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Objective: This study aims to construct a diagnostic model for diabetic kidney
disease (DKD) with concurrent vascular calcification (VC) using bioinformatics
combined with machine learning approaches and to explore the potential
underlying mechanisms.

Methods: RNA sequencing (Bulk-seq) data of DKD and VC from various species
were obtained from the Gene Expression Omnibus (GEO) database, and relevant
datasets were integrated. Differential analysis of the DKD and VC datasets was
performed using the limma package and weighted gene co-expression network
analysis (WGCNA) in R (Ver. 4.3.3). Common differentially expressed genes
(DEGs) and module genes were identified. Multiple machine learning algorithms
were applied to select the optimal diagnostic model and identify hub genes,
including LASSO regression, Random Forest, Gaussian Mixture Model (GMM),
and Support Vector Machine-Reference (SVM-REF). Diagnostic performance
was evaluated using the receiver operating characteristic (ROC) and precision-
recall (PR) curves. Gene ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGGQG), gene set enrichment analysis (GSEA), and Cibersort immune
infiltration analysis were conducted to explore the potential shared pathological
mechanisms between DKD and VC.

Results: A total of five coDEGs (JUN, KCND3, HIP1, PTGDS, SLC22A17)
were identified in our study. Among these three genes, JUN, PTGDS,
and SLC22A17 demonstrated the best performance (validation group AUC:
1, test group AUC: 0.897) in the diagnostic model constructed by the
SVM-REF machine learning method. Functional enrichment analysis of
hub genes mainly involved biological processes such as inflammation,
osteoblastic differentiation, apoptosis, and ferroptosis. Immune infiltration
analysis revealed that in DKD patients, the expression levels of Memory B
Cells, CD8* T cells, M1 macrophages, M2 macrophages, resting dendritic cells,

01 frontiersin.org


https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2025.1609307
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2025.1609307&domain=pdf&date_stamp=
2025-10-11
mailto:wangxiaoqin@hbhtcm.com
mailto:wangxiaoqin@hbhtcm.com
https://doi.org/10.3389/fmolb.2025.1609307
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1609307/full
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1609307/full
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1609307/full
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1609307/full
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1609307/full
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1609307/full
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1609307/full
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

Huang et al.

10.3389/fmolb.2025.1609307

and resting mast cells were increased. In contrast, the expression of follicular
helper T cells, activated mast cells, and neutrophils decreased relatively.
Conclusion: This study suggests that JUN, PTGDS, and SLC22A17 may
be potential biomarkers for DKD with VC, involving immune, metabolic,
and inflammatory processes. These findings provide new targets for early
diagnosis of DKD with VC and offer a novel perspective for applying
bioinformatics combined with machine learning in discovering diagnostic
biomarkers for diseases.

KEYWORDS

diabetic kidney disease, vascular calcification, bioinformatics, multiple machine
learning, diagnostic model

1 Introduction

Diabetic Kidney Disease (DKD) is a common microvascular
complication of diabetes in clinical practice. According to the
2019 Annual Data Report on Kidney Diseases in China, DKD
has become the leading cause of hospitalization among patients
with Chronic Kidney Disease (CKD) in China, accounting for
27%. A survey by the Global Burden of Disease Collaborative
Organization for Chronic Kidney Disease showed that as of 2017,
organ failure caused by CKD directly led to 1.2 million deaths,
and the number of deaths from cardiovascular diseases caused by
CKD reached 1.36 million (Ding et al., 2023). Vascular calcification
(VC), an independent predictor of cardiovascular diseases, has been
proven to be an independent risk factor related to the (all-cause)
mortality rate of CKD and ESRD patients (Jung and Yoo, 2022;
Amaya-Garrido et al., 2023). Clinical studies have shown that about
50%-90% of CKD patients in 3 - 5D stages have symptoms of VC
(Martin et al., 2024; Buckley et al., 2023). Therefore, the keys to
the prevention and treatment of DKD have become improving the
diagnostic efficiency of DKD, controlling risk factors in the early
stage of the disease, intervening in the process of VC, and preventing
and treating cardiovascular complications.

VC in DKD is a complex pathological process. Metabolic
abnormality of DKD patients is one of the key factors promoting
VC (Lanzer et al., 2014). Persistent high blood glucose levels can
damage the function of vascular endothelial cells, promote oxidative
stress reactions and the release of inflammatory mediators (Nieves-
Cintron et al, 2021; Zhao et al., 2021). At the same time, as the
renal function of DKD patients declines, the blood phosphorus level
rises, and the deposition of phosphates and calcium salts in the
blood vessel wall leads to vascular stiffness and elasticity reduction,
all of which are key factors promoting VC (Salam et al., 2021;
Qin et al, 2025). As DKD progresses to end-stage renal disease,
patients who need dialysis treatment are more likely to develop
severe VC problems (Thakker et al., 2025). This is not only because
the metabolic abnormality mentioned above is more severe but also
related to the dialysate containing calcium used during dialysis,
which may directly promote the accumulation of calcium in the
body. In summary, DKD promotes the occurrence and development
of VC through multiple mechanisms, which in turn increases the
burden on the cardiovascular system, forming a vicious cycle.

In recent years, bioinformatics and machine learning technologies
have shown great potential in medical research, especially in
identifying disease diagnostic markers (Leiherer, 2024). For DKD and
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VC, two complex and interrelated pathological states, bioinformatics
and machine learning technologies can efficiently identify valuable
biomarkers fromalargeamount ofbiological data. Although numerous
studies have shown that the occurrence and development of VC are
closely related to DKD, the common potential biomarkers of these two
diseases remains elusive. In this study, bioinformatics methods were
used to integrate the data of Bulk-seq of whole samples from different
species. On this basis, machine learning was used to screen out the key
biomarkers for diagnosing DKD with VC and to explore the internal
relationship and possible biological mechanisms between them. This
might provide a basis for early disease diagnosis, risk assessment,
and treatment strategies.

2 Materials and methods

The overall design of the study is illustrated in Figure 1.

2.1 Data sources and processing

The Bulk-seq data related to DKD and VC were sourced from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/), which has
already undergone standardization. Nine DKD samples and thirteen
control samples were obtained from GSE30528, and forty-one
DKD samples and twenty control samples were obtained from
GSE96804, all from human glomerular tissues. Three human VC
samples and three control samples were retrieved from GSE211722.
Additionally, four DKD and four control samples were sourced
from GSE200221, and two DKD samples and three control samples
were retrieved from GSE103109, all derived from rats. Furthermore,
nine rat VC samples and five control samples were collected
from GSE146638.

We applied the ComBat algorithm and used the sva package in
the R language to perform batch effect correction on GSE96804 and
GSE30528. This method adjusts the systematic differences between
different batches through a Bayesian framework, while maximizing
the retention of the biological variation signals in the data. The
core principle is to perform robust correction of the expression
levels of each gene in different batches while controlling the batch
effect. While batch effect correction and merging were applied to
GSE200221 and GSE103109 (Supplementary Figure S1), the final
datasets were as follows: for human Bulk-seq: DKD samples (n =
50), DKD control samples (n = 33), VC samples (n = 3), and VC
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FIGURE 1
Flow chart of research design.

control samples (n = 3). For rat Bulk-seq: DKD samples (n = 6),
DKD control samples (n = 7), VC samples (n = 9), and VC control
samples (n = 5).

2.2 ldentification of differentially expressed
genes (DEGs) and overlapping genes

The NCBI HomoloGene database was used to uniformly
convert rat genes into human homologous gene symbols to ensure
comparability of cross-species genes. Differential expression analysis
of the DKD and VC datasets was sequenced using the limma
R package in (Ver. 4.3.3), with a significance threshold of p <
0.05 and log2 (fold change) > 0. The DEGs were then visualized
using the Enhanced Volcano package in R software, and those
that were consistently upregulated or downregulated across human,
rat, DKD, and VC datasets were considered common genes. The
overlapping DEGs across the four groups were visualized using Venn
diagrams and displayed through STRING (https://cn.string-db.
org/) for further visualization.
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2.3 Machine learning

A stratified sampling strategy was employed, using the sample
function in R to randomly select 70% of the samples from the
GSE96804 dataset as the training group for machine learning model
development; the remaining 30% were retained as the validation
group. Finally, the GSE30528 dataset was used as an external testing
group to further evaluate the models performance and diagnostic
ability on an independent dataset. Subsequently, several machine
learning algorithms, including LASSO regression, Random Forest,
Gaussian Mixture Model (GMM), and Support Vector Machine with
reference (SVM-REF), were utilized to identify hub genes. The Receiver
Operating Characteristic (ROC) curves of these genes were plotted.

This study ensures the robustness of the model through structured
parameter configuration and multi-level validation strategies. LASSO
10) to
automatically determine the optimal regularization strength A

regression employs 10-fold cross-validation (nfolds =
(lambda.min), thereby achieving Feature compression and overfitting
suppression. The random forest algorithm fixes the number of decision
trees (ntree = 100) and recursively evaluates the performance of feature
subsets via 10-fold stratified cross-validation (method = “LGOCV;
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number = 10), terminating when the highestaccuracy on the validation
set is achieved. SVM-REE iteratively eliminates the 10% of features
with the lowest weights in each round (halve.above = 100) and
dynamically screens for optimal feature combinations through 5-fold
cross-validation (k = 5) until the combination with the lowest error rate
is identified. The Gaussian mixture model performs logistic regression
onall possible gene combinations and selects the group with the highest
AUC value based on clustering analysis.

The best-performing diagnostic model was selected as the hub
genes set. Using Python software, the Cat Boost advanced machine
learning algorithm was applied to calculate the Area Under the
Curve (AUC) values of these hub genes, and the corresponding
ROC curve was plotted. The importance of these hub genes was
then visualized. Linear Discriminant Analysis (LDA) and Quadratic
Discriminant Analysis (QDA) algorithms from the MASS package
in R were employed to construct models with the hub genes
and assess their diagnostic performance, generating corresponding
heatmaps. Additionally, an artificial neural network was built for the
testing group using the neural net package in R, with a default of
5 hidden layer neurons and an output layer for DKD and control
groups. Deep learning methods were applied to further validate the
importance of the hub genes.

2.4 Functional enrichment analysis

Based on the hub genes, Gene Ontology (GO) functional
enrichment analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis were performed using the
ClusterProfiler package, with a significance threshold of p < 0.05.
The results were visualized through bar plots. The most significant
genes among the hub genes were selected for single-gene Gene Set
Enrichment Analysis (GSEA), and the corresponding enrichment
score plot was generated.

2.5 Immune cell infiltration analysis

The cybersport algorithm from the IOBR package in R was
utilized to assess the types and quantities of immune cells in the
GSE96804 dataset. The proportions of immune cells in each sample
were visualized using the ggplot2 package. Additionally, boxplots
of immune cell distributions across multiple groups were generated
using the boxplot function. At the same time, either the T-test or
the Wilcoxon rank-sum test was employed to compare inter-group
differences. A statistically significant difference was indicated when
p<0.05.

3 Results

3.1 DEGs analysis and identification of
common genes across species

3.1.1 DEGs and visualization for DKD and VC data
sets of different species

In human DKD, a total of 2,541 upregulated and 3,684
downregulated DEGs were identified. In comparison, 1,515
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upregulated and 2,043 downregulated DEGs were enriched in
human VC. There were 1,590 upregulated and 1,555 downregulated
DEGs in rat DKD, and 1,060 upregulated and 1,094 downregulated
DEGs were observed in rat VC (Figures 2A-D).

3.1.2 ldentification of cross-species overlapping
DEGs between DKD and VC and analysis of gene
interaction networks

As shown in Figures 3A-D, in human DKD-VC, a total
of 76 upregulated DEGs and 105 downregulated DEGs
were obtained (Figure 3A); in the rat DKD-VC model, 102 up-
regulated DEGs and 126 down-regulated DEGs were identified.
Finally, five overlapping DEGs were obtained by taking the
intersection of the two sets: HIP1, KCND3, JUN, PTGDS,
and SLC22A17. The STRING relationship diagram shows the
connections between these or their associated genes.

3.2 Hub genes screening and diagnostic
model construction based on machine
learning

3.2.1 Screening of hub genes using multiple
machine learning algorithms

Using LASSO regression analysis, we have identified four key
genes—JUN, KCND3, PTGDS, and SLC22A17—when the lambda
value reached its minimum. Figures 4A,B present the regression
coefficients and the outcomes of regression cross-validation,
respectively, which provide the performance and reliability of the
model. Further, the random forest algorithm found that when the
hub genes was identified as JUN, the accuracy rate was the highest,
and the model’s prediction accuracy was visualized (Figures 4C,D).
Subsequently, an SVM-RFE algorithm was used to construct a
predictive model, achieving the lowest error rate of 0.038 and the
highest accuracy of 0.962 when the model included three key genes:
JUN, PTGDS, and SLC22A17 (Figures 4E,F). Moreover, through
Gaussian Mixture Model (GMM) analysis, we identified four hub
genes—JUN, HIP1, PTGDS, and SLC22A17—when the ROC curve
AUC value reached its highest point of 1.00, and the AUC values for
each regression model were visualized in Figure 4G.

3.2.2 Verification of hub genes and performance
evaluation of the optimal diagnostic model

We constructed diagnostic models using machine learning
methods, which were validated with validation and test sets, with
the corresponding ROC curves drawn and AUC values calculated.
The AUC values of the RE, SVM-RFE, LASSO, and GMM validation
groups were 0.878, 1, 1, and 0.974, respectively, while the AUC values
of the test group were 0.632, 0.897, 0.769, and 0.778, respectively
(Figures 5A,B). Based on these results, we selected the diagnostic
model (JUN, PTGDS, SLC22A17) constructed by the SVM-RFE,
which exhibited the best prediction effect for the Catboost advanced
machine learning algorithm. The ROC curve revealed that its AUC
value was 0.94, demonstrating its diagnostic accuracy and reliability
(Figures 5C,D). Subsequently, the LDA and QDA algorithms were
used to further predict this model’s error rate (Figures 5E,H).
Among them, the LDA algorithm displayed that the error rates
predicted by this model for the control and DKD groups were
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Visualization of DEGs. (A) Volcano plot of human DKD, (B) Volcano plot of human VC, (C) Volcano plot of rat DKD, and (D) Volcano plot of rat VC.

0.07 and 0.43, respectively, with an overall error rate of 0.22. Using
the QDA algorithm, it has been found that the error rates for the
control and DKD groups were 0.11 and 0.27, respectively, resulting
in an overall error rate of 0.17. Indicates a reasonably good model
performance in distinguishing between the two groups. Surprisingly,
the artificial neural network graph showed that the model ran for
263 steps, and the error rate was only 0.001525. Additionally, in
the training group, a comparison chart of the expression levels of
hub genes by group was displayed, showing that the hub genes
were expressed at a lower level in DKD patients compared to the
control group.

3.3 Functional enrichment analysis

In order to better explain the biological functions of the
common genes and the biological functions of the shared genes,
GO and KEGG pathway annotations were used to describe and
analyze the coDEGs screened in the above steps. GO enrichment
analysis revealed that the hub genes were significantly enriched in
processes such as promoting or enhancing vascular smooth muscle
cell proliferation, integrated stress response, cellular response
to cadmiumions, arachidonic acid metabolism, prostaglandin
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metabolism, activation of myeloid cells, and ironion transport
(Figure 6A). The results of the KEGG enrichment analysis showed
that the hub genes were significantly enriched in pathways including
the TNF signaling pathway, Wnt signaling pathway, MAPK signaling
pathway, Toll-like receptor signaling pathway, IL-17 signaling
pathway, apoptosis, AGE-RAGE signaling pathway, and arachidonic
acid metabolism (Figure 6B).

Furthermore, we conducted a GSEA analysis on the hub gene
JUN, which performed the best. According to the JUN expression
level (whether it is higher than the median), we divided the
DKD patients into the JUN high-expression group and the low-
expression group. We then performed GSEA enrichment analysis
using the hallmark gene sets, after plotting the GSEA enrichment
analysis score graphs for the top 12 positive values and the
five negative values according to the absolute value of NES, as
displayed in Figures 6C-E. The JUN high-expression group was
mainly enriched in adipogenesis, IL-2/STAT5 signaling pathway,
mTORCI signaling pathway, myogenesis, p53 signaling pathway,
TNF-a via NF-kB signaling pathway, DNA repair, fatty acid
metabolism, hypoxia, oxidative phosphorylation, ROS pathway, and
unfolded protein response, etc.; the JUN low-expression group was
mainly enriched in allograft rejection, angiogenesis, coagulation,
epithelial-mesenchymal transition.
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and VC, (C) Identification of overlapping genes between human and rat DKD and VC, (D) STRING interaction network of overlapping genes and their
associated genes.

3.4 Assessment and visual analysis of the
immune infiltration

The algorithm of ssGSEA was used to quantify the distribution
and relative proportions of the relative infiltration levels of 22
immune cells from the GSE96804 datasets. As seen in Figures 7A,B,
a significant difference in the distribution and proportion of
major immune cell types in DKD and VC patients and healthy
controls. Including memory B cells, CD8" T, activated NK cells,
M1 macrophage cells, M2 macrophage cells, resting dendritic
cells, as well as resting mast cells were significantly upregulated
in DKD patients. In contrast, the activated mast and neutrophil
cells were significantly downregulated in DKD patients. There
was no significant difference between naive B cells, Plasma cells,
activated CD4 T cells, helper follicular T cells, tregs, regulatory
T cells, MO macrophage cells, and activated dendritic cells. The
results could help us better evaluate the connection between
the immune pathways for the DKD-VC between diseases and
healthy controls.
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4 Discussion

Integrating bioinformatics with machine learning algorithms is
becoming increasingly common in exploring new genes, potential
diagnostic and prognostic biomarkers, and possible therapeutic
targets using big data (Li et al., 2022; Shi et al., 2025). Our study
systematically analyzed the interactions among immune, metabolic,
and inflammatory processes, identifying actionable biomarkers and
molecular pathways. These findings can provide valuable insights
into the comorbidity of DKD-VC.

Growing evidence has suggested that DKD and VC have
multiple interactions regarding mineral metabolism disorders
(Winiarska et al, 2021), immune response (Zhang et al., 2025)
and inflammation (Fatima et al., 2024), oxidative stress (Qin et al.,
2025), and cell phenotypic transformation (Lanzer et al., 2025). It
is mainly because both conditions are accompanied by similar risk
factors such as hypertension and dyslipidemia (Kadowaki et al.,
2022). Among them, a persistent hyperglycemia state was analogous
to considered the starting point for vascular lesions, and chronic
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low-grade inflammatory response and the decline in renal function
2025).
Hyperglycemia can damage the tiny blood vessels in the kidneys,

caused by DKD are accelerators (Bavanandan et al,

accompanied by a decrease in glomerular filtration rate, as
the kidneys are the core organ for regulating the balance of
calcium, phosphorus, vitamin D, and parathyroid hormone (PTH)
(Lee et al., 2020).
series of mineral and bone metabolism abnormalities will occur,

Once the renal function is impaired, a

resulting in the’ active deposition of hydroxyapatite crystals in
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the middle layer of the vascular wall, ultimately forming VC
(Huang et al., 2024; Liu et al,, 2021).

Through multiple machine learning approaches and model
validation, this study finally identified three biomarkers with the
highest accuracy and sensitivity: JUN, PTGDS, and SLC22A17.
Unlike others, as a core component of the activator protein-1
(AP-1) transcription factor family, JUN can directly bind to the
promoter regions of numerous osteogenic-related genes such as
BMPs, BMP-2, and OPN, or interact with the key master regulatory
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factor RUNX2 (Chen et al,, 2018), jointly activating the complete
osteogenic gene expression program, thereby promoting vascular
calcification (Tang et al., 2021; Lian et al., 2025). At the same time,
after J-Jun is activated, it may also upregulate the expression of
specific mineral regulatory proteins (such as the matrix calcification
inhibitor), further exacerbating VC (Guo et al,, 2025; Zhou et al,
2021). In our study, it is noteworthy that JUN serves as a hub genes,
and based on the Catboost algorithm, it is shown that JUN has the
highest importance compared to other hub genes. We have reason
to speculate that JUN’s abnormal expression or activation may be
regarded as a potential driving factor for VC in patients with DKD.

PTGDS, a glutathione-independent prostaglandin synthase,
exhibits dual roles as a neuroregulatory mediator and inflammatory
modulator (Martin-Vazquez et al., 2023). Transcriptomic profiling
reveals PTGDS-associated differential genes are enriched in
arachidonic acid metabolism, driving inflammatory mediator
production through prostaglandin-dependent cascades (Wang et al.,
2021). Clinical studies have demonstrated that SGLT2 inhibitors
also downregulate PTGDS-containing protein complexes (among
19 targets) and mitigate TGF-B-induced epithelial-mesenchymal
transition in diabetic nephropathy (Ahluwalia et al., 2023). It is
the predominant expression in adipose tissue and is associated
with cardiovascular endpoints such as coronary atherosclerosis and
heart failure (Yang H. H. et al., 2023). As a result, PTGDS is also
suggested as a metabolic-inflammatory nexus during DKD-VC
progression (Tang et al., 2021).

The role of SLC22A17 in DKD combined with VC may be
related to its functions in iron homeostasis and apoptosis regulation
(Khanal et al., 2025; Li et al, 2024). The transporter protein
encoded by SLC22A17 participates in the regulation of iron ions
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within cells (Jaberi et al., 2021), and an iron homeostasis disorder
can exacerbate oxidative stress and trigger chronic inflammation
(Galy et al., 2024), which further disrupts iron metabolism and
leads to abnormal SLC22A17 function, increasing the generation
of ROS, which is a causal factor of damaging vascular endothelial
cells and VSMCs(Khanal et al, 2025). However, the complex
mechanism of vascular calcification involves the synergistic action
of multiple genes, pathways, and targets. These genes do not
work independently but form a complex immune-inflammation-
cell-vascular interaction network, thereby triggering the onset and
progression of calcification.

Via GO and KEGG enrichment analysis of coDEGs from various
species, it was discovered that in the DK-VC, signaling pathways,
such as TNE, Wnt, MAPK, and Toll-like receptor (Wu et al,
2025), were upregulated, from which the inflammatory cascade
emerges as a central pathogenic mechanism. As outlined earlier,
high glucose and chronic inflammatory states would activate
inflammatory signaling pathways such as Toll-like receptors
and TNF (Rostoff et al, 2024), leading to the accumulation
of ROS and intensified oxidative stress (Luna-Marco et al,
2024), causing the transformation of VSMCs from a contractile
type to an osteogenic type. In addition, the JUN and MAPK
pathways regulate the expression of pro-inflammatory genes
and apoptosis-related proteins, amplifying the apoptotic signal,
thereby further triggering the integrity of vascular wall cells
(Liu et al, 2023; He et al, 2021). Apoptotic VSMCs create a
nucleation microenvironment for hydroxyapatite crystal deposition
through membrane vesicle release and phosphatidylserine
exposure, mechanistically contributing to the initiation phase of
vascular calcification. The Wnt signaling pathway is abnormally
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activated in the osteoblast-like calcification process, promoting
the mineralization of VSMCs (Moncla et al., 2023). Overall,
inflammation, apoptosis, and osteogenic transdifferentiation are
engaged in DKD combined with VC, leading to vascular wall
calcification.

In this investigation, CIBERSORT analysis revealed that, M1,
M2 macrophages, resting dendritic cells, and resting mast cells
were significantly highly expressed in DKD patients. Notably,
macrophages have been proven to directly participate in regulating
the osteogenic transdifferentiation of VSMCs (Bai et al, 2025).
Macrophages can alter their polarity, phenotype, or release
functional substances such as tumor necrosis factor-a (TNF-a)
as an adaptive response mechanism when exposed to changes in
the tissue microenvironment (Park et al., 2025; Baba et al., 2024).
What is more, they can also upregulate the expression of osteogenic-
related genes (such as Runx2, BMP2) (Dong et al., 2025), thereby
promoting the osteogenic transformation of VSMC and inhibiting
its contractile phenotype. While M2-type macrophages, despite
having a role in repairing tissues, can also contribute to fibrosis
in the case of long-term chronic inflammation, and may also
promote the osteogenic transdifferentiation of vascular smooth
muscle cells, causing calcium ions to deposit in the vascular wall
(Chen et al., 2025). Besides, after releasing tryptase and chymase,
mast and dendritic cells can degrade the extracellular matrix,
changing the local microenvironment and providing a site for
VSMC calcification (Yang Y. et al., 2023). The results of this study
have provided strong evidence that, in the context of DKD disease,
the infiltration and activation of specific immune cells (such as
macrophages M1, M2, resting dendritic cells, and resting mast
cells) may be highly influenced by inflammation and changes in
the vascular microenvironment.

5 Conclusion

This work ultimately identified JUN, PTGDS, and SLC22A17 as
potential diagnostic markers for DKD-VC. It also highlighted their
interactions in various cellular processes such as inflammation,
osteogenic differentiation, and immune processes (Figure 8).
Moreover, it offers important insights into this condition’s clinical
early diagnosis and intervention. In the future, after in-depth studies
on the functions and mechanisms of these genes, combined with
experimental verification, we expect to formulate precise treatment
strategies to delay the progression of vascular calcification and
improve the prognosis and quality of life of patients.
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