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Background: Bladder cancer is a common malignant tumor of the urinary
system. Its incidence and mortality rates are on the rise, and the existing
treatment methods are difficult to meet the prognostic needs of patients.
Phagocytosis plays a crucial role in tumor immune surveillance and the
regulation of the tumor microenvironment. Phagocytosis regulatory genes
(PRGs) are involved in regulating the immune response against tumor cells, and
in-depth research on them in bladder cancer is extremely urgent.

Methods:Multi-omics data from the TCGA and GEO databases were integrated,
and strict data preprocessing was carried out. A variety of algorithms and
analysis techniques, such as Kaplan-Meier analysis, Cox regression analysis, and
ConsensusClusterPlus clustering analysis, were used to identify PRGs related to
the prognosis of bladder cancer patients, and functional analysis and clustering
analysis were conducted in depth. A prognostic model was constructed and
verified, and the risk score was calculated. At the same time, the relationships
between the model and the tumor microenvironment (TME), immune
infiltration, mutation, and drug sensitivity were comprehensively analyzed.

Results: It was found that 37 genes had a strong positive correlation with
the macrophage score, and 200 PRGs were significantly enriched in immune-
related biological processes and pathways. The patients were divided into
PRG cluster A and PRG cluster B. Patients in PRG cluster A had a worse
survival outcome and were closely related to higher tumor grades, stages,
and the infiltration of specific immune cells. A total of 1,696 differentially
expressed genes and two phagocytosis-related gene subtypes were identified.
The constructed prognostic model showed excellent predictive performance,
and the areas under the curves of survival rates at different times were all
high in both the training set and the test set. Finally, the drug sensitivity
analysis showed that high-risk patients benefited more from immunotherapy
and chemotherapy drugs.

Conclusion: This study has greatly deepened the understanding of the
potential molecular mechanisms of bladder cancer, provided new
insights and valuable potential therapeutic targets for the precision
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treatment of bladder cancer, and is expected to promote the innovation
and optimization of bladder cancer treatment strategies.

KEYWORDS

BLCA, phagocytosis regulatory genes, immune infiltration, prognostic, therapeutic
response

Introduction

Bladder cancer is the second most commonmalignant tumor of
the urinary system globally, with approximately 549,000 new cases
and about 200,000 deaths each year (Aaes et al., 2016). Despite the
continuous progress of existing treatment methods, the recurrence
rate of bladder cancer remains high, and the prognosis of patients
is generally poor (Anderson et al., 2021). Therefore, there is an
urgent need to develop effective biomarkers to predict prognosis,
optimize treatment strategies, and provide a basis for the research
and development of new therapies.

Phagocytosis is a core mechanism of the immune system
for clearing pathogens, apoptotic cells, and cell debris. The
abnormal regulation of phagocytosis is closely related to the
remodeling of the tumor immune microenvironment (TME)
(Feng et al., 2019). Phagocytosis regulatory genes (PRGs) play
a dual role in tumor immune surveillance and escape by
regulating the activities of immune cells such as macrophages
and dendritic cells (Arlauckas et al., 2021). For example, PRGs
can affect the clearance efficiency of tumor cells by regulating
processes such as phagosome maturation and antigen presentation
(Sun et al., 2021). Abnormal PRG expression correlates with
tumor progression, metastasis, and immunotherapy resistance
(Madeddu et al., 2022; Sadeghi Rad et al., 2021).

In recent years, the key position of phagocytosis in tumor
immunity has been gradually revealed. Studies have shown that the
functional heterogeneity of PRGs is closely related to the prognosis
of various cancers (Xiao et al., 2024; Feng J. et al., 2022). However, in
bladder cancer, systematic research on PRGs is still relatively scarce.

The aim of this study is to systematically analyze the expression
characteristics, functional enrichment, and prognostic value of
PRGs in bladder cancer. By integrating multi-omics data from the
TCGA and GEO databases, combined with consensus clustering,
Cox regression, and machine learning algorithms, a prognostic
model based on PRGs will be constructed, and its associations with
immune infiltration, mutation profiles, and drug sensitivity will be
explored.The research results will provide a new theoretical basis for
the precision typing, prognostic prediction, and targeted treatment
of bladder cancer.

Materials and methods

Data collection and processing

mRNA expression data, mutation data, and clinical information
of 412 bladder cancer specimens and 19 normal bladder specimens
were obtained from the TCGA database (https://portal.gdc.cancer.
gov/). To facilitate differential analysis, the fragments per kilobase of

exon per million mapped reads (FPKM) values in the TCGA-BLCA
cohort were converted into transcripts per million (TPM) values. At
the same time, gene expression data and clinical information were
obtained from the GSE32894 dataset (n = 308) in the GEO database
(https://www.ncbi.nlm.nih.gov/geo/).

According to the annotation file, the expression values at
the probe level (probe IDs) were accurately converted into the
corresponding gene symbols. After strict data quality assessment, it
was determined that no further standardization was required.When
multiple probes matched the same gene, the expression value of that
gene was calculated as the average of the values of these probes.
Clinical variables included age, gender, stage, follow-up duration,
and survival status.

Before comparing and analyzing the PRG expression, the
original data were standardized to the fragment expression level per
kilobase. Strict sample exclusion criteria were formulated: patients
with a proportion of missing gene expression values exceeding
30% were excluded. Finally, the analysis included 406 BLCA
patients from the TCGA dataset and 308 BLCA patients from the
GSE32894 dataset.

To eliminate platform-related differences, the “ComBat”method
was used to correct the batch effects of the integrated BLCA samples
from the TCGA and GEO databases. All data were preprocessed
using the “limma” and “sva” R packages (Ritchie et al., 2015).

Consensus clustering analysis and
functional annotation

A total of 247 phagocytosis regulatory genes were identified
through a comprehensive review of published literature and
the authoritative MsigDB database (https://www.gsea-msigdb.
org/gsea/index.jsp). Initially, the survival differences of phagocytosis
regulatory genes were carefully analyzed using the Kaplan-Meier
(KM)method.The “Limma” software packagewas used to accurately
analyze the expression differences between cancer tissue samples
and adjacent normal samples according to the expression profiles of
phagocytosis regulatory genes. Univariate Cox regression analysis
was performed, and phagocytosis regulatory genes related to
prognosis were determined with a strict screening criterion of p
< 0.05. Among them, 128 genes showed positive correlation (HR >
1) and 72 showed negative correlation (HR< 1)with overall survival,
with median HR of 1.35 (95% CI: 1.21–1.51).

Using the ConsensusClusterPlus R program, a comprehensive
identification analysis was carried out for k values from 1 to 9
based on the expression of 200 phagocytosis regulatory genes with
survival differences. After repeated verification and evaluation, the
optimal number of clusters was determined to be k = 2 (Yao et al.,
2024). Based on the mRNA expression of prognosis-related
PRGs, principal component analysis (PCA) was used for strict
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classification verification to ensure the accuracy and reliability of the
classification.

To deeply detect the differences in pathway enrichment between
PRG clusters, the GSVA algorithm was used to accurately calculate
the enrichment score of each gene set, comprehensively exploring
the differences in biological functions between PRG clusters. The
signature gene sets used in GSVA were all from the authoritative
MSigDB database. The “limma” package in R was used to conduct
a strict differential analysis between PRG clusters. To ensure the
statistical significance of the results, the p-value threshold was
strictly set to <0.05 to identify significantly enriched pathways. In
addition, the ssGSEA algorithm was used to accurately calculate the
infiltration scores of immune cells in each sample according to the
characteristic immune cell gene sets, comprehensively evaluating the
infiltration levels of various immune cells in tumor samples (Jin et al.,
2021). In this study, the ssGSEA algorithm in the “GSVA” R
package was used to systematically and comprehensively evaluate
the immunological characteristics of each BLCA sample in different
PRG clusters.

Identification and functional analysis of
differentially expressed genes (DEGs)
related to phagocytosis regulation

The “limma” package in R was used to conduct a strict
differential analysis to identify the differentially expressed genes
(DEGs) between the two PRG clusters. Strict screening thresholds
were set, p < 0.05 and log2 fold change (log2FC) > 0.585, to
ensure that the selected differential genes had biological significance
(Ritchie et al., 2015). To deeply explore the pathways enriched
by the differential genes, the R packages “clusterProfiler” and
“org.Hs.eg.db” were used to comprehensively carry out gene
ontology enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes pathway enrichment analysis, with a critical value of p <
0.05 to ensure the reliability of the analysis results (Kanehisa and
Goto, 2000; Ashburner et al., 2000).

Analysis of phagocytosis regulatory gene
subtypes in bladder cancer

For a more in-depth and comprehensive analysis, an
unsupervised consensus clustering method was adopted. Using
ConsensusClusterPlus R package with 1,000 resampling iterations,
80% sample size, and Euclidean distance metric. Optimal k = 2
was determined by CDF curve and silhouette score (Figure 4D).
Subsequently, the gene expression characteristics and clinical
significance of these two subtypes were deeply analyzed.

Construction and verification of the PRGs
prognostic model

Based on the identified 1,696 DEGs, univariate Cox regression
analysis was used to accurately identify genes related to
prognosis with a strict critical value of p < 0.05. To reduce
the risk of overfitting, LASSO regression was used for strict

feature selection and model optimization. Finally, after repeated
verification and evaluation, multivariate Cox regression was used
to determine the important genes related to the prognosis of BLCA
(Qin et al., 2023; Zhu et al., 2024).

For each patient, the risk score was calculated using the formula:
PRG_score = Σ (Expi ∗ coefi) n, where coefi and Expi represent
the regression coefficient and expression level of each characteristic
gene, respectively. The “caret” R package was used to randomly
divide the BLCA samples into a training set and a test set at a ratio of
1:1. Strict balance tests and unbiasedness verifications were carried
out to ensure the scientific nature of the grouping (Friedman et al.,
2010). Then, according to the median risk score, the samples in
the training set and the test set were strictly divided into a high-
risk group and a low-risk group. Kaplan-Meier survival analysis
and time-dependent receiver operating characteristic (ROC) curves
were used to comprehensively evaluate the accuracy of the risk
model. The “survival,” “rms,” and “regplot” R packages were used to
carefully create a nomogram for predicting the 1-year, 3-year, and 5-
year survival rates of patients, and strict verification and calibration
were carried out.

Correlation between prognostic
characteristics and TME and immune
infiltration

According to the established algorithm process and parameter
settings, the ESTIMATE algorithm was executed to accurately
estimate the immune cells and stromal cells in BLCA.This algorithm
predicts the infiltration levels of immune cells and stromal cells
by calculating the immune and stromal scores. To quantify the
total number of tumor-infiltrating immune cells in each sample, the
CIBERSORTmethod was applied to strictly compare the infiltration
of 21 types of immune cells between the high-risk group and the
low-risk group (Chen et al., 2018).

Mutation and drug sensitivity analysis

Using the “maftools” R package, according to the standard
annotation process in the MAF format, the mutation data from the
TCGA database were accurately annotated, and the tumor mutation
burden (TMB) scores of each bladder cancer patient in the high-risk
group and the low-risk group were calculated. Using the R package
“pRRophetic,” according to the established prediction model and
parameter settings, the half-maximal inhibitory concentration
(IC50) of anti-cancer drugs in the high-risk group and the low-risk
group was predicted.

Statistical analysis

All data analyses were performed using R software (version
4.2.2). For the comparison of differences between two groups, an
appropriate Wilcoxon rank sum test method was selected according
to the data distribution characteristics and research purposes. The
Spearman test was used to strictly test the correlation between
different variables.The p-value was set to be two-sided, and p < 0.05
was considered to be statistically significant.
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Results

Correlation between phagocytosis
regulators and macrophages

This study focused on the phagocytosis regulators that modulate
the phagocytosis of macrophages. Using the characteristic genes of
immune cells from the literature PMID28052254, the characteristic
genes of macrophages were extracted through a rigorous screening
and verification process. Based on the macrophage gene set,
the ssGSEA analysis method was used to accurately analyze the
enrichment of TCGA-BLCA samples in the macrophage gene
set. After obtaining the macrophage enrichment scores, Pearson
correlation analysis was used to precisely calculate the correlation
between the phagocytic factors and the macrophage enrichment
scores. Meanwhile, according to the median expression level of
the phagocytic factors, the samples were strictly divided into
high-expression and low-expression level groups, and a statistical
analysis was conducted on the differences in enrichment scores
between the high- and low-expression groups. The results showed
that the correlation coefficients of 37 genes were >0.5 and the p-
values were <0.001 (Supplementary Table S1). This indicates that
many phagocytosis regulators are positively correlated with the
macrophage score, and macrophages can significantly distinguish
the expression abundance of phagocytosis regulators (Figures 1A–J).

Functional enrichment analysis of
phagocytosis regulators

A comprehensive functional enrichment analysis was carried
out on 200 phagocytosis regulators. With a strict standard of
P < 0.05, significantly enriched (148) Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) sets were
identified. In the field of biological processes, gene sets related to
the phagocytosis and activation of immune cells were significantly
enriched, especially in phagocytosis andmyeloid leukocyte activation.
The analysis of cell components showed significant enrichment of
endocytic vesicles and secretory granule membranes. In terms of
molecular functions, the binding functions mainly enriched in amide
binding and peptide binding were predominant (Figure 2A). The
KEGG enrichment analysis showed that phagocytosis regulators were
associated with a variety of diseases, especially tuberculosis among
infectious diseases and the clearance of apoptotic cells (Figure 2B).
The comprehensive analysis shows that the functions of phagocytosis
regulators are closely related to the enrichedGOcategories andKEGG
pathways identified in BLCA.

Expression characteristics and clustering
analysis of PRGs

To comprehensively analyze the expression characteristics
of PRGs in BLCA, the gene expression matrices from the
TCGA and GSE32894 datasets were integrated to construct a
comprehensive matrix. Based on the gene expression data of this
combined cohort, univariate Cox regression analysis was used
to strictly identify 200 phagocytosis regulatory genes (PRGs)

that were significantly associated with the overall survival of
BLCA patients (Supplementary Table S3).

By comprehensively testing k values from 1 to 9, a consensus
matrix (Figure 3A) and a cumulative distribution function (CDF)
curve (Figure 3B) were generated. After repeated verification and
evaluation, the optimal number of clusters was determined to be k
= 2. This analysis identified two different PRG clusters: PRG cluster
A (n = 342) and PRG cluster B (n = 372) (Supplementary Table S2).
The PCA results showed a clear separation between the two clusters
(Figure 3C), fully confirming the reliability of the clusteringmethod.
Kaplan-Meier survival analysis showed that patients in PRG cluster
A had a significantly worse survival outcome compared with those
in PRG cluster B (Figure 3D).

Functional analysis of PRG clusters

The GO analysis showed that PRG cluster A was enriched
in functions such as the regulation of leukocyte homeostasis and
the regulation of phagocytosis, which play key roles in immune
regulation and cell activities (Figure 3E). This cluster was closely
related to biological processes such as the positive regulation of
cell activation and the positive regulation of lymphocyte activation,
highlighting the importance of immune cell activation and the
regulation of immune responses. At the same time, in terms
of cell components and biological processes, it was involved in
processes such as cell junction disassembly and synaptic pruning,
reflecting the participation of cell structure and nervous system-
related activities. In addition, processes such as the regulation
of monocyte chemotaxis and monocyte migration were also
reflected in this cluster, further indicating the role of immune
cell migration and immune defense mechanisms. The KEGG
pathway analysis further showed that cluster A was characterized by
the significant enrichment of immune-related pathways, involving
multiple aspects such as primary immunodeficiency, autoimmune
diseases, transplantation rejection, immune cell signaling, and
migration (Figure 3F).This emphasizes the complexity of the body’s
immune state and the important therapeutic significance of these
immune-related mechanisms in the occurrence and development
of diseases. The enrichment of these immune pathways reflects
the uniqueness of cluster A at the level of immune regulation and
indicates that targeted treatment of these immune-related pathways
may be a potential strategy for improving the relevant disease
conditions, further highlighting the heterogeneity of diseases and
the necessity of precision treatment.

Relationship between PRG clusters, clinical
characteristics, and immune cell infiltration

The heatmap clearly showed the relationship between PRG
clusters, PRG expression levels, and clinical characteristics
(Figure 3G). Samples in PRG cluster A were associated with higher
tumor grades and stages, and the expression levels of prognosis-
related PRGs were increased. In addition, there were significant
differences in immune cell infiltration between the clusters. Patients
in PRG cluster A showed higher infiltration of immune cells, such
as activated B cells, activated CD4+ T cells, activated CD8+ T cells,
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FIGURE 1
Positive correlation between 37 phagocytosis regulatory genes and macrophage enrichment scores in TCGA-BLCA samples (Pearson’s r > 0.5, p <
0.001) (A–J).

activated dendritic cells, and myeloid-derived suppressor cells
(MDSCs). On the other hand, the levels of CD56 bright natural
killer cells and CD56dim natural killer cells were higher in PRG
cluster B (Figure 3H). These differences may play a key role in
mediating the differences in clinical outcomes.

Identification and enrichment analysis of
DEGs in PRG clusters

Using the “limma” R package, according to the strict differential
gene identification process, the differentially expressed genes
(DEGs) between PRG clusters were identified. The screening
criteria were strictly set as |log2FC| > 1 and false discovery
rate (FDR) < 0.05. This analysis revealed 1,696 DEGs between

PRG cluster A and cluster B (Supplementary Table S4) (Figure 4A).
To further elucidate the biological functions of these DEGs, a
comprehensive Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis was performed.
The GO analysis showed that the DEGs were mainly involved
in the positive regulation of cell adhesion, the regulation of
cell adhesion, and leukocyte cell adhesion. The corresponding
cell components were mainly located in the collagen-containing
extracellular matrix and the outer side of the plasma membrane.
In terms of molecular functions, the DEGs were mainly related
to cytokine receptor binding and the structural components of
the extracellular matrix (Figure 4B). The KEGG analysis showed
that the DEGs were significantly enriched in cytokine-cytokine
receptor interaction, cell adhesion molecules, and the cytoskeleton
in muscle cells (Figure 4C). Further consensus clustering analysis
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FIGURE 2
Functional enrichment analysis of phagocytosis regulators. Figure (A) shows the results of Gene Ontology (GO), and Figure (B) shows the results of
Kyoto Encyclopedia of Genes and Genomes (KEGG). GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

identified two different phagocytosis-related gene subtypes, named
subtype A (n = 367) and subtype B (n = 261), each of which
exhibited a unique gene expression profile (Supplementary Table S5)
(Figure 4D). Kaplan-Meier survival analysis showed that there w
ere significant differences in prognosis between these subtypes, and
patients belonging to subtype A had a better outcome (Figure 4E).
In addition, it was found that the clinical characteristics of BLCA
patients were closely related to these gene sub types (Figure 4F).
It is worth noting that significant differences in the expression
levels of PRGs were observed in the two phagocytosis factor
gene subtypes.

Construction and verification of the PRGs
prognostic model

Using the “caret” R package, all patients were randomly divided
into a training set and a test set at a ratio of 1:1, and strict balance
tests and unbiasedness verifications were carried out. Based on
the 1,696 differential genes, univariate Cox regression analysis and
Kaplan-Meier survival analysis were first used to accurately identify
genes related to prognosis. To improve the gene selection and
prevent overfitting, LASSO regression was applied. After multiple
feature selections and model optimizations, 18 genes significantly
related to prognosis were determined (Supplementary Table S6)
(Figures 5A,B). Subsequently, multivariate Cox regression analysis
reduced the list to nine key genes—SIRPG, EMP1, UAP1L1, ETV5,
GMFG, CES1, ACSL5, SPOCD1, and FBN2—for constructing the
prognostic model (Supplementary Table S7). The risk score of each

patient was calculated as follows: Risk score = (−0.2879 × SIRPG
expression) + (0.3339 × EMP1 expression) + (0.3076 × UAP1L1
expression) + (0.2508 × ETV5 expression) + (−0.2017 × GMFG
expression) + (0.1174 × CES1 expression) + (−0.1562 × ACSL5
expression) + (−0.1659 × SPOCD1 expression) + (0.0965 × FBN2
expression). According to the median risk score, the patients in the
training set and the test set were strictly divided into a high-risk
group and a low-risk group (Figures 6A–F). Kaplan-Meier survival
analysis showed that, in both cohorts, the overall survival (OS)
of high-risk BLCA patients was significantly worse compared with
that of low-risk patients (Figures 5D,E).Theprognostic performance
of the model was further evaluated using ROC analysis, and
the areas under the curves (AUCs) of the 1-year, 3-year, and
5-year survival rates in the training set were 0.786, 0.811, and
0.832, respectively (Figure 5G). In the test set, the AUC values
of the 1-year, 3-year, and 5-year survival rates were 0.724, 0.673,
and 0.670, respectively (Figure 5H), strongly demonstrating the
powerful predictive accuracy of the gene signature for the prognosis
of BLCA. In addition, significant differences in risk scores were
observed between the PRG clusters, and the risk score of PRG
cluster A was higher than that of PRG cluster B (Figure 5C). In the
phagocytosis factor-related gene clusters, significant differences in
risk scores were determined, and patients in the gene cluster subtype
A had a better outcome (Figure 5F). The Sankey diagram further
showed the distribution of patients in the two PRG score groups, the
two phagocytosis factor-related clusters, and the two gene subtypes,
revealing that most patients in PRG cluster B were related to gene
subtype B, which had a lower risk score and a correspondingly better
prognosis (Figure 5I).
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FIGURE 3
Identification of prognosis-related PRG clusters. (A) Consensus clustering heatmap showing two PRG clusters. (B) Cumulative distribution function
(CDF) curve for consensus clustering. (C) Principal component analysis (PCA) showing genomic differences between the two clusters. (D) Kaplan-Meier
survival curves between PRG Cluster A and Cluster B (P < 0.001). (E) Heatmap of Gene Ontology (GO) enrichment analysis between clusters. (F)
Heatmap of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis between clusters. (G) Heatmap showing the association
of PRG clusters with clinical features and expression levels of prognosis-related PRGs. (H) Boxplot comparing immune cell infiltration between PRG
Cluster A and Cluster B (P < 0.05).∗P < 0.05,∗∗P < 0.01,∗∗∗P < 0.001.

Construction of the prognostic nomogram

To improve the accuracy of predicting the prognostic outcomes
of bladder cancer patients, a nomogram was carefully constructed,

which integrated the patient’s age, pathological stage, and the risk
score derived from the prognostic model. This nomogram provides
a comprehensive tool for estimating the 1-year, 3-year, and 5-year
overall survival (OS) probabilities of patients (Figure 7A). The red
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FIGURE 4
Identification, clustering and functional analysis of differentially expressed genes (DEGs) between PRG clusters. (A) Venn diagram showing the 1,696
DEGs identified between PRG clusters. (B) Bubble plot of GO enrichment analysis of DEGs. (C) KEGG pathway enrichment analysis of DEGs. (D)
Consensus matrix heatmap defining two gene subtypes (k = 2). (E) Kaplan-Meier survival curves between gene Cluster A and Cluster B (P < 0.001).
(F) Relationships between clinical features and the two gene subtypes.

mark in the nomogram shows an example prediction, indicating that
the higher the total score, the worse the prognosis. The calibration
plot confirmed the predictive reliability of the nomogram, showing
a strong consistency between the predicted survival rate and the
observed survival rate (Figure 7B).

Relationship between the tumor
microenvironment (TME), immune
infiltration, and PRG score

Using the ESTIMATE algorithm, according to the established
algorithm process and parameter settings, the differences in TME
scores between the high-risk group and the low-risk group were
first calculated (Supplementary Table S8). The analysis results

showed that compared with the high-risk group, the stromal score
(StromalScore), immune score (ImmuneScore), and ESTIMATE
score of the low-risk group were significantly lower (Figure 8A).
In addition, using the CIBERSORT algorithm, according to
the standardized process, the proportions of tumor-infiltrating
immune cells in each TCGA-BLCA sample were calculated
(Supplementary Table S9). Subsequently, Spearman correlation
analysis was performed to rigorously explore the association
between the PRG-based prognostic score (PRG_score) and immune
cell infiltration. The results showed that naive B cells (R = −0.13,
p = 0.028, Figure 8C), plasma cells (R = −0.2, p = 0.00038,
Figure 8D), CD8 T cells (R = −0.32, p = 1.6e−08, Figure 8E),
follicular helper T cells (R = −0.14, p = 0.013, Figure 8F), γδ T
cells (R = −0.16, p = 0.006, Figure 8G), and regulatory T cells
(Tregs, R = −0.24, p = 3e−05, Figure 8H) were negatively correlated
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FIGURE 5
Construction of the prognostic signature based on DEGs between PRG clusters. (A,B) LASSO COX regression analysis. (D,E) Kaplan-Meier (K–M) curves
in the high-risk and low-risk groups of the training set and the test set. (G) 1-year, 3-year, and 5-year receiver operating characteristic (ROC) curves in
the training set. (H) 1-year, 3-year, and 5-year ROC curves in the test set. (C) Changes in risk scores between PRG clusters. (F) Differences in risk scores
between different gene subtypes. (I) Sankey diagram showing the correspondence between PRG clusters, gene subtypes, risk scores and survival status.

with the risk score, while M2 macrophages (R = 0.15, p = 0.0096,
Figure 8I), M0 macrophages (R = 0.35, p = 2.6e−10, Figure 8J),
neutrophils (R = 0.13, p = 0.027, Figure 8K), resting memory
CD4 T cells (R = 0.16, p = 0.0052, Figure 8L), and resting mast cells

(R = 0.12, p = 0.031, Figure 8M) were positively correlated with the
risk score.

The strong positive correlation between M0 macrophages and
the high-risk score is particularly worthy of in-depth exploration.
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FIGURE 6
Differences in the distribution of patient survival status and risk scores between the training set and the test set. (A,C,E) Distribution of patient survival
status and risk scores in the training set. (B,D,F) Distribution of patient survival status and risk scores in the test set.

As unpolarized macrophages, M0 macrophages have the potential
to differentiate into M1-type (pro-inflammatory, anti-tumor) or
M2-type (anti-inflammatory, pro-tumor) macrophages. In this
study, the infiltration of M0 macrophages in high-risk patients
was significantly increased, which may imply that the tumor
microenvironment (TME) has a key impact on the polarization
of macrophages, leading to a large number of M0 macrophages
existing in the tumor tissue and possibly tending to differentiate
into M2-type macrophages, thus creating an immunosuppressive
TME. In view of this, targeted regulation of the polarization of M0
macrophagesmay become a very promising therapeutic approach to
improve the prognosis of high-risk cancer patients.

In addition, an in-depth analysis of the relationship between
the nine key genes used to construct the prognostic model and

various immune cells revealed significant correlations betweenmost
immune cell types and these genes (Figure 8B). For example, the
expression of FBN2was positively correlated withM0macrophages,
indicating its potential role in regulating the immune response
in the tumor microenvironment. The results further revealed the
importance of these genes as potential therapeutic targets.

Mutation analysis

Previous studies have shown that the tumor mutation burden
(TMB) can be used as a predictive biomarker for immunotherapy,
and generally, a higher TMB is associated with a better response
to immunotherapy. However, the analysis of this study showed that
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FIGURE 7
Construction and validation of the nomogram. (A) Nomogram for predicting the 1-year, 3-year, and 5-year overall survival (OS) rates of BLCA patients.
(B) Calibration curve of the OS nomogram model.

there was no significant difference in the TMB scores between the
high-risk group and the low-risk group (p = 0.63) (Figure 9B),
indicating that the two groups may have a limited response to
immunotherapy. In addition, Spearman correlation analysis showed
that there was no significant association between the TMB and
the risk score in either the high-risk group or the low-risk group
(R = −0.048, p = 0.33) (Figure 9A). This finding implies that
the prognostic differences between these groups are not driven
by changes in TMB, but may be driven by other molecular or
microenvironmental factors.

In terms of tumor somatic mutations, this study rigorously
observed that the overall mutation rate in the high-risk group
(95.05%) was higher than that in the low-risk group (92.18%),
and TP53 was the most frequently mutated gene in both groups.
Specifically, the mutation frequency of TP53 reached 56% in the
high-risk group and 38% in the low-risk group, indicating its key role
in the tumor progression and invasiveness of bladder cancer. Other
major mutated genes shared between the two groups included TTN,
KMT2D, MUC16, ARID1A, KDM6A, PIK3CA, SYNE1, RYR2,
and KMT2C (Figures 9C,D). The higher mutation frequency of key
oncogenes in the high-risk population indicates increased genetic
instability, which may lead to worse clinical outcomes.

Drug sensitivity analysis

Drug sensitivity was evaluated according to the half maximal
inhibitory concentration (IC50) value, and a lower IC50 value
indicates greater sensitivity to the treatment. In this study, a total of
16 drugs were strictly screened and determined to be more effective
for the high-risk group, including AZD6482, Bexarotene, BX - 795,
CGP - 60474, CGP - 082996, CMK, Cyclopamine, KIN001 - 135,
KU - 55933, NU - 7441, NVP - TAE684, Parthenolide, TW - 37,
WH - 4 - 023, WO2009093972, and XMD8 - 85 (Figures 10A–P).

These findings highlight a group of therapeutic drugs that show
greater efficacy in the high-risk population, providing valuable
insights into the potential drug selection for personalized treatment
strategies.

Discussion

Phagocytosis, a fundamental mechanism of the immune system,
plays a crucial role in eliminating pathogens, apoptotic cells, and
cellular debris (Feng et al., 2019). Dysregulation of this process is
intricately linked to the remodeling of the tumormicroenvironment
(TME), and phagocytosis regulatory genes (PRGs) have been
recognized to exert a dual influence on tumor immune surveillance
and escape by modulating the activities of immune cells such as
macrophages and dendritic cells (Arlauckas et al., 2021). However,
the comprehensive understanding of PRGs in bladder cancer
(BLCA) remains limited, and this study aimed to fill this gap through
a systematic investigation.

In this study, we conducted an in-depth analysis of PRGs in
BLCA by integrating data from TCGA and GEO databases. Our
findings revealed a significant positive correlation between many
phagocytosis regulators and macrophage scores. Specifically, 37
genes demonstrated a correlation coefficient greater than 0.5 and a
p-value less than 0.001, indicating that macrophages can distinctly
differentiate the expression abundance of phagocytosis regulators.
This correlation provides a novel perspective for deciphering the
regulatorymechanisms of the immunemicroenvironment in BLCA,
highlighting the pivotal role of the interaction betweenmacrophages
and phagocytosis regulators in tumor immune processes (Weiskopf
and Weissman, 2015; Hirayama et al., 2017; Hu et al., 2019).

Functional enrichment analysis of 200 phagocytosis regulators
demonstrated their significant enrichment in immune-related
biological processes and pathways. Genes related to immune
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FIGURE 8
Analysis of the correlation between the tumor microenvironment (TME) and immune cell types in the high-risk and low-risk groups. (A) Differences in
ImmuneScore, StromalScore, and ESTIMATEScore between the high-risk and low-risk groups. (B–M) Correlation between the risk score and
immune cells.
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FIGURE 9
Analysis of tumor mutation burden (TMB) and mutations in high-risk and low-risk populations. (A) TMB in the high-risk and low-risk groups. (B)
Relationship between NRG_score and TMB. (C,D) Waterfall plots characterizing somatic mutations determined by high and low NRG scores.

cell phagocytosis and activation, particularly in phagocytosis
and myeloid leukocyte activation, were notably enriched
in the biological process domain. These findings suggest
that phagocytosis regulators are closely associated with the
occurrence, development, and immune escape of BLCA, potentially
influencing tumor cell clearance and immune cell activation states
(Cheng et al., 2024; Xiao et al., 2023).

The expression characteristics and clustering analysis of PRGs
unveiled the molecular heterogeneity of BLCA. We identified
two distinct PRG clusters (PRG cluster A and PRG cluster B)
with significant differences in survival outcomes, as confirmed

by Kaplan-Meier analysis. PRG cluster A was associated with a
poorer survival prognosis compared to cluster B. Additionally, GO
analysis indicated that PRG cluster A was enriched in functions
related to leukocyte homeostasis regulation and phagocytosis
regulation, highlighting its involvement in immune regulation and
cellular activities. KEGG pathway analysis further emphasized the
significant enrichment of immune-related pathways in cluster A,
suggesting potential therapeutic strategies targeting these pathways
to improve disease conditions.

The relationship analysis among PRG clusters, clinical
characteristics, and immune cell infiltration showed that samples
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FIGURE 10
Drug sensitivity analysis based on risk groups. (A–O) Boxplots showing the half maximal inhibitory concentration (IC50) values of 16 therapeutic agents
in the low-risk group (blue) and the high-risk group (red). Lower IC50 values indicate higher drug sensitivity. (A) AZD6482. (B) Bexarotene. (C) BX - 795.
(D) CGP - 60474. (E) CGP - 082996. (F) CMK. (G) Cyclopamine. (H) KIN001 - 135. (I) KU - 55933. (J) NU - 7441. (K) NVP - TAE684. (L) Parthenolide. (M)
TW - 37. (N) WH - 4 - 023. (O) WO2009093972. (P) XMD8 - 85.

in PRG cluster A were associated with higher tumor grades and
stages, as well as elevated expression levels of prognosis-related
PRGs. Moreover, there were significant differences in immune cell
infiltration between the clusters. Patients in PRG cluster A exhibited
higher infiltration of activated immune cells, such as activated B
cells, activated CD4+ T cells, and activated CD8+ T cells, while PRG
cluster B had higher levels of CD56 bright and CD56dim natural
killer cells. These differences may play a crucial role in mediating
the variation in clinical outcomes.

We identified 1,696 differentially expressed genes (DEGs)
between PRG clusters and conducted GO and KEGG enrichment
analyses. The DEGs were mainly involved in the positive regulation
of cell adhesion, regulation of cell adhesion, and leukocyte
cell adhesion. Consensus clustering analysis further defined two
distinct Phagocytosis Regulatory Genes subtypes with significant
differences in prognosis and clinical characteristics, and notable
disparities in PRG expression levels were observed between the
subtypes. These findings contribute to a deeper understanding
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of the molecular mechanisms underlying BLCA and may guide
personalized treatment strategies.

A prognostic model for programmed cell death-related
genes (PRGs) was constructed and validated using a series of
regression analyses and machine learning algorithms. Nine key
genes (SIRPG, EMP1, UAP1L1, ETV5, GMFG, CES1, ACSL5,
SPOCD1, and FBN2) were identified for predicting the prognosis
of bladder cancer patients. As oncogenes, EMP1, UAP1L1, ETV5,
CES1, and FBN2 promote tumor deterioration through immune
escape, invasion and metastasis, and chemotherapy resistance
(Wang Q. et al., 2025; Wu et al., 2022; di Martino et al., 2019;
Wang JF. et al., 2025; Lu et al., 2023).

In contrast, as tumor suppressor genes, SIRPG, GMFG,
ACSL5, and SPOCD1 inhibit tumor development through
metabolic regulation, transcriptional repression, and cell adhesion
(Çoban et al., 2023; Gaisa et al., 2013). The risk score calculated
based on these genes could effectively stratify patients into high-risk
and low-risk groups, with high-risk patients having a significantly
poorer overall survival. The prognostic performance of the model,
as evaluated by ROC analysis, demonstrated strong predictive
accuracy, with AUC values for 1-year, 3-year, and 5-year survival
rates in both the training and testing sets indicating its reliability.
Additionally, the nomogram constructed by integrating patient age,
pathological stage, and risk score provided a comprehensive tool for
estimating the survival probability of patients, and the calibration
plot confirmed its predictive reliability.

Analysis of the relationship between the tumor
microenvironment (TME), immune infiltration, and PRG scores
showed that the low-risk group had significantly lower stromal
scores, immune scores, and ESTIMATE scores compared to
the high-risk group. Spearman correlation analysis revealed
significant correlations between various immune cells and the
risk score. Notably, the strong positive correlation between M0
macrophages and the high-risk score suggests that the TME
may influence macrophage polarization, potentially promoting
the differentiation of M0 macrophages into M2 macrophages
and creating an immunosuppressive TME. Targeting the
polarization of M0 macrophages may represent a promising
therapeutic approach for improving the prognosis of high-risk
cancer patients (Feng H. et al., 2022).

Regarding mutation analysis, our study found that there was
no significant difference in tumor mutation burden (TMB) scores
between the high-risk and low-risk groups, and no significant
correlation between TMB and the risk score. However, the overall
mutation rate was higher in the high-risk group, with TP53 being
the most frequently mutated gene in both groups. The higher
mutation frequency of key oncogenes in the high-risk group
indicates increased genetic instability, which may contribute to
poorer clinical outcomes (Li et al., 2023).

In terms of drug sensitivity analysis, we identified 16 drugs that
were more effective for the high-risk group based on IC50 values.
These findings provide valuable insights for potential drug selection
in personalized treatment strategies for BLCA patients.

Undoubtedly, our research based on public databases still has
certain limitations. The sample size is limited, and the prognostic
model requires further in vitro experimental studies and clinical
trials to verify its accuracy.

Conclusion

In conclusion, this comprehensive analysis of PRGs in BLCAhas
provided important theoretical insights and potential directions for
a better understanding of the pathogenesis, prognostic evaluation,
and development of therapeutic targets for BLCA. Our findings
highlight the significance of PRGs in the molecular heterogeneity,
immune regulation, and prognosis of BLCA, and suggest potential
therapeutic strategies targeting the interaction between PRGs and
the TME. Further research is warranted to translate these findings
into clinical practice and improve the outcomes of BLCA patients.
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