 7 6

Indole derivatives 9 3

vitamins and
derivatives

3 1

Sulfates 4 1

Dipeptide 1 0

Triglycerides 242 202

Phosphatidylcholines 75 75

Acylcarnitines 40 27

Cholesteryl esters 22 13

Diglycerides 44 20

Ceramides 36 12

Hexosylceramides 19 17

Lysophosphatidylcholines 14 14

Sphingomyelins 14 14

Dihexosylceramides 9 6

Trihexosylceramides 6 3

Sugars 2 2

Miscellaneous
metabolites

3 3

increased, F.C. = 1.89) and aspartic acid (p = 0.01, increased,
F.C. = 1.52) (Figure 1C).

The amino acid alpha-aminoadipic acid (p = 0.0094, decreased,
F.C. = 0.53) and the ceramide Cer(d18:1/16:0) (p = 0.01, decreased,
F.C. = 0.74) were the most significantly differentiated metabolites
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FIGURE 1
Volcano plot of the plasma metabolome among different groups of COVID-19 patients. (A) Vaccinated vs. non-vaccinated. (B) Survivors vs.
non-survivors. (C) Diagnosis of pneumonia vs. no pneumonia. (D) Male vs. female. (E) Younger than 60 years old vs. older than 60 years. (F) With
obesity and diabetes vs. without obesity and diabetes. Fold change (FC) threshold >1.2 and p-value ≤0.05).

when comparing male and female patients (Figure 1D). The
comparison of patients under 60 years old vs. over 60 years old
showed four metabolites upregulated and 26 downregulated. The

most significantly changed were the nucleobase hypoxanthine (p =
0.0015, decreased, F.C. = 0.39), 5-oxoproline (p = 0.0054, decreased,
F.C. = 0.68), glutamic acid (p = 0.0054, decreased, F.C. = 0.59), along
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TABLE 3 The most significantly downregulated triglycerides in obesity
and diabetes clustering.

Metabolite Class p-value Fold change

TG (16:1_38:4) Triglycerides 0.0005, decreased F.C. = 0.44

TG (16:1_38:3) Triglycerides 0.0006, decreased F.C. = 0.37

TG (17:0_36:3) Triglycerides 0.0031, decreased F.C. = 0.54

TG (18:1_35:2) Triglycerides 0.0039, decreased F.C. = 0.51

TG (16:0_35:3) Triglycerides 0.0042, decreased F.C. = 0.50

TG (18:1_38:7) Triglycerides 0.0049, decreased F.C. = 0.52

TG (18:1_33:2) Triglycerides 0.005, decreased F.C. = 0.48

TG (16:0_40:6) Triglycerides 0.0051, decreased F.C. = 0.53

TG (16:1_38:5) Triglycerides 0.0054, decreased F.C. = 0.45

TG (18:1_34:3) Triglycerides 0.0057, decreased F.C. = 0.51

TG (17:1_36:3) Triglycerides 0.0068, decreased F.C. = 0.55

TG (20:5_36:3) Triglycerides 0.0076, decreased F.C. = 0.44

TG (18:1_35:3) Triglycerides 0.0084, decreased F.C. = 0.54

TG (18:0_34:3) Triglycerides 0.0089, decreased F.C. = 0.45

TG (16:0_37:3) Triglycerides 0.0092, decreased F.C. = 0.45

TG (18:2_33:0) Triglycerides 0.0093, decreased F.C. = 0.47

TG (18:2_32:2) Triglycerides 0.0098, decreased F.C. = 0.49

TG (18:0_36:1) Triglycerides 0.0099, decreased F.C. = 0.28

with the glycerophospholipids PC aa C42:2 (p = 0.0056, decreased,
F.C. = 0.74), PC ae C42:1 (p = 0.0069, decreased, F.C. = 0.68),
PC aa C40:3 (p = 0.0071, decreased, F.C. = 0.79), and pipecolic
acid (p = 0.0069, decreased, F.C. = 0.70) (Figure 1E). In patients
with both diabetes and obesity, only one metabolite was found to
be upregulated and 119 were downregulated. 18 triglycerides were
significantly downregulated (Table 3) and the glycerophospholipid
LysoPC a C28:0 (p = 0.0081, decreased, F.C. = 0.72) (Figure 1F).

The lists of dysregulated metabolites in the different clinical or
demographic clusters can be seen in Supplementary Tables S2–S7
with the metabolite classes also reported.

3.3 Comparison of the three different
waves (Alpha, Delta, and Omicron)

Figure 2 shows the comparison of plasma samples from
hospitalized patients during the second COVID-19 wave (Alpha)
and those from the Delta and Omicron COVID-19 waves.
NIST human plasma reference material, SRM 1950, as well as
glucose and lactic acid values were similar in the two different
batches evaluated and no post hoc drift correction or inter-batch

normalization was required. Supplementary Figure S1 shows the
PLS-DAperformance validation. Seventy-fivemetabolites and lipids
showed significant differences in this comparison. Differences were
noted for acylcarnitines: C14:2OH,C5:1DC,C5:1, C4:1, C5DC,C12,
C14 and C2; lysophospholipids: LysoPC a C26:0, LysoPC a C28:1,
LysoPC a C26:1, LysoPC a C18:0 and LysoPC a C8:0; amino acids:
arginine, methylhistidine and aspartic acid; as well as organic acids:
homovanillic acid, lactic acid, citric acid, uric acid, and hippuric acid
when comparing delta and omicron waves. With the exception of
SMOH 24:1 and lysoPC aa C18:0, lipids were found to be increased
in patients from the Delta and Omicron waves compared to those
from the Alpha wave.

4 Discussion

This study provides the most comprehensive analysis of
clinical characteristics, laboratory parameters, and targeted plasma
metabolomics of COVID-19 patients in Mexico across vaccination
status, age, sex, comorbid conditions, and during various epidemic
waves (Alpha, Delta, and Omicron). By the absolute quantification
of 529 metabolites and lipids, this study offers in-depth insights
into the metabolic alterations specific to COVID-19, comparing
patients based on vaccination status, comorbidities, age, sex, and
epidemiological waves. Unlike previous studies that have focused
on fewer metabolites or employed less precise techniques, this study
provides an extensive metabolomic dataset, making it a significant
contribution to understanding the metabolic disruptions associated
with COVID-19 and to provide quantitative results for the clinical
monitoring of patients.

The findings highlight the complex interplay between
clinical features and metabolomic alterations, reflecting distinct
physiological and immunological responses. While the acute
phase of COVID-19 has become less dominant due to widespread
vaccination, immunity (whether from vaccination or prior
infection), and the emergence of milder variants, the long-term
health consequences of the virus continue to be a major area of
concern. Long COVID, characterized by lingering symptoms such
as fatigue, brain fog, and organ dysfunction, remains a challenge for
healthcare systems worldwide. Additionally, the virus’ potential to
predispose individuals to other conditions such as cardiovascular
diseases, diabetes, and neurological disorders underscores its
ongoing relevance. Moreover, the virus may still cause localized
outbreaks or seasonal surges, and new variants could continue
to emerge, making COVID-19 a continuing public health issue.
Therefore, the quantitative measurement of metabolites affected
during the acute and recovery phases of the disease provides
valuable insights for monitoring health outcomes and mitigating
disease impact.

There are several metabolomic studies on COVID-19 that have
consistently identified several disrupted metabolic pathways and
metabolites linked to the disease’s progression and severity in
line with our findings. Key metabolic pathways affected include
amino acid metabolism (such as arginine, proline, tryptophan,
and glutamine metabolism), energy metabolism (including the
TCA cycle and glycolysis), lipid metabolism (sphingolipids,
phosphatidylcholines), and bile acid metabolism. Amino acids
like tryptophan, kynurenine, and glutamine, along with fatty acids
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FIGURE 2
Multivariate analysis of plasma metabolome profile of patients from Alpha, Delta, and Omicron COVID-19 waves. (A) Principal component analysis
(PCA) comparing the three epidemiological waves. (B) Rank of the different metabolites (the top 15) identified by the PLS-DA according to the VIP
coefficient on the x-axis. The most discriminating metabolites are shown in descending order of their coefficient scores. The color boxes indicate
whether metabolite concentration is increased (red) or decreased (blue).

such as acylcarnitine, and sphingolipids, have been consistently
reported as significantly altered in COVID-19 patients. These
alterations are closely associated with inflammation, immune
dysregulation, and mitochondrial dysfunction. In particular, the
tryptophan/kynurenine pathway has been repeatedly implicated,
with elevated kynurenine and reduced tryptophan levels associated
with the severity of the disease. Additionally, acylcarnitines,
and amino acid markers have been linked to mitochondrial
dysfunction and cellular energy imbalance (Elgedawy et al., 2024;
Bi et al., 2025; Costanzo et al., 2022; Buyukozkan et al., 2022;
Lee et al., 2024; Mallol et al., 2025). For instance, increased
acylcarnitine levels, particularly C14:2OH, are associated with
poor outcomes, while metabolites such as citrulline and aspartic
acid are linked to better survival. This provides a basis for using
targeted metabolomic profiling to monitor COVID-19 progression
and develop early intervention strategies.

Themetabolomicsmethod employed here detects and quantifies
up to 721 metabolites covering more than 20 different chemical
classes. The assay has been validated and used to analyze more than
3000 serum/plasma samples since 2023, covering a wide number of
clinical metabolomics/exposomics studies (Zhang et al., 2024).

Our targeted metabolomics analysis identified specific
metabolites that are significantly dysregulated in the different groups
compared in the present work. For example, elevated plasma levels
of acylcarnitine C14:2OH and decreased levels of citrulline were
significant indicators of survival, whereas elevated plasma levels of
CMPF glutaric acid and aspartic acid were associated with positive
pneumonia status. These metabolites likely reflect heightened
energy demands, immune dysregulation, and organ-specific stress
responses induced by SARS-CoV-2.

The identification of altered plasma levels of amino acids,
lipids, organic acids, and energy-related metabolites aligns with
previous reports indicating that metabolic reprogramming is a
core aspect of COVID-19 pathogenesis (Danlos et al., 2021;
Lodge et al., 2023; Bruzzone et al., 2023; Martínez-Gómez et al.,
2022). Studies have consistently reported disruptions in energy
metabolism and immune responses associated with COVID-
19 severity, highlighting how metabolites such as acylcarnitines
and amino acids signal cellular energy demand and immune
modulation. For instance, our observation of elevated plasma
acylcarnitine C14:2OH levels in non-survivors mirrors findings
by other authors, which linked increased acylcarnitine levels to
mitochondrial dysfunction, impaired mitochondrial capacity for
fatty acid oxidation and severe outcomes in COVID-19 patients
(Mccann et al., 2021). An increase in acylcarnitine levels has also
been observed in sepsis (Rogers et al., 2014), where it is associated
with increased mortality. Elevation of long-chain acylcarnitines has
also been reported in the post-acute phase of moderate infections
(Liptak et al., 2022) and in long-COVID patients (Guntur et al.,
2022). Decreased levels of citrulline in non-survivors, indicative
of immune and endothelial stress, has also been reported by
other authors (Tsuge et al., 2024). The increase of lipid-related
metabolites in unvaccinated patients may underscore the link
between lipid dysregulation and unmitigated viral responses in
unvaccinated populations.

Our analysis also emphasizes the role of comorbidities,
notably obesity and diabetes, in driving COVID-19-related
metabolic changes. The significant dysregulation of triglycerides
and glycerophospholipids in patients with these comorbidities
aligns with previous studies indicating that metabolic syndrome
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and obesity exacerbate lipid dysregulation, compromising the
immune response and aggravating inflammation. Excessive
inflammation can lead to the release of free fatty acids from
adipose tissue, either due to tissue damage or rupture, or even
by inactivation of lipoprotein lipase (Bagby and Spitzer, 1980).
This ultimately results in elevated plasma triglycerides, including
triglyceride-rich lipoproteins, which are considered biochemical
markers of COVID-19 severity (Rohani-Rasaf et al., 2022).
The increase in triglycerides also contributes to greater insulin
resistance, raising plasma glucose levels, as observed in this
study. In particular, we found that individuals with controlled
diabetes and obesity showed higher plasma glucose concentrations
than non-diabetic, non-obese individuals (Chang et al., 2022).
These metabolic disturbances can further aggravate COVID-19
severity and contribute to a self-perpetuating cycle of chronic
diseases misdiagnosis (Yanai, 2020). While multiple mechanisms
underline these phenomena, another pathway that can elevate
triglycerides in such patients involves inflammation or liver damage.
Given the SARS-CoV-2 virus’s affinity for liver tissue, metabolic
disruptions in lipid and triglyceride processing may occur, leading
to their accumulation in the body (Li et al., 2021; Martinez
and Franco, 2021). CMPF was found increased in patients with
kidney failure. CMPF is considered a uremic toxin, a harmful
metabolite that accumulates in patients with compromised kidney
function (Sun et al., 2010; Chen and Chiang, 2021). It is known
that lung damage, such as alveolar hemorrhages occurring in
pneumonia, is often accompanied by kidney damage, including
conditions such as glomerulonephritis (Cárdenas Fernández and
Muñoz Palomeque, 2023).

Elderly COVID-19 patients, experiencing heightened
inflammatory responses and mitochondrial dysfunction with
reduced ATP production, often exhibit increased production of
reactive oxygen species (ROS). This increase in ROS depletes
glutathione reserves, as glutathione combats the oxidative stress
induced by these factors. Consequently, levels of glutamic acid (a
component of glutathione) and 5-oxoproline (an intermediate in
glutathione synthesis) are also reduced (Páez-Franco et al., 2022).
This finding aligns with previous studies showing a decline in
these metabolites among elderly COVID-19 patients across various
populations (Guarnieri et al., 2023). In general, our analysis reflects
that the age and the presence of comorbidities tend to be the most
important variables, since more metabolites are implicated in the
metabolic dysregulation.

Comparative analyses of different COVID-19 waves showed
distinct lipid and amino acid profiles, particularly elevated lipid
levels in patients hospitalized during the Delta and Omicron waves,
suggesting distinctive metabolic footprints for each SARS-CoV-2
variant. These findings are supported by previous studies that
have emphasized the evolving nature of COVID-19’s metabolic
impact. The differences in lipid profiles among patients during
the Delta and Omicron waves underscore the influence of SARS-
CoV-2 variants on host metabolism. Elevated levels of triglycerides,
glycerophospholipids, and free fatty acids in Delta and Omicron
cases, compared to the Alpha cases, reflect an adaptive metabolic
response driven by viral variant pathogenicity and transmission
dynamics. Several (non-quantitative) metabolomic studies have
been conducted to compare the second COVID-19 wave with
subsequent COVID-19 waves. Biagini et al. (2023) found that

oxidative stress and inflammation resulting from COVID-19 were
highly dependent on the SARS-CoV-2 variant. Their results
suggest that the original (wildtype) strain elicited the strongest
inflammatory storm, and Omicron significantly differed from
previous variants in the levels of pro-inflammatory mediators.
The authors found that lipid metabolism was strongly activated
by SARS-CoV-2 infection. Both the level and type of oxylipins
and polyunsaturated fatty acids (PUFAs) changed significantly
across the different COVID-19 waves, suggesting that differences
in the virological characteristics of the variants, such as viral load,
infectivity, and pathogenicity, as well as immunity from vaccination
or prior infection, may also play a role in modulating lipid species
changes over time. Additionally, Lewis et al. (2022) compared two
waves in the UK (first wave, between May 2020 and July 2020,
and second wave between September 2020 and June 2021), and
found that while some metabolic changes vary according to each
COVID-19 wave, some changes were characteristic of COVID-19
across multiple waves. Recently, Kramaric et al. (2025) by means of
untargeted metabolomics found distinctive changes in plasma for
infections with Alpha, Delta, and Omicron SARS-CoV2 variants,
suggesting that differences could be linked to their relative elicitation
of core pathophysiological events associated with COVID-19, for
example, inflammation. However, a study with a larger sample size
conducted by Ghini et al. (2023) revealed a detailed metabolic
analysis of COVID-19 patients using NMR spectroscopy, finding
metabolomic and lipoproteomic signatures specific to the disease.
The study also investigated sex-specific differences in metabolic
responses and across different variants of the virus, although the
authors found that the metabolic alterations are not significantly
influenced by vaccination status or variant type.

The findings of this study advance our understanding of
COVID-19’s clinical and metabolic impacts across different
epidemic waves, shedding light on specific metabolic factors that
may influence patient outcomes. However, several limitations
should be noted. First, the sample size was relatively small (42
patients for Delta and Omicron variants, and 82 for Alpha), which
could restrict the generalizability of these findings to broader and
more diverse populations. Moreover, we could not systematically
determine the variants of each patient through genomic sequencing
and the inclusion in each epidemiological wave was done only
considering the period of circulation in the country.

Second, this study was conducted exclusively with hospitalized
patients in Mexico, potentially limiting the applicability of these
results to other regions or ethnic groups. COVID-19 outcomes and
metabolomic responses can vary due to clinical, sociodemographic,
healthcare access, nutritional status, and genetic backgrounds
differences across regions. Furthermore, while the cross-sectional
design of this study limits our ability to assess longitudinal changes
in metabolomic profiles over time, some dysregulated metabolites,
such as amino acids and lipids were clearly identified, resembling
behavior in other populations. However, their biological significance
remains to be fully elucidated, and further mechanistic studies
are required to understand the underlying pathways and clinical
implications of these metabolic alterations.

The limited development of quantitative metabolomics
techniques applied to clinical settings in Mexico has hindered the
characterization of acuteCOVID-19 versus longCOVID-19 patients
and the availability of these quantitative variables for the subsequent
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monitoring of these patients. Only a few studies have reported
quantitative metabolomics approaches to characterize COVID-19
infections (López-Hernández et al., 2021; Martínez-Gómez et al.,
2022; Herrera-Van Oostdam et al., 2021; Celaya-Padilla et al., 2021;
López-Hernández et al., 2023a) while other groups have reported
untargeted methods which only determine relative abundances of
metabolites (Santana-De Anda et al., 2024; López-Hernández et al.,
2023b; Torres-Ruiz et al., 2021; Páez-Franco et al., 2021). This also
limits the ability to associate the consequences of the infection
with predisposition to diseases such as cancer and autoimmune
diseases. As a strength, the present study provides the biggest
metabolic characterization of COVID-19 hospitalized patients.
The quantitative data of 529 metabolites together with the clinical
parameters have been made available for public access (doi:10.
17632/sjnv8kjxpb.1). The identification of specific metabolites
linked to disease severity and outcomes underlines the potential
of metabolomics in enhancing our understanding of COVID-19
pathogenesis. Understanding these metabolic changes can provide
valuable insights into personalized therapeutic interventions, as
well as long-term monitoring of patients, especially those with
risk factors or long COVID. This comprehensive analysis supports
the potential use of metabolomics in clinical settings to monitor
and predict patient outcomes more accurately. Future research
should aim to build on these findings by incorporating larger
and more diverse cohorts, as well as longitudinal analyses, to
better understand the dynamic metabolic changes over the course
of the disease. Such efforts will be instrumental in developing
targeted therapeutic strategies and improving patient management
in response to COVID-19.
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SUPPLEMENTARY FIGURE S1
Multivariate analysis of plasma metabolome profile of COVID-19 patients from
three different waves. (A) Score scatter plot based on the PLS-DA comparing
patients from Alpha, Delta, and Omicron COVID-19 waves (B) Cross validation
(10-fold Cross Validation) (Accuracy: 0.93; R2: 0.96; Q2: 0.89). (C) permutation
test (1000 permutations).
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