
TYPE Original Research
PUBLISHED 29 August 2025
DOI 10.3389/fmolb.2025.1609227

OPEN ACCESS

EDITED BY

Ling Kui,
Harvard Medical School, United States

REVIEWED BY

Kezhen Qi,
Dali University, China
Jinping Gu,
Zhejiang University of Technology, China

*CORRESPONDENCE

Wang-Hua Liu,
003439@hnucm.edu.cn

Hua Li,
003561@hnucm.edu.cn

RECEIVED 10 April 2025
ACCEPTED 29 July 2025
PUBLISHED 29 August 2025

CITATION

Liu Y-S, Long Y-Y, Liu J, Liu Y-C, Zhang S,
Xu Y-J, Fu S-Y, Li H and Liu W-H (2025)
Toxicological analysis of metabolites in
ischemic stroke based on salivary
metabolomics.
Front. Mol. Biosci. 12:1609227.
doi: 10.3389/fmolb.2025.1609227

COPYRIGHT

© 2025 Liu, Long, Liu, Liu, Zhang, Xu, Fu, Li
and Liu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Toxicological analysis of
metabolites in ischemic stroke
based on salivary metabolomics

Yan-Song Liu1,2,3, Yu-Yan Long1,2,3, Jie Liu2,3, Yu-Chen Liu1,2,
Shuang Zhang4, Yi-Jia Xu4, Shu-Yue Fu1,2,3, Hua Li1,2* and
Wang-Hua Liu1,2,3*
1Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha,
China, 2Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and
Dietotherapy, Changsha, China, 3Hunan Engineering Technology Research Center for Medicinal and
Functional Food, Changsha, China, 4The First Affiliated Hospital of Hunan University of Chinese
Medicine, Changsha, China

Objective: To elucidate the characteristic patterns of salivary metabolic network
instability in IS patients, reveal the association mechanism between amino
acid-lipid-nucleotide metabolic cascade imbalance and stroke progression, and
provide experimental basis and translational pathway for the development of
diagnostic and therapeutic strategies based on metabolic microenvironment
regulation.

Methods: This study focused on salivary metabolomics. A prospective
cohort design (40 IS patients and 30 healthy controls) was combined
with high-resolution liquid chromatography-mass spectrometry (LC-MS/MS)
to systematically analyze the molecular characteristics and toxicological
mechanisms of metabolic disorders in stroke. Orthogonal partial least
squares discriminant analysis (OPLS-DA) and game theory feature weighting
method were used to screen differential metabolites, and toxicity evaluation
was performed by integrating ADMETlab and ProTox databases. Finally,
molecular docking technology was used to verify the metabolite-target
interaction network.

Results: A total of 488 salivary metabolites were identified, of which 167 showed
significant differences between groups, including 4.3-fold increase in arginine,
3.5-fold increase in xanthine, and 2.1-fold increase in lipoxin A4. Toxicity
prediction showed that xanthine has potential neurotoxicity and blood-brain
barrier penetration ability (BBB = 0.90). Its molecular docking with targets such
as XDH and PNP showed stable binding energy, suggesting that it participates
in the pathological process of stroke by regulating purine metabolism and
oxidative stress.

Conclusion: A panoramic analysis framework of salivary metabolomics in
ischemic stroke was constructed, and the cascade disorder of the amino
acid-lipid-nucleotide metabolic network was elucidated. The screened core
metabolite markers and their regulatory pathways not only provide highly
specific tools for early diagnosis of stroke, but also provide research basis for
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the development of innovative therapies based onmetabolic microenvironment
regulation.
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ischemic stroke, salivary metabolomics, biomarkers, metabolic toxicity, metabolic
cascade, toxicity prediction

1 Introduction

Ischemic stroke (IS) is an acute cerebrovascular disease caused
by rupture or blockage of cerebral blood vessels, which continues
to be the first in disability rate and the second in mortality
rate worldwide. Epidemiological data show that the incidence
of stroke is showing a significant trend of younger age, with
an annual growth rate of about 6.6% in people under 50 years
old (Li et al., 2022; Ekker et al., 2023). The annual number of
new cases in China has exceeded 2.87 million, and its incidence
has reached epidemic scale worldwide. It has become the main
cause of death among Chinese residents (Wen-Jun et al., 2023).
IS has a rapid onset, limited treatment methods, and a short
treatment time window. It is difficult to diagnose early, has a
limited treatment time, significantly shortens the patient’s life cycle,
and reduces the patient’s quality of life. It brings a considerable
socioeconomic burden. It is estimated that the global cost of
IS is about 721 billion US dollars, accounting for 0.66% of the
global GDP (Feigin et al., 2022).

Currently, the clinical diagnosis of IS is mainly based on the
triple method of neuroimaging evaluation, neurological function
examination and medical history tracing. Rapid and non-invasive
diagnostic tests are not yet available (Musuka et al., 2015). 140 h
after the onset of IS, the statistical advantage of intravenous
thrombolysis (IVT) combined with thrombectomy treatment
disappears (Kaesmacher et al., 2024). In a prospective hospital-based
stroke registry study in Chengdu, only 11% of 1,358 consecutive
stroke patients arrived at the hospital within 3 h, and less than
1% of all ischemic stroke patients received alteplase treatment
(Liu et al., 2007). In this context, finding biological samples with
instant diagnostic potential is a must for early diagnosis and
treatment of IS. Saliva has become a potential ideal sample for IS
diagnostic research and mechanism analysis due to its convenience
in sample collection and transportation, non-infectiousness,
and high stability of analytical compounds (Maciejczyk et al.,
2021; Szustkiewicz-Karoń et al., 2023; Zhanina et al., 2022).
The salivary glands are in close contact with the capillary
network, and the small molecular weight characteristics of
metabolites make them have excellent transmembrane diffusion
efficiency. Therefore, changes in metabolites in saliva are usually
consistent with changes in blood, which can reflect the effects
of disease, nutrition, drugs and environmental conditions on
the body (Yoshizawa et al., 2013). Huang et al. (2023) believed
that the emergence of mass spectrometry (MS) technology
made up for the shortcomings of detecting low molecular
weight compounds in saliva. The application of high-sensitivity
measurement technologies such as liquid chromatography-mass
spectrometry (LC-MS) can make saliva a medium for IS signature
metabolites.

The innovation of metabolomics methods based on mass
spectrometry technology has injected new impetus into this field.
Metabolomics uses modern analytical technologies with high
throughput, high sensitivity and high precision to dynamically
track the overall composition of metabolites in body fluids secreted
by cells and organisms to find the relative relationship between
metabolites and physiological and pathological changes. LC-MS/MS
can achieve a detection sensitivity of 10–9 mol/L through the
synergistic effect of gradient elution chromatography and high-
resolutionmass spectrometry.Thedynamicmonitoring capability of
the accelerated rate can capture the transient metabolic fluctuations
in the acute phase of stroke.

This study adopted a prospective cohort design, systematically
constructed a saliva metabolic analysis system for ischemic stroke,
used orthogonal partial least squares discriminant analysis (OPLS-
DA) combinedwith variance inflation factor (VIF) correctionmodel
to screen key metabolic markers, applied game theory characteristic
factor weight method to analyze metabolic network topology
characteristics, and finally verified the metabolite-target interaction
mechanism through molecular docking technology. The study aims
to break through the time-space limitations of traditional diagnostic
models and provide a new paradigm for the in-depth analysis of
stroke pathological mechanisms and the construction of a precise
diagnosis and treatment system.

FIGURE 1
Statistical power as a function of per-group sample size.

Frontiers in Molecular Biosciences 02 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1609227
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Liu et al. 10.3389/fmolb.2025.1609227

TABLE 1 Comparison of baseline demographic characteristics and clinical indicators of subjects.

Category Number Gender
(Male/Female)

Median age
(range)

Stroke recurrence
rate (%)

IS 40 29/11 67 (47–88) 12.5

CON 30 24/15 58 (42–78) —

TABLE 2 HPLC gradient elution parameters.

Time (min) Flow rate
(ml/min)

Phase A (%) Phase B (%)

0 0.25 90 10

3 0.25 60 40

5 0.25 5 95

8 0.6 0 100

10 0.6 0 100

10.6 0.25 90 10

10.3 0.25 90 10

2 Research methods

2.1 Metabolite sample collection

This study adopted a prospective case-control design. From
January to December 2024, confirmed cases were screened from
IS patients who visited the Department of Neurology of the First
Affiliated Hospital of Hunan University of Chinese Medicine.
Inclusion criteria included: diffusion weighted imaging (DWI)
confirmed the presence of internal carotid artery or middle cerebral
artery M1 segment occlusion, and NIH Stroke Scale (NIHSS)
score ≥6 points, and no oral disease, kidney disease and related
metabolic diseases.

As an exploratory saliva metabolomics analysis, the core
goal of this study is to discover potential metabolic markers
and pathological mechanisms of IS. According to the MetSizeR
simulation framework proposed by Nyamundanda et al.
(Nyamundanda et al., 2013) and the metabolomics sample size
calculation standard of Billoir et al. (2015), the pwr package of R
Studio (version 2025.05.0+496) was used to estimate the required
number of samples. Taking the large effect size (Cohen’s d) of 0.8
that can show significant differences as the standard, the two-tailed
significance level (α) was set to 0.05, and the expected statistical
power (Power) was 0.8.The simulation results showed that at least 26
samples were required in each group to detect significant differences
(Figure 1). Considering the heterogeneity between groups and data
integrity, a total of 232 patients were initially included in this study.
After excluding 15 patients with oral diseases, 73 patients with
insufficient compliance, and 59 patients with hemolysis/lipidemia,
40 patients were selected from the qualified sample library by

random number table as the experimental group. At the same time,
30 healthy volunteers matched in age and gender were selected as
the control group. The baseline characteristics of each group are
detailed in Table 1 Demographic data and clinical parameters.

2.2 Sample collection specifications

All subjects must be fasting for 8 h before collection and
are allowed to drink an appropriate amount of water. Sample
collection is uniformly arranged in a standard constant temperature
room (temperature 25 °C ± 1 °C, humidity 50%–60%), and the
collection period is fixed at 9:30–11:30 every day. The operation
process includes:

(1) Rinse the mouth three times with 10 mL of sterile saline
(sodium chloride concentration 0.9%, 25 °C) at an interval of
3 min, for a total of 10 min;

(2) Keep sitting still for 5 min to avoid oral movement
interference;

(3) Chew sterile Salivette® cotton rolls (Sarstedt) for 2 min to
obtain irritating saliva samples.

(4) After the samples are quickly frozen in liquid nitrogen, they
are centrifuged at 4 °C (10,000 × g, 10 min), and stored in
−80 °C ultra-low temperature refrigerators. The single freeze-
thaw principle is implemented throughout the process.

2.3 Sample pretreatment process

Metabolite extraction is based on the low-temperature solvent
precipitation method. Under strict temperature control conditions,
the saliva samples were gradient thawed. Pre-centrifugation at
12,000 × g for 10 min was used to remove mucin residues. 10 μL
of each sample from the same batch was taken to construct the
quality control mixed pool (Pool QC). The sample extraction used
methanol solvent precooled to −80 °C. After adding the internal
standardworking solution in proportion, the puremetabolite extract
was obtained by two-stage low-temperature centrifugation (14,000 ×
g, 10 min) and vacuum freeze drying. Finally, it was re-dissolved in a
constant volume solution containing 10% methanol and tested after
ultrasonic-assisted dissolution.

2.4 Chromatography-mass spectrometry
parameters

Metabolite separation was performed using aWaters ACQUITY
UPLC BEH C18 column (1.7 μm, 2.1 × 100 mm). The matrix
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FIGURE 2
Metabolite analysis flow chart.

effect was reduced by gradient program optimization (Table 2). The
column temperature was kept constant at 40 °C. The detection
system is equipped with a Q Exactive HF-X high-resolution mass

spectrometer. The scanning range is 60–900 m/z and the resolution
is 60,000 in the positive and negative ion dual-channel acquisition
mode. The fragment analysis adopts the step collision energy
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FIGURE 3
Comparative analysis of internal standard signal stability across groups.

(10/40/80 eV) mode. The system implements three-level quality
control specifications: every 10 tests are interspersed with quality
control samples and blank samples to monitor baseline stability,
parallel processing of quality control samples verifies process
reproducibility, and daily debugging of the mass spectrometer
ensures compliance.

2.5 Metabolite identification method

MS-DIAL software (v5.1.230912) (Tsugawa et al., 2020;
Tsugawa et al., 2019) was used for raw data preprocessing,
and multi-dimensional spectrum matching was implemented in
combination with multiple databases such as MassBank of North
America (MoNA, https://mona.fiehnlab.ucdavis.edu/, accessed on
2 January 2025), Georgia Native Plant Society (GNPS, https://
gnps.org/, accessed on 2 January 2025), The Human Metabolome
Database (HMDB, https://www.hmdb.ca/, accessed on 2 January
2025) (Wishart et al., 2022) and Kyoto Encyclopedia of Genes

and Genomes (KEGG, https://www.genome.jp/kegg/kegg1.html,
accessed on 2 January 2025) (Kanehisa et al., 2025). Secondary
spectral library comparison and verification were performed for key
metabolites, and high-precision fragment ion spectra were obtained
using data-dependent acquisition mode.

2.6 Data analysis system

Data preprocessing includes Log2 transformation and median
normalization, and missing values are filled by k-nearest neighbor
algorithm. Strict quality control standards require that the
coefficient of variation of QC samples must be less than 30%,
and principal component analysis shows that the experimental
group and the control group are significantly separated in space.
The screening of differential metabolites uses a joint criterion: t-
test P value <0.05 and OPLS-DA model VIP value >1. Pathway
enrichment analysis was double-validated by Fisher’s exact
test and permutation test, metabolic network visualization was
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FIGURE 4
Analysis of functional group composition of salivary metabolites. (A) HMDB enrichment analysis; (B) KEGG enrichment analysis.

achieved by R software ggraph (version 2.1.0) package, and
functional annotationwas associatedwithKEGGbiological pathway
database (Figure 2).

All participants provided written informed consent before
sample collection. The experimental operations involved in
this study were approved by the Biomedical Ethics Committee
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FIGURE 5
Metabolite abundance distribution box-and-violin plot.

of Hunan University of Chinese Medicine (Approval number:
HN-LL-GZR-2024–06), and the experimental process strictly
followed the Declaration of Helsinki. Database access ended on
2 January 2025.

2.7 Core metabolite screening

Differential metabolites were screened based on |Log2fc| >
1, fdr <0.05, and VIP >1. After removing metabolites without
HMDB data, metabolites were screened according to HMDB
identification of endogenous metabolites and KEGG pathways
that were not empty. Principal components analysis (PCA) was
performed using the remaining metabolite data, and the top 10%
of the characteristic load values were used as the standard for
searching and screening. The toxicity of compounds was retrieved
through PubChem (https://pubchem.ncbi.nlm.nih.gov/, accessed
on 20 March 2025) (Kim et al., 2025) database combined with
Prediction Of Toxicity Of Chemicals (ProTox, https://tox.charite.
de/protox3/#, accessed on 22 March 2025) (Banerjee et al., 2024)
and ADMETlab (https://admetlab3.scbdd.com/, accessed on 22
March 2025) (Fu et al., 2024) databases, and further screening
was performed based on the toxicity score <4 and the presence of
neurotoxic effects.

2.8 Molecular mechanism verification
system

ChEMBL (https://www.ebi.ac.uk/chembl/, accessed on 22
March 2025) (Zdrazil et al., 2024), STITCH (http://stitch.
embl.de, accessed on 22 March 2025) (D et al., 2016), and
SwissTargetPrediction (http://www.swisstargetprediction.ch/,

accessed on 22 March 2025) (Daina et al., 2019) were used
to search compound targets across libraries. “Ischemic stroke”
related targets were searched through GeneCards (https://www.
genecards.org/, accessed on 22 March 2025) (G et al., 2016), Online
Mendelian Inheritance in Man (OMIM, https://www.omim.org/,
accessed on 22 March 2025) (Amberger et al., 2015), Therapeutic
Target Database (TTD, https://idrblab.net/ttd/, accessed on 22
March 2025) (Zhou et al., 2024), DrugBank (https://go.drugbank.
com/, accessed on 22 March 2025) (Knox et al., 2024) and The
Pharmacogenomics Knowledgebase (PharmGKB, https://www.
pharmgkb.org/, accessed on 22 March 2025) (Barbarino et al.,
2018) databases, and Cytoscape 3.10.3 Software links compounds,
genes and diseases, constructs a compound regulatory network,
and performs Gene Ontology (GO) and GeneMANIA (https://
genemania.org/, accessed on 23 March 2025) (Warde-Farley et al.,
2010) enrichment analysis on core genes to clarify the functional
attributes of genes.

Molecular docking was performed using the intersection targets
of compounds and IS to verify the molecular mechanism of the
compound acting on IS. With the binding energy < -6 kcal/mol
as the standard, a tightly bound binding group was selected for
molecular dynamics simulation to further confirm the toxicological
mechanism.

3 Results

This study evaluated the changes in saliva metabolic
characteristics of stroke patients, constructed an evidence system
from metabolic detection to molecular mechanism analysis, used
multidimensional data analysis to reveal the biological basis of
stroke-related metabolic disorders, and verified the ligand binding
effect of key targets through molecular docking.
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FIGURE 6
Experimental repeatability multidimensional verification map. (A) Cumulative curve of coefficient of variation; (B) Two-dimensional projection of
principal component analysis; (C) Pearson correlation heat map.

3.1 Data quality and internal standard
monitoring

In the non-targeted metabolomics detection of 70
saliva samples, a total of 488 metabolites were identified

(Supplementary Table S1). This study used a non-targeted
LC-MS/MS method. Metabolite quantification was expressed as
peak area, which was a relative abundance value, and the peak
area was used as a semi-quantitative reference for key metabolites.
The raw data were standardized and preprocessed to improve
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FIGURE 7
Differential metabolite identification and verification system. (A) Volcano plot of differential analysis; (B) OPLS-DA analysis model evaluation diagram;
(C) Differential metabolite clustering heat map.

normality, and quality control was performed by comparing
the peak morphology, retention time and signal intensity of the
internal standard (Figure 3). The signal fluctuation characteristics
of the internal standard substance showed that the relative
standard deviation (RSD) of the peak area of Carnitine-D3 in the
control group (CON) was <12%, indicating excellent repeatability,
while the signal dispersion of Alanine-D4, Methionine-D3 and
Succinic Acid-D4 in the IS group was significantly higher than
the mean of the CON group, indicating that the metabolic
stability of stroke patients was decreased. The PQC internal
standard response RSD was <9.8%, and the reliability of the

experimental system met the standard, and the system stability
met the international metabolomics standardization guidelines
(van der Werf et al., 2007).

3.2 Metabolite functional spectrum
analysis

Based on the hierarchical annotation strategy of HMDB and
KEGG databases, the metabolite classification system showed a
significant functional bias (Figure 4). Amino acid compounds
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FIGURE 8
(Continued).

(45 species such as histidine and alanine) and acylcarnitines
(49 species such as valerylcarnitine and stearoylcarnitine)
accounted for the highest proportion, accounting for 18.2%

and 19.8% of the total number of metabolites, respectively.
Nucleotides (23 species such as hypoxanthine and cytosine
nucleoside) and sugar metabolites (17 species such as mannitol
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FIGURE 8
(Continued).

and sorbitol) ranked second, and coenzymes (coenzyme A,
flavin mononucleotide) and exogenous substances (caffeine,
benzoate) accounted for the smallest proportion. This distribution

pattern suggests that the saliva metabolic spectrum mainly
reflects the basic energy metabolism and cellular stress response
mechanism.
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FIGURE 8
(Continued).

3.3 Systematic evaluation of experimental
repeatability

Repeatability was verified by combining quantitative
distribution estimation, composite coefficient of variation (CV),
PCA and Pearson correlation (PCC) systems.

3.3.1 Quantitative distribution estimation
The overall distribution of metabolite abundance

in each sample was displayed by combining violin
plots and box plots. The distribution of metabolite
abundance in repeated samples was relatively consistent,
indicating that the experimental repeatability was good
(Figure 5).

3.3.2 Coefficient of variation characteristics
The median CV value of metabolites in the PQC

group was as low as 15.2%, which was significantly better
than 32.8% in the IS group (U = 4038, P < 0.0001),

which was consistent with the biological characteristics
of enhanced metabolic heterogeneity in stroke patients
(Figure 6A).

3.3.3 Principal component analysis
The first two principal components jointly explained about

29.29% of the variability in the data. The IS samples showed a
significant rightward shift along the PC1 axis (14.83%), and the
separation index DI = 0.67 was measured by t-SNE analysis of
the spatial distribution separation from the CON group. The PQC
samples were mainly concentrated in the middle area of the figure,
representing mixed characteristics (Figure 6B).

3.3.4 Pearson correlation test
The Pearson correlation test further confirmed that the average

RG value between samples in the CON group reached 0.85 (95% CI
0.82–0.88), while that in the IS group dropped to 0.62 (0.57–0.67),
indicating that the metabolic heterogeneity of stroke patients was
significantly enhanced (Figure 6C).
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FIGURE 8
(Continued). Multi-dimensional functional annotation map of differential metabolites. (A) HMDB compound classification statistics chart; (B) KEGG
pathway classification statistics chart; (C) KEGG pathway enrichment analysis bubble chart based on Fisher’s exact test; (D) KEGG pathway enrichment
analysis bubble chart based on MSEA; (E) MSEA significantly enriched pathway (P value < 0.05) line chart; (F) Differential metabolite regulatory network.

3.4 Identification of differential metabolites
and model validation

Combining the univariate t-test (P < 0.05) with the
multivariate OPLS-DA model (VIP > 1), 167 differential
metabolites (77 upregulated and 90 downregulated) were screened
(Supplementary Table S2). The volcano plot showed that L-arginine
(Log2FC = 2.1, P = 4.3E−5) and palmitamide (Log2FC = −1.8,
P = 7.1E−4) were the most significant differentials (Figure 7A).
The OPLS-DA model predictive ability evaluation showed R2Y
= 0.91, Q2 = 0.86, and the permutation test P < 0.001, verifying
the effectiveness of the model (Figure 7B). The differential

clustering heat map revealed significant metabolic trajectory shifts
between groups (Figure 7C).

3.5 Functional enrichment characteristics
of differential metabolites

Based on HMDB classification, differential metabolites involved
amino acids (32 species, 24.4%), lipids (29 species, 17.3%) and
nucleotides (18 species, 10.7%) (Figure 8A). KEGG pathway
enrichment analysis showed that 84 differential metabolites
(50.3%) targeted metabolic pathways (KO01100), 21 involved
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FIGURE 9
t-SNE and UMAP nonlinear dimensionality reduction analysis.

FIGURE 10
Principal component analysis results.

lipid metabolism (KO01040), and 15 were related to amino acid
biosynthesis (KO01230) (Figure 8B). Fisher’s exact test (FDR <
0.05) and MSEA (permutation test P < 0.01) simultaneously
identified taurine metabolism (ko00430, enrichment factor = 6.3)
and arachidonic acid metabolism (ko00590, enrichment factor =
4.8) as core pathways (Figures 8C–E). The metabolic network map
showed that xanthine oxidase and linoleic acid metabolism were
core regulatory nodes (Figure 8F).

3.6 Core metabolite screening and toxicity
assessment

PCA analysis found that principal component 1 can explain
29.1% of the variance, principal component 2 can explain

15% of the variance, and principal component 3 can explain
9.4% of the variance. The limited variance explanation level
is a known limitation of PCA in non-targeted metabolomics.
To address this problem, we applied additional nonlinear
dimensionality reduction methods of t-SNE and UMAP,
which revealed more unique clustering patterns (Figure 9;
Supplementary Tables S3, S4), indicating that principal component
1 is the most important dimension in the data (Figure 10). The
absolute contribution score of the top 10% quantile threshold
locked in eight core metabolites, including Caproic Acid
(C6:0)/4-methylvaleric acid, Xanthine, Mannitol/Sorbitol, Sucrose,
Lactic Acid, 1-Methylnicotinamide, L-methionine sulfoxide, and
Ornithine. Quantitative values of selected key metabolites are
summarized in Table 3. These values are expressed as mean
peak area ± standard deviation (a.u.) for both control and IS
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TABLE 3 Expression levels of eight core metabolites (CON vs. IS).

Metabolites Control (mean ± SD) IS (mean ± SD) P value

Caproic Acid (C6:0)/4-methylvaleric acid 4.47E+08 ± 8.05E+08 9.97E+07 ± 2.27E+08 0.00498

Xanthine 2.97E+07 ± 4.53E+07 5.11E+07 ± 4.74E+07 0.000309

Mannitol/Sorbitol 6.16E+05 ± 2.74E+06 3.52E+06 ± 1.21E+07 0.000574

Sucrose 5.57E+06 ± 2.86E+07 1.50E+07 ± 5.35E+07 0.00549

Lactic Acid 6.86E+08 ± 1.94E+09 1.67E+09 ± 3.79E+09 0.00282

1-Methylnicotinamide 3.51E+07 ± 2.80E+07 1.30E+07 ± 1.44E+07 0.00046

L-methionine sulfoxide 2.83E+07 ± 2.09E+07 1.08E+07 ± 1.09E+07 0.00397

Ornithine 2.18E+07 ± 2.18E+07 7.66E+06 ± 8.82E+06 0.00395

groups. Statistical significance was determined using two-sided t-
tests.

The toxicity of eight core metabolites was predicted by
combining ADMETlab and ProTox databases (Table 4). Based on
the correlation between the toxicity test results and IS, Xanthine was
identified as a key candidate molecule due to its high neurotoxicity
score, ability to penetrate the blood-brain barrier (BBB = 0.90), and
risk of drug-induced liver injury (DILI probability 99.2%).

3.7 Target interaction network and
molecular docking

Through the ChEMBL, STITCH and SwissTargetPrediction
databases, 1, 10 and 13 targets of Xanthine were retrieved,
respectively, and the results of the three databases were merged
(Figure 11A). Through the DrugBank, GeneCards, OMIM,
PharmGKB and TTD databases, 122, 467, 6, 28 and 41 targets
of IS were retrieved, respectively, and the results of the five
databases were merged (Figure 11B). The Xanthine and IS targets
were crossed to obtain a total of six genes, including XDH, PNP,
CASP3, ACHE, ADORA1 andADORA3 (Figure 11C), and the gene
regulatory network was constructed (Figure 11D). The six targets
were enriched by GO and GeneMANIA (Figure 12). Molecular
docking verification was performed on the six core genes and
Xanthine (Table 5).The binding energy <-6 kcal/mol was used as the
screening condition to analyze the topological characteristics of the
dominant binding sites of the three small molecule ligands XDH,
PHP and ACHE (Table 6; Figure 13). It was found that the E369-
K367 salt bridge of XDH xanthine dehydrogenase formed a charge
stabilization effect, the π-π stacking effect formed byPHE104 of PHP
and the ligand purine ring was dominant, and TRP86 and TYR341
in the central canyon region of ACHE formed a hydrophobic cavity.

4 Discussion

This study combined high-resolution mass spectrometry
technology with multimodal data analysis to perform non-targeted

metabolomics detection on saliva samples from 70 IS patients and
CON groups, revealing a significant disorder pattern of salivary
metabolic profiles in stroke patients, and systematically elucidating
its intrinsic association with pathological mechanisms, clinical
diagnosis and therapeutic intervention. The results showed that the
metabolic homeostasis of IS patients was widely unbalanced, and
their metabolic heterogeneity was significantly enhanced, involving
multidimensional characteristics such as amino acid metabolic
network disorders, lipid dynamic remodeling, and nucleotide
metabolic abnormalities, which provided a basis for disease
mechanism exploration and precision medicine transformation.

Analysis of salivary metabolic stability showed that the
stability of salivary metabolism in IS patients was significantly
lower than that in the healthy control group. Through the
analysis of the cross-group signal variability of internal standard
substances, it was found that the coefficient of variation of
the iconic metabolites such as alanine-D4 and carnitine-D3 in
the IS group was significantly higher than that in the control
group, and the discrete pattern of metabolite abundance in
the quantitative distribution map further confirmed this result,
which indicating increased biological heterogeneity rather than
technical artifacts (Supplementary Figure S5). Additionally, the
total signal intensity of pooled QC samples remained consistent
across the injection order, as shown by the QC signal trend
plot (Supplementary Figure S6). This demonstrates acceptable
instrument stability and reproducibility during data acquisition.
Together, these findings confirm that the observed metabolic
fluctuations in IS patients are more likely due to biological
differences rather than batch effects or signal drift. This metabolic
heterogeneity may be driven by multidimensional pathological
processes such as mitochondrial oxidative phosphorylation
uncoupling caused by cerebral ischemia (Normoyle et al., 2015;
Chen et al., 2011; Grasmick et al., 2018), reactive oxygen species
(ROS) burst caused by glial activation (Liao et al., 2020), and
matrix metalloproteinase (MMP-9)-mediated basement membrane
degradation in neurovascular units (Ji et al., 2023), which jointly
induce network decompensation of biochemical homeostasis
(Au and Makowski, 2018). Correlation analyses between salivary
metabolite levels and NIHSS scores revealed no statistically
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TABLE 4 Metabolite toxicity levels based on ADMETlab and ProTox.

Metabolites Toxicity Class Property Value

1-Methylnicotinamide 5

Skin Sensiti zation 0.963

Eye Irritation 0.999

Genotoxicity 0.982

Neurotoxicity 0.69

Respiratory toxicity 0.76

BBB-barrier 0.97

L-methionine sulfoxide 6

AMES Muta genicity 0.754

Rat Oral Acute Toxicity 0.905

FDAMDD 0.859

Skin Sensiti zation 1.0

Eye Irritation 0.809

Respiratory 0.962

Genotoxicity 0.997

Respiratory toxicity 0.60

Cardiotoxicity 0.78

BBB-barrier 0.70

Lactic acid 3

Eye Corrosion 0.986

Eye Irritation 0.996

Nephrotoxicity 0.51

BBB-barrier 0.71

Estrogen Receptor Alpha (ER) 0.86

Mannitol/Sorbitol 6

Ototoxicity 0.988

Nephrotoxicity 0.58

Cardiotoxicity 0.89

Transtyretrin (TTR) 0.6

Ornithine 5

Skin Sensiti zation 0.898

Eye Corrosion 0.941

Eye Irritation 0.812

Respiratory toxicity 0.69

Cardiotoxicity 0.95

Mutagenicity 0.63

BBB-barrier 0.67

(Continued on the following page)

Frontiers in Molecular Biosciences 16 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1609227
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Liu et al. 10.3389/fmolb.2025.1609227

TABLE 4 (Continued) Metabolite toxicity levels based on ADMETlab and ProTox.

Metabolites Toxicity Class Property Value

GABA receptor (GABAR) 0.67

Sucrose 6

AMES Muta genicity 0.734

Skin Sensiti zation 0.998

Ototoxicity 0.976

Nephrotoxicity 0.67

Cardiotoxicity 1.0

BBB-barrier 0.77

Transtyretrin (TTR) 0.65

NADH-quinone oxidoreductase (NADHOX) 0.56

Xanthine 3

DILI 0.992

Eye Irritation 0.866

Human Hep atotoxicity 0.771

Genotoxicity 1.0

Drug-induced Neurotoxicity 0.933

Neurotoxicity 0.73

Carcinogenicity 0.55

BBB-barrier 0.90

Clinical toxicity 0.59

Transtyretrin (TTR) 0.57

Achetylcholinesterase (AChE) 0.61

significant associations after FDR correction. However, several
metabolites showed suggestive trends (Spearman R > 0.3, P <
0.1), as summarized in Supplementary Table S7, and representative
scatter plots are shown in Supplementary Figure S8. Although
these findings are exploratory in nature, they may inform future
validation studies with larger sample sizes and integrated multi-
omics approaches. This metabolic heterogeneity may be due to
the synergistic effects of impaired energy metabolism, increased
oxidative stress and neuroinflammatory response in the ischemic
area after stroke, suggesting that metabolic fluctuations may be a
dynamic monitoring indicator of disease progression (Tater and
Pandey, 2021; Jolugbo and Ariëns, 2021).

Amino acid metabolites dominate the metabolic remodeling
of stroke patients, among which 32 amino acids and their
derivatives undergo significant changes. Arginine levels increased
4.3 times, taurine increased 3.8 times, while tryptophan metabolite
5-hydroxytryptamine and tyrosine derivative dopamine decreased
2.3 times and 1.9 times, respectively. This phenomenon suggests
that inhibition of branched-chain amino acid metabolism after

stroke may lead to impaired tricarboxylic acid cycle function
(Kim et al., 2019; Rink et al., 2017; Chouchani et al., 2014).
Arginine is metabolized to nitric oxide (NO) through the nitric
oxide synthase (NOS) pathway, which plays a dual role in ischemic
stroke. On the one hand, NO can dilate blood vessels, improve local
cerebral perfusion and inhibit platelet aggregation (Fidanboylu and
Thomas, 2025), which has a neuroprotective effect; on the other
hand, excessive NO can react with superoxide anions to generate
peroxynitrite, which induces oxidative stress, neuronal damage and
blood-brain barrier destruction (Ishi et al., 2025). Lipoxin A4 is an
endogenous anti-inflammatory mediator generated by arachidonic
acid under the action of 15-lipoxygenase. It can inhibit neutrophil
chemotaxis, reduce the release of pro-inflammatory factors such
as TNF-α and IL-1β, and promote macrophage clearance of cell
debris, which helps to resolve inflammation (Kollareth et al., 2024;
Gomes-da-Silva et al., 2025). Animal studies have shown that
lipoxin A4 analogs can significantly reduce brain tissue damage
after stroke, suggesting its value as a potential anti-inflammatory
treatment strategy (Wei et al., 2025).
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FIGURE 11
Cross-library search and merging of Xanthine and IS targets. (A) Xanthine target acquisition; (B) IS target acquisition; (C) Xanthine and IS cross-targets;
(D) Core target network.

Taurine metabolism has an important neuroprotective function
after stroke. Specifically, taurine promotes the release of inhibitory
neurotransmitters, reduces the effects of glutamate excitotoxicity
(Menzie et al., 2013), and maintains intracellular calcium ion
balance, reduces intracellular calcium ion overload and resists
neuronal necrosis and apoptosis (Shi et al., 2024; Wang et al.,
2025; Huang et al., 2025). Taurine exists in high concentrations
in mitochondria and can buffer intramitochondrial calcium ion
levels and the pH of the mitochondrial matrix. This buffering
effect has been shown to be one of the protective mechanisms in
ischemic stroke pathology (Seneff andKyriakopoulos, 2025; Jia et al.,
2023). In addition, taurine also has antioxidant functions to reduce
ROS production, regulate intracellular osmotic pressure, and reduce
endoplasmic reticulum stress (Yang et al., 2024), thereby playing
a protective role in neurons. The synergistic changes in taurine

and glutathione (Glutathione, r-glutamyl cysteingl + glycine, GSH)
reflect that the body enhances antioxidant defense through the
sulfur amino acid pathway (Jangra et al., 2024; Seol et al., 2021;
Wu et al., 2016; Schaffer and Kim, 2018). The enrichment of this
pathway in this study suggests that it may be part of the metabolic
adaptation response to stroke. The significant downregulation
of tryptophan metabolites revealed a neuroinflammatory cascade
mediated by indoleamine 2,3-dioxygenase activation (Boros et al.,
2021), which may aggravate neurological deficits by reducing
synaptic plasticity (Ge et al., 2024; Wigner et al., 2019). The
depletion of neurotransmitter precursors may be directly related to
synaptic dysfunction after stroke, providing a potential target for
neuroprotective treatment.

Dynamic remodeling of lipid metabolism is another core
feature of metabolic disorders in stroke. Lipid metabolism analysis
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FIGURE 12
Core target functional enrichment analysis. (A) GO enrichment classification bar chart of core targets; (B) GO enrichment analysis circle chart of core
targets; (C) GeneMANIA enrichment of core targets.

reveals a bidirectional imbalance in fat mobilization after stroke:
the levels of proinflammatory mediators arachidonic acid and its
derivative epoxyeicosatrienoic acid (Ato et al., 2020) are significantly
upregulated, and the prostaglandin E2 (PGE2) generated by
arachidonic acid metabolism through cyclooxygenase-2 (COX-2)
increases simultaneously (Kursun et al., 2022). While activating
the proinflammatory pathway, the anti-inflammatory mediator
lipoxin A4 increases in parallel (Tułowiecka et al., 2021). This
contradictory phenomenon may reflect the dynamic game of

the neuroinflammatory regulatory network. The metabolites of
arachidonic acid, such as leukotrienes (LTs) and PGE2, can
participate in the amplification of inflammation through the 5-
LOX/COX pathway (Xu et al., 2021). On the other hand, lipoxin
A4 can also be metabolized through the 12/15-LOX pathway.
The generated lipoxin A4 binds to specific G protein-coupled
receptors, inhibiting the activation and migration of inflammatory
cells and reducing the production of inflammatory mediators to
mediate anti-inflammatory signals (Ugidos et al., 2017). When
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TABLE 5 Key receptor-ligand binding properties.

Receptor proteins Optimal locus ID Binding energy (kcal/mol) Key binding residues

XDH_Xanthine Docking 3 −6 GLU365-A, LYS367-A, GLU369-A, TYR327-B, MET439-B

PNP_Xanthine Docking 1 −6.7 PHE104-A/D, SER108-A/D, PRO170-A/D, TRP145-B/C

CASP3_Xanthine Docking 3 −4.9 TRP340-B, ARG341-B, ASN342-B

ADORA3_Xanthine Docking 3 −5.9 TYR59-B, MET101-B, THR274-B, CYS233-B

ADORA1_Xanthine Docking 5 −5.1 TYR12-B, GLU170-B, PHE171-B

ACHE_Xanthine Docking 3 −6.2 GLN71-A, TRP86-A, TYR124-A, TYR341-B

TABLE 6 Topological features of dominant binding sites.

Cluster CavityVol (A3) ContactRes HydroBonds Pi-Pi

XDH03 1,048 18 3 2

PNP01 13,358 37 5 1

ACHE03 918 29 4 3

15-LOX activity exceeds COX-2, the lipid mediator spectrum shifts
from a pro-inflammatory phenotype to a pro-resolving phenotype
(Arkelius et al., 2024). However, the inflammatory response may
be exacerbated in the early stages of stroke due to imbalanced
enzyme activity (Milanlioglu et al., 2016). The complexity of this
metabolic network may reflect the coexistence of the inflammatory
evolution and repair stages of stroke. Ceramide accumulation and
sphingosine-1-phosphate depletion further verified the abnormal
opening of the mitochondrial membrane permeability transition
pore (Liu et al., 1999), resulting in a significant increase in
the neuronal apoptosis index. The reverse changes in ceramide
and sphingosine-1-phosphate suggest abnormal mitochondrial
autophagy, and the coordinated fluctuations of phosphatidylcholine
and lysophosphatidic acid may affect platelet activation and blood-
brain barrier permeability (Yin et al., 2022; Law et al., 2019). These
findings provide a molecular basis for the development of stroke
treatment strategies targeting lipid inflammatory networks.

Increased levels of xanthine, a purine metabolite, indicate the
occurrence of neurotoxic effects. Under ischemic and hypoxic
conditions, xanthine dehydrogenase (XDH) is irreversibly converted
to xanthine oxidase (XO). The ROS generated by XO using oxygen as
an electron acceptor and the uric acid generated by XDH can both
activate the NLRP3 inflammasome (Ogura et al., 2006), induce cell
pyroptosis and release of inflammatory factors, and aggravate neural
damage (de Brito Monteiro et al., 2025;Chenet al., 2017).On theother
hand, extracellular ATP accumulation under ischemic conditions
can also activate the P2X7 receptor and amplify the inflammatory
response (Skowrońska et al., 2020; Wirkner et al., 2005). That is,
the activation of the P2X7 receptor can lead to the assembly and
activationof theNLRP3inflammasome, therebypromoting therelease
ofproinflammatory cytokines suchas IL-1β (Murphyet al., 2011).This
inflammatory response plays a key role in brain tissue damage after

stroke by exacerbating oxidative stress and cell death. In addition, the
activation of the P2X7 receptor can also lead to non-amyloid protein-
generatedneuroprotectivepathwaysand/orexcessiveactivationofglial
cells to cause excessive inflammatory responses (Zelentsova et al.,
2022). At the same time, uric acid, the final product of XO-catalyzed
xanthine, is one of the most powerful peroxynitrite anion (ONOO-)
scavengers in the body. It can also directly react with ONOO- to
convert it into harmless NO2- and NO3- (Jomova et al., 2024).
The chelation of transition metal ions such as iron and copper by
uric acid can prevent the catalysis and occurrence of the Fenton
reaction (Shimizu et al., 2025). Its inhibitory effect on excessive
microglial activation can reduce inflammatory responses and block
the inflammatory cascade amplification process (Xiao et al., 2023;
Aliena-Valero et al., 2020; Wang et al., 2021), thereby playing a role
in stabilizing the blood-brain barrier. This dual effect of “toxicity-
antitoxicity” gives it a complex regulatory position in the pathological
mechanism of stroke. According to the results of this study, xanthine
was significantly increased in the IS group, suggesting that it may
be mainly involved in the pro-inflammatory oxidative process. The
exact direction of this mechanism still needs to be further verified by
combining metabolic time trajectory with immune indicators.

Metabolomics research on stroke in 2024–2025 has deepened
our understanding of metabolic abnormalities in the disease.
For example, Yu et al. (2025) explored the serum metabolic
characteristics of patients with large artery atherosclerosis and
small artery occlusion acute ischemic stroke (AIS), focusing on
inflammatory responses; Li et al. (2025) analyzed the changes
in plasma metabolomics in patients with AIS at different onset
times. Compared with traditional blood samples, saliva has
the characteristics of non-invasive, painless, low-cost, convenient
storage and transportation, and suitable for repeated sampling
and bedside real-time detection in metabolomics research. It is
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FIGURE 13
Molecular docking validation. (A) Docking results of ACHE and Xanthine; (B) Docking results of PNP and Xanthine; (C) Docking results of XDH
and Xanthine.

especially suitable for the need for rapid sample acquisition in acute
neurological diseases. Although the metabolite concentration of
saliva samples is usually lower than that of plasma and cerebrospinal
fluid, and is easily affected by local factors such as oral microbiota,
salivary gland function and circadian rhythm, and saliva, as a
product of secondary metabolism, may not be able to fully reflect
the metabolic state of the central nervous system, the results of
this study show that salivary metabolomics can still identify a
variety of key metabolic abnormalities related to stroke, especially
in terms of inflammation, oxidative stress and neurotoxic pathways.

This study used salivary metabolomics, which has not been widely
used in stroke research, and integrated multidimensional methods
such as LC-MS/MS, toxicity prediction and molecular docking
to identify potential neurotoxic markers such as xanthine, reveal
the disorders of key metabolic pathways such as taurine and
arachidonic acid pathways, and promote the further development
of omics methods in the field of IS. In summary, the key
metabolites identified in this study—including xanthine, lipoxin
A4, and arginine—demonstrate notable biological relevance and
translational potential in the context of ischemic stroke. Xanthine,
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a marker of purine metabolism and oxidative stress, may aid in
assessing inflammatory burden during the acute phase. Lipoxin
A4, an endogenous anti-inflammatory lipid mediator, has shown
neuroprotective effects in preclinical stroke models and represents
a promising therapeutic candidate. Arginine, through its role in
nitric oxide pathways, may serve both as a biomarker and a
modifiable target in vascular and immune regulation. Importantly,
the use of salivary metabolomics provides a non-invasive platform
for real-time monitoring, early subtyping, and personalized stroke
management. While further validation in larger and longitudinal
cohorts is needed, these findings highlight the clinical utility of
metabolite-based biomarkers and interventions in stroke care.

5 Deficiencies and prospects

This study focused on IS patients and did not include other
stroke subtypes such as hemorrhagic stroke and transient ischemic
attack. The main purpose was to reduce intergroup heterogeneity
and thus improve the internal consistency and specificity of
metabolomics data. Different stroke types have essential differences
in etiology, clinical manifestations, and inflammatory-metabolic
responses. Taking hemorrhagic stroke as an example, it is mainly
caused by vascular rupture, while IS originates from vascular
occlusion. The pathological processes and metabolic changes of the
two are significantly differentiated. If multiple subtypes are mixed
for analysis, it may mask the metabolic indications unique to IS and
reduce statistical power.

We recognize that this exclusion criterion limits the broad
extrapolation of the research results to a certain extent and
cannot be directly extended to all stroke populations. However,
this design helps to enhance the internal validity and biological
explanatory power of the study, and provides basic support
for the future construction of a multi-subtype, multi-center
stroke metabolomics research framework. Subsequent studies will
consider including different stroke subtypes, further revealing the
association between their metabolic heterogeneity and pathological
characteristics through cross-group comparisons, and expanding
the sample size, establishing a hyperacute saliva sample library,
and combining transcriptomics and proteomics data to construct
a multi-dimensional regulatory network. At the same time,
the development of portable detection technology for salivary
metabolites will promote the realization of rapid bedside diagnosis
and provide technical support for the clinical transformation of
precision medicine for stroke.

Furthermore, although saliva does not directly reflect CNS
metabolism, emerging evidence suggests its value in capturing
systemic biomarkers linked to neurological diseases. The absence
of parallel blood metabolomics data in this study limits causal
inference; however, the observed metabolic pathways align with
established stroke mechanisms. Future studies will include matched
blood and saliva samples to validate these findings and strengthen
translational potential.

In addition to the sample size and design limitations, the
inherent constraints of the LC-MS/MS platform should also
be acknowledged. Untargeted LC-MS/MS metabolomics can be
affected by matrix effects, ion suppression, signal drift, and semi-
quantitative measurement limitations. To address these issues, we

employed a series of quality control measures, including pooled
QC samples inserted at regular intervals, retention time alignment,
peak area normalization, and exclusion of low-intensity or poorly
reproducible features prior to statistical analysis. These steps were
designed to enhance the accuracy, consistency, and interpretability
of the metabolomics data.

Future studies should focus on validating salivary biomarkers
in larger and longitudinal cohorts, exploring their diagnostic
and prognostic value across stroke subtypes. Development of
portable detection devices based on these markers could facilitate
rapid and non-invasive assessment in emergency or community
settings. Moreover, integration with transcriptomic, proteomic,
and lipidomic data would enhance mechanistic insights and
pave the way for multi-dimensional precision diagnostics in
cerebrovascular disease.

6 Conclusion

This study constructed a panoramic analysis framework of
salivary metabolomics in ischemic stroke and elucidated the
cascade disorder of the amino acid-lipid-nucleotide metabolic
network. The screened core metabolite markers and their regulatory
pathways not only provide highly specific tools for early diagnosis
of stroke, but also provide research basis for the development
of innovative therapies based on metabolic microenvironment
regulation. Through interdisciplinary technology integration and
multimodal data verification, salivary metabolomics will accelerate
the transformation of the stroke diagnosis and treatment system
from empirical medicine to precision medicine, and provide
support for the realization of the clinical transformation goal of
“individualized metabolic intervention”. However, this study still
has limitations such as limited sample size, concentrated sample
collection scope, and failure to include other stroke subtypes. In
the future, larger-scale, multicenter, prospective, and longitudinal
cohort studies are still needed to improve this diagnosis and
treatment structure.
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