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Objective: This study aims to construct a diagnostic model for diabetic kidney 
disease (DKD) with concurrent vascular calcification (VC) using bioinformatics 
combined with machine learning approaches and to explore the potential 
underlying mechanisms.
Methods: RNA sequencing (Bulk-seq) data of DKD and VC from various species 
were obtained from the Gene Expression Omnibus (GEO) database, and relevant 
datasets were integrated. Differential analysis of the DKD and VC datasets was 
performed using the limma package and weighted gene co-expression network 
analysis (WGCNA) in R (Ver. 4.3.3). Common differentially expressed genes 
(DEGs) and module genes were identified. Multiple machine learning algorithms 
were applied to select the optimal diagnostic model and identify hub genes, 
including LASSO regression, Random Forest, Gaussian Mixture Model (GMM), 
and Support Vector Machine-Reference (SVM-REF). Diagnostic performance 
was evaluated using the receiver operating characteristic (ROC) and precision-
recall (PR) curves. Gene ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG), gene set enrichment analysis (GSEA), and Cibersort immune 
infiltration analysis were conducted to explore the potential shared pathological 
mechanisms between DKD and VC.
Results: A total of five coDEGs (JUN, KCND3, HIP1, PTGDS, SLC22A17) 
were identified in our study. Among these three genes, JUN, PTGDS, 
and SLC22A17 demonstrated the best performance (validation group AUC: 
1, test group AUC: 0.897) in the diagnostic model constructed by the 
SVM-REF machine learning method. Functional enrichment analysis of 
hub genes mainly involved biological processes such as inflammation, 
osteoblastic differentiation, apoptosis, and ferroptosis. Immune infiltration 
analysis revealed that in DKD patients, the expression levels of Memory B 
Cells, CD8+ T cells, M1 macrophages, M2 macrophages, resting dendritic cells, 
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and resting mast cells were increased. In contrast, the expression of follicular 
helper T cells, activated mast cells, and neutrophils decreased relatively.
Conclusion: This study suggests that JUN, PTGDS, and SLC22A17 may 
be potential biomarkers for DKD with VC, involving immune, metabolic, 
and inflammatory processes. These findings provide new targets for early 
diagnosis of DKD with VC and offer a novel perspective for applying 
bioinformatics combined with machine learning in discovering diagnostic 
biomarkers for diseases.

KEYWORDS

diabetic kidney disease, vascular calcification, bioinformatics, multiple machine 
learning, diagnostic model 

1 Introduction

Diabetic Kidney Disease (DKD) is a common microvascular 
complication of diabetes in clinical practice. According to the 
2019 Annual Data Report on Kidney Diseases in China, DKD 
has become the leading cause of hospitalization among patients 
with Chronic Kidney Disease (CKD) in China, accounting for 
27%. A survey by the Global Burden of Disease Collaborative 
Organization for Chronic Kidney Disease showed that as of 2017, 
organ failure caused by CKD directly led to 1.2 million deaths, 
and the number of deaths from cardiovascular diseases caused by 
CKD reached 1.36 million (Ding et al., 2023). Vascular calcification 
(VC), an independent predictor of cardiovascular diseases, has been 
proven to be an independent risk factor related to the (all-cause) 
mortality rate of CKD and ESRD patients (Jung and Yoo, 2022; 
Amaya-Garrido et al., 2023). Clinical studies have shown that about 
50%–90% of CKD patients in 3 - 5D stages have symptoms of VC 
(Martin et al., 2024; Buckley et al., 2023). Therefore, the keys to 
the prevention and treatment of DKD have become improving the 
diagnostic efficiency of DKD, controlling risk factors in the early 
stage of the disease, intervening in the process of VC, and preventing 
and treating cardiovascular complications.

VC in DKD is a complex pathological process. Metabolic 
abnormality of DKD patients is one of the key factors promoting 
VC (Lanzer et al., 2014). Persistent high blood glucose levels can 
damage the function of vascular endothelial cells, promote oxidative 
stress reactions and the release of inflammatory mediators (Nieves-
Cintrón et al., 2021; Zhao et al., 2021). At the same time, as the 
renal function of DKD patients declines, the blood phosphorus level 
rises, and the deposition of phosphates and calcium salts in the 
blood vessel wall leads to vascular stiffness and elasticity reduction, 
all of which are key factors promoting VC (Salam et al., 2021; 
Qin et al., 2025). As DKD progresses to end-stage renal disease, 
patients who need dialysis treatment are more likely to develop 
severe VC problems (Thakker et al., 2025). This is not only because 
the metabolic abnormality mentioned above is more severe but also 
related to the dialysate containing calcium used during dialysis, 
which may directly promote the accumulation of calcium in the 
body. In summary, DKD promotes the occurrence and development 
of VC through multiple mechanisms, which in turn increases the 
burden on the cardiovascular system, forming a vicious cycle.

In recent years, bioinformatics and machine learning technologies 
have shown great potential in medical research, especially in 
identifying disease diagnostic markers (Leiherer, 2024). For DKD and 

VC, two complex and interrelated pathological states, bioinformatics 
and machine learning technologies can efficiently identify valuable 
biomarkers from a large amount of biological data. Although numerous 
studies have shown that the occurrence and development of VC are 
closely related to DKD, the common potential biomarkers of these two 
diseases remains elusive. In this study, bioinformatics methods were 
used to integrate the data of Bulk-seq of whole samples from different 
species. On this basis, machine learning was used to screen out the key 
biomarkers for diagnosing DKD with VC and to explore the internal 
relationship and possible biological mechanisms between them. This 
might provide a basis for early disease diagnosis, risk assessment, 
and treatment strategies. 

2 Materials and methods

The overall design of the study is illustrated in Figure 1.

2.1 Data sources and processing

The Bulk-seq data related to DKD and VC were sourced from 
the GEO database (https://www.ncbi.nlm.nih.gov/geo/), which has 
already undergone standardization. Nine DKD samples and thirteen 
control samples were obtained from GSE30528, and forty-one 
DKD samples and twenty control samples were obtained from 
GSE96804, all from human glomerular tissues. Three human VC 
samples and three control samples were retrieved from GSE211722. 
Additionally, four DKD and four control samples were sourced 
from GSE200221, and two DKD samples and three control samples 
were retrieved from GSE103109, all derived from rats. Furthermore, 
nine rat VC samples and five control samples were collected
from GSE146638.

We applied the ComBat algorithm and used the sva package in 
the R language to perform batch effect correction on GSE96804 and 
GSE30528. This method adjusts the systematic differences between 
different batches through a Bayesian framework, while maximizing 
the retention of the biological variation signals in the data. The 
core principle is to perform robust correction of the expression 
levels of each gene in different batches while controlling the batch 
effect. While batch effect correction and merging were applied to 
GSE200221 and GSE103109 (Supplementary Figure S1), the final 
datasets were as follows: for human Bulk-seq: DKD samples (n = 
50), DKD control samples (n = 33), VC samples (n = 3), and VC 
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FIGURE 1
Flow chart of research design.

control samples (n = 3). For rat Bulk-seq: DKD samples (n = 6), 
DKD control samples (n = 7), VC samples (n = 9), and VC control
samples (n = 5). 

2.2 Identification of differentially expressed 
genes (DEGs) and overlapping genes

The NCBI HomoloGene database was used to uniformly 
convert rat genes into human homologous gene symbols to ensure 
comparability of cross-species genes. Differential expression analysis 
of the DKD and VC datasets was sequenced using the limma 
R package in (Ver. 4.3.3), with a significance threshold of p < 
0.05 and log2 (fold change) > 0. The DEGs were then visualized 
using the Enhanced Volcano package in R software, and those 
that were consistently upregulated or downregulated across human, 
rat, DKD, and VC datasets were considered common genes. The 
overlapping DEGs across the four groups were visualized using Venn 
diagrams and displayed through STRING (https://cn.string-db.
org/) for further visualization. 

2.3 Machine learning

A stratified sampling strategy was employed, using the sample 
function in R to randomly select 70% of the samples from the 
GSE96804 dataset as the training group for machine learning model 
development; the remaining 30% were retained as the validation 
group. Finally, the GSE30528 dataset was used as an external testing 
group to further evaluate the model’s performance and diagnostic 
ability on an independent dataset. Subsequently, several machine 
learning algorithms, including LASSO regression, Random Forest, 
Gaussian Mixture Model (GMM), and Support Vector Machine with 
reference (SVM-REF), were utilized to identify hub genes. The Receiver 
Operating Characteristic (ROC) curves of these genes were plotted. 

This study ensures the robustness of the model through structured 
parameter configuration and multi-level validation strategies. LASSO 
regression employs 10-fold cross-validation (nfolds = 10) to 
automatically determine the optimal regularization strength λ 
(lambda.min), thereby achieving Feature compression and overfitting 
suppression. The random forest algorithm fixes the number of decision 
trees (ntree = 100) and recursively evaluates the performance of feature 
subsets via 10-fold stratified cross-validation (method = “LGOCV,” 
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number = 10), terminating when the highest accuracy on the validation 
set is achieved. SVM-RFE iteratively eliminates the 10% of features 
with the lowest weights in each round (halve.above = 100) and 
dynamically screens for optimal feature combinations through 5-fold 
cross-validation (k = 5) until the combination with the lowest error rate 
is identified. The Gaussian mixture model performs logistic regression 
on all possible gene combinations and selects the group with the highest 
AUC value based on clustering analysis. 

The best-performing diagnostic model was selected as the hub 
genes set. Using Python software, the Cat Boost advanced machine 
learning algorithm was applied to calculate the Area Under the 
Curve (AUC) values of these hub genes, and the corresponding 
ROC curve was plotted. The importance of these hub genes was 
then visualized. Linear Discriminant Analysis (LDA) and Quadratic 
Discriminant Analysis (QDA) algorithms from the MASS package 
in R were employed to construct models with the hub genes 
and assess their diagnostic performance, generating corresponding 
heatmaps. Additionally, an artificial neural network was built for the 
testing group using the neural net package in R, with a default of 
5 hidden layer neurons and an output layer for DKD and control 
groups. Deep learning methods were applied to further validate the 
importance of the hub genes. 

2.4 Functional enrichment analysis

Based on the hub genes, Gene Ontology (GO) functional 
enrichment analysis and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis were performed using the 
ClusterProfiler package, with a significance threshold of p ≤ 0.05. 
The results were visualized through bar plots. The most significant 
genes among the hub genes were selected for single-gene Gene Set 
Enrichment Analysis (GSEA), and the corresponding enrichment 
score plot was generated. 

2.5 Immune cell infiltration analysis

The cybersport algorithm from the IOBR package in R was 
utilized to assess the types and quantities of immune cells in the 
GSE96804 dataset. The proportions of immune cells in each sample 
were visualized using the ggplot2 package. Additionally, boxplots 
of immune cell distributions across multiple groups were generated 
using the boxplot function. At the same time, either the T-test or 
the Wilcoxon rank-sum test was employed to compare inter-group 
differences. A statistically significant difference was indicated when 
p < 0.05. 

3 Results

3.1 DEGs analysis and identification of 
common genes across species

3.1.1 DEGs and visualization for DKD and VC data 
sets of different species

In human DKD, a total of 2,541 upregulated and 3,684 
downregulated DEGs were identified. In comparison, 1,515 

upregulated and 2,043 downregulated DEGs were enriched in 
human VC. There were 1,590 upregulated and 1,555 downregulated 
DEGs in rat DKD, and 1,060 upregulated and 1,094 downregulated 
DEGs were observed in rat VC (Figures 2A–D).

3.1.2 Identification of cross-species overlapping 
DEGs between DKD and VC and analysis of gene 
interaction networks

As shown in Figures 3A–D, in human DKD-VC, a total 
of 76 upregulated DEGs and 105 downregulated DEGs 
were obtained (Figure 3A); in the rat DKD-VC model, 102 up-
regulated DEGs and 126 down-regulated DEGs were identified. 
Finally, five overlapping DEGs were obtained by taking the 
intersection of the two sets: HIP1, KCND3, JUN, PTGDS, 
and SLC22A17. The STRING relationship diagram shows the 
connections between these or their associated genes.

3.2 Hub genes screening and diagnostic 
model construction based on machine 
learning

3.2.1 Screening of hub genes using multiple 
machine learning algorithms

Using LASSO regression analysis, we have identified four key 
genes—JUN, KCND3, PTGDS, and SLC22A17—when the lambda 
value reached its minimum. Figures 4A,B present the regression 
coefficients and the outcomes of regression cross-validation, 
respectively, which provide the performance and reliability of the 
model. Further, the random forest algorithm found that when the 
hub genes was identified as JUN, the accuracy rate was the highest, 
and the model’s prediction accuracy was visualized (Figures 4C,D). 
Subsequently, an SVM-RFE algorithm was used to construct a 
predictive model, achieving the lowest error rate of 0.038 and the 
highest accuracy of 0.962 when the model included three key genes: 
JUN, PTGDS, and SLC22A17 (Figures 4E,F). Moreover, through 
Gaussian Mixture Model (GMM) analysis, we identified four hub 
genes—JUN, HIP1, PTGDS, and SLC22A17—when the ROC curve 
AUC value reached its highest point of 1.00, and the AUC values for 
each regression model were visualized in Figure 4G.

3.2.2 Verification of hub genes and performance 
evaluation of the optimal diagnostic model

We constructed diagnostic models using machine learning 
methods, which were validated with validation and test sets, with 
the corresponding ROC curves drawn and AUC values calculated. 
The AUC values of the RF, SVM-RFE, LASSO, and GMM validation 
groups were 0.878, 1, 1, and 0.974, respectively, while the AUC values 
of the test group were 0.632, 0.897, 0.769, and 0.778, respectively 
(Figures 5A,B). Based on these results, we selected the diagnostic 
model (JUN, PTGDS, SLC22A17) constructed by the SVM-RFE, 
which exhibited the best prediction effect for the Catboost advanced 
machine learning algorithm. The ROC curve revealed that its AUC 
value was 0.94, demonstrating its diagnostic accuracy and reliability 
(Figures 5C,D). Subsequently, the LDA and QDA algorithms were 
used to further predict this model’s error rate (Figures 5E,H). 
Among them, the LDA algorithm displayed that the error rates 
predicted by this model for the control and DKD groups were 
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FIGURE 2
Visualization of DEGs. (A) Volcano plot of human DKD, (B) Volcano plot of human VC, (C) Volcano plot of rat DKD, and (D) Volcano plot of rat VC.

0.07 and 0.43, respectively, with an overall error rate of 0.22. Using 
the QDA algorithm, it has been found that the error rates for the 
control and DKD groups were 0.11 and 0.27, respectively, resulting 
in an overall error rate of 0.17. Indicates a reasonably good model 
performance in distinguishing between the two groups. Surprisingly, 
the artificial neural network graph showed that the model ran for 
263 steps, and the error rate was only 0.001525. Additionally, in 
the training group, a comparison chart of the expression levels of 
hub genes by group was displayed, showing that the hub genes 
were expressed at a lower level in DKD patients compared to the 
control group.

3.3 Functional enrichment analysis

In order to better explain the biological functions of the 
common genes and the biological functions of the shared genes, 
GO and KEGG pathway annotations were used to describe and 
analyze the coDEGs screened in the above steps. GO enrichment 
analysis revealed that the hub genes were significantly enriched in 
processes such as promoting or enhancing vascular smooth muscle 
cell proliferation, integrated stress response, cellular response 
to cadmiumions, arachidonic acid metabolism, prostaglandin 

metabolism, activation of myeloid cells, and ironion transport 
(Figure 6A). The results of the KEGG enrichment analysis showed 
that the hub genes were significantly enriched in pathways including 
the TNF signaling pathway, Wnt signaling pathway, MAPK signaling 
pathway, Toll-like receptor signaling pathway, IL-17 signaling 
pathway, apoptosis, AGE-RAGE signaling pathway, and arachidonic 
acid metabolism (Figure 6B).

Furthermore, we conducted a GSEA analysis on the hub gene 
JUN, which performed the best. According to the JUN expression 
level (whether it is higher than the median), we divided the 
DKD patients into the JUN high-expression group and the low-
expression group. We then performed GSEA enrichment analysis 
using the hallmark gene sets, after plotting the GSEA enrichment 
analysis score graphs for the top 12 positive values and the 
five negative values according to the absolute value of NES, as 
displayed in Figures 6C–E. The JUN high-expression group was 
mainly enriched in adipogenesis, IL-2/STAT5 signaling pathway, 
mTORC1 signaling pathway, myogenesis, p53 signaling pathway, 
TNF-α via NF-κB signaling pathway, DNA repair, fatty acid 
metabolism, hypoxia, oxidative phosphorylation, ROS pathway, and 
unfolded protein response, etc.; the JUN low-expression group was 
mainly enriched in allograft rejection, angiogenesis, coagulation, 
epithelial-mesenchymal transition. 
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FIGURE 3
Identification of Overlapping Genes. (A) Identification of overlapping genes in human DKD and VC, (B) Identification of overlapping genes in rat DKD 
and VC, (C) Identification of overlapping genes between human and rat DKD and VC, (D) STRING interaction network of overlapping genes and their 
associated genes.

3.4 Assessment and visual analysis of the 
immune infiltration

The algorithm of ssGSEA was used to quantify the distribution 
and relative proportions of the relative infiltration levels of 22 
immune cells from the GSE96804 datasets. As seen in Figures 7A,B, 
a significant difference in the distribution and proportion of 
major immune cell types in DKD and VC patients and healthy 
controls. Including memory B cells, CD8+ T, activated NK cells, 
M1 macrophage cells, M2 macrophage cells, resting dendritic 
cells, as well as resting mast cells were significantly upregulated 
in DKD patients. In contrast, the activated mast and neutrophil 
cells were significantly downregulated in DKD patients. There 
was no significant difference between naive B cells, Plasma cells, 
activated CD4 T cells, helper follicular T cells, tregs, regulatory 
T cells, M0 macrophage cells, and activated dendritic cells. The 
results could help us better evaluate the connection between 
the immune pathways for the DKD-VC between diseases and
healthy controls.

4 Discussion

Integrating bioinformatics with machine learning algorithms is 
becoming increasingly common in exploring new genes, potential 
diagnostic and prognostic biomarkers, and possible therapeutic 
targets using big data (Li et al., 2022; Shi et al., 2025). Our study 
systematically analyzed the interactions among immune, metabolic, 
and inflammatory processes, identifying actionable biomarkers and 
molecular pathways. These findings can provide valuable insights 
into the comorbidity of DKD-VC.

Growing evidence has suggested that DKD and VC have 
multiple interactions regarding mineral metabolism disorders 
(Winiarska et al., 2021), immune response (Zhang et al., 2025) 
and inflammation (Fatima et al., 2024), oxidative stress (Qin et al., 
2025), and cell phenotypic transformation (Lanzer et al., 2025). It 
is mainly because both conditions are accompanied by similar risk 
factors such as hypertension and dyslipidemia (Kadowaki et al., 
2022). Among them, a persistent hyperglycemia state was analogous 
to considered the starting point for vascular lesions, and chronic 
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FIGURE 4
Diagnostic Model Construction Using Machine Learning Algorithms. (A) LASSO regression coefficient plot, (B) LASSO regression cross-validation plot,
(C) Random forest prediction accuracy plot, (D) Random forest accuracy plot, (E) SVM-RFE error rate plot, (F) SVM-RFE accuracy plot, (G) GMM 
regression model evaluation plot.
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FIGURE 5
Validation of hub genes. (A) ROC curve for the validation set using four machine learning methods, (B) ROC curve for the test set using four machine 
learning methods, (C) ROC curve for the CatBoost model, (D) Gene weight plot for the CatBoost model, (E) LDA confusion matrix heatmap, (F) QDA 
confusion matrix heatmap, (G) Artificial neural network model plot (numbers on the lines represent the predicted weights), (H) Group comparison plot 
of hub genes expression levels.
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FIGURE 6
Visualization of Enrichment Analysis Results. (A) GO enrichment analysis results for the hub genes, (B) KEGG enrichment analysis results for the hub 
genes, (C–E) JUN GSEA Hallmark enrichment score plots.
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FIGURE 7
Visualization of Immune Infiltration Analysis Results. (A) CIBERSORT immune infiltration rainbow proportion plot, (B) CIBERSORT multi-group boxplot.

low-grade inflammatory response and the decline in renal function 
caused by DKD are accelerators (Bavanandan et al., 2025). 
Hyperglycemia can damage the tiny blood vessels in the kidneys, 
accompanied by a decrease in glomerular filtration rate, as 
the kidneys are the core organ for regulating the balance of 
calcium, phosphorus, vitamin D, and parathyroid hormone (PTH) 
(Lee et al., 2020). Once the renal function is impaired, a 
series of mineral and bone metabolism abnormalities will occur, 
resulting in the’ active deposition of hydroxyapatite crystals in 

the middle layer of the vascular wall, ultimately forming VC 
(Huang et al., 2024; Liu et al., 2021).

Through multiple machine learning approaches and model 
validation, this study finally identified three biomarkers with the 
highest accuracy and sensitivity: JUN, PTGDS, and SLC22A17. 
Unlike others, as a core component of the activator protein-1 
(AP-1) transcription factor family, JUN can directly bind to the 
promoter regions of numerous osteogenic-related genes such as 
BMPs, BMP-2, and OPN, or interact with the key master regulatory 
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FIGURE 8
A flow diagram showing that multiple bioinformatics analysis identified potential biomarkers for predicting DKD-VC.

factor RUNX2 (Chen et al., 2018), jointly activating the complete 
osteogenic gene expression program, thereby promoting vascular 
calcification (Tang et al., 2021; Lian et al., 2025). At the same time, 
after J-Jun is activated, it may also upregulate the expression of 
specific mineral regulatory proteins (such as the matrix calcification 
inhibitor), further exacerbating VC (Guo et al., 2025; Zhou et al., 
2021). In our study, it is noteworthy that JUN serves as a hub genes, 
and based on the Catboost algorithm, it is shown that JUN has the 
highest importance compared to other hub genes. We have reason 
to speculate that JUN’s abnormal expression or activation may be 
regarded as a potential driving factor for VC in patients with DKD.

PTGDS, a glutathione-independent prostaglandin synthase, 
exhibits dual roles as a neuroregulatory mediator and inflammatory 
modulator (Martín-Vázquez et al., 2023). Transcriptomic profiling 
reveals PTGDS-associated differential genes are enriched in 
arachidonic acid metabolism, driving inflammatory mediator 
production through prostaglandin-dependent cascades (Wang et al., 
2021). Clinical studies have demonstrated that SGLT2 inhibitors 
also downregulate PTGDS-containing protein complexes (among 
19 targets) and mitigate TGF-β-induced epithelial-mesenchymal 
transition in diabetic nephropathy (Ahluwalia et al., 2023). It is 
the predominant expression in adipose tissue and is associated 
with cardiovascular endpoints such as coronary atherosclerosis and 
heart failure (Yang H. H. et al., 2023). As a result, PTGDS is also 
suggested as a metabolic-inflammatory nexus during DKD-VC 
progression (Tang et al., 2021).

The role of SLC22A17 in DKD combined with VC may be 
related to its functions in iron homeostasis and apoptosis regulation 
(Khanal et al., 2025; Li et al., 2024). The transporter protein 
encoded by SLC22A17 participates in the regulation of iron ions 

within cells (Jaberi et al., 2021), and an iron homeostasis disorder 
can exacerbate oxidative stress and trigger chronic inflammation 
(Galy et al., 2024), which further disrupts iron metabolism and 
leads to abnormal SLC22A17 function, increasing the generation 
of ROS, which is a causal factor of damaging vascular endothelial 
cells and VSMCs(Khanal et al., 2025). However, the complex 
mechanism of vascular calcification involves the synergistic action 
of multiple genes, pathways, and targets. These genes do not 
work independently but form a complex immune-inflammation-
cell-vascular interaction network, thereby triggering the onset and 
progression of calcification.

Via GO and KEGG enrichment analysis of coDEGs from various 
species, it was discovered that in the DK-VC, signaling pathways, 
such as TNF, Wnt, MAPK, and Toll-like receptor (Wu et al., 
2025), were upregulated, from which the inflammatory cascade 
emerges as a central pathogenic mechanism. As outlined earlier, 
high glucose and chronic inflammatory states would activate 
inflammatory signaling pathways such as Toll-like receptors 
and TNF (Rostoff et al., 2024), leading to the accumulation 
of ROS and intensified oxidative stress (Luna-Marco et al., 
2024), causing the transformation of VSMCs from a contractile 
type to an osteogenic type. In addition, the JUN and MAPK 
pathways regulate the expression of pro-inflammatory genes 
and apoptosis-related proteins, amplifying the apoptotic signal, 
thereby further triggering the integrity of vascular wall cells 
(Liu et al., 2023; He et al., 2021). Apoptotic VSMCs create a 
nucleation microenvironment for hydroxyapatite crystal deposition 
through membrane vesicle release and phosphatidylserine 
exposure, mechanistically contributing to the initiation phase of 
vascular calcification. The Wnt signaling pathway is abnormally 
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activated in the osteoblast-like calcification process, promoting 
the mineralization of VSMCs (Moncla et al., 2023). Overall, 
inflammation, apoptosis, and osteogenic transdifferentiation are 
engaged in DKD combined with VC, leading to vascular wall 
calcification.

In this investigation, CIBERSORT analysis revealed that, M1, 
M2 macrophages, resting dendritic cells, and resting mast cells 
were significantly highly expressed in DKD patients. Notably, 
macrophages have been proven to directly participate in regulating 
the osteogenic transdifferentiation of VSMCs (Bai et al., 2025). 
Macrophages can alter their polarity, phenotype, or release 
functional substances such as tumor necrosis factor-α (TNF-α) 
as an adaptive response mechanism when exposed to changes in 
the tissue microenvironment (Park et al., 2025; Baba et al., 2024). 
What is more, they can also upregulate the expression of osteogenic-
related genes (such as Runx2, BMP2) (Dong et al., 2025), thereby 
promoting the osteogenic transformation of VSMC and inhibiting 
its contractile phenotype. While M2-type macrophages, despite 
having a role in repairing tissues, can also contribute to fibrosis 
in the case of long-term chronic inflammation, and may also 
promote the osteogenic transdifferentiation of vascular smooth 
muscle cells, causing calcium ions to deposit in the vascular wall 
(Chen et al., 2025). Besides, after releasing tryptase and chymase, 
mast and dendritic cells can degrade the extracellular matrix, 
changing the local microenvironment and providing a site for 
VSMC calcification (Yang Y. et al., 2023). The results of this study 
have provided strong evidence that, in the context of DKD disease, 
the infiltration and activation of specific immune cells (such as 
macrophages M1, M2, resting dendritic cells, and resting mast 
cells) may be highly influenced by inflammation and changes in 
the vascular microenvironment. 

5 Conclusion

This work ultimately identified JUN, PTGDS, and SLC22A17 as 
potential diagnostic markers for DKD-VC. It also highlighted their 
interactions in various cellular processes such as inflammation, 
osteogenic differentiation, and immune processes (Figure 8). 
Moreover, it offers important insights into this condition’s clinical 
early diagnosis and intervention. In the future, after in-depth studies 
on the functions and mechanisms of these genes, combined with 
experimental verification, we expect to formulate precise treatment 
strategies to delay the progression of vascular calcification and 
improve the prognosis and quality of life of patients.
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