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Background: Ovarian cancer is a highly lethal gynecological malignancy
characterized by significant heterogeneity and immunosuppressive tumor
microenvironments, contributing to poor prognosis and therapeutic resistance.
This study investigates the immunological and prognostic significance of FN1-
expressing tumor cells using integrated multi-omics approaches.

Methods: The study used GEO database data processed with Seurat and
Harmony R. Each cluster hadmarker genes and cells were tested for preference.
Cell stemness was measured using AUCell and CytoTRACE. The gene regulatory
network was analyzed using pySCENIC. Molecular signaling exchange study was
done with CellChat. And immune infiltration as well as prognostic stratification
was performed using bulk analysis. Finally, the identified FN1 targets were
validated in conjunction with the spatial transcriptome as well as experimentally.

Results: The study highlighted FN1 expression as a key factor in ovarian
cancer prognosis and immune resistance. High FN1 tumor cells were linked
to poor survival. FN1 knockdown inhibited tumor growth by reducing tumor
cells aggregation, invasion, and migration. Our findings suggested that FN1+
tumor cells contributed to immunotherapy resistance, making FN1 a potential
biomarker and therapeutic target for improving treatment outcomes in
ovarian cancer.

Conclusion: A prognostic model created based on FN1 tumor cells provided
a new idea for clinical staging of ovarian cancer patients. Meanwhile, this
study provided new insights into the heterogeneity of tumor cells and
suggested a potential therapeutic target, FN1, which could be helpful for precise
immunotherapy of ovarian cancer.
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FN1 signaling pathway, prognostic stratification, spatial transcriptomics, immune
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1 Introduction

Ovarian cancer, a very lethal gynecologic malignancy, is
characterized by its intricate tumor microenvironment (TME) and
its metastatic potential (Deng et al., 2022; Almeida-Nunes et al.,
2022; Zhu et al., 2022). Ovarian cancer is a heterogeneous
disease characterized by a variety of tumors that exhibit diverse
clinicopathological, genetic, and prognostic features, demonstrating
significant tumor heterogeneity both within and among subtypes
(Kossai et al., 2018; Xiao et al., 2022; Cho and Shih, 2009).
High-grade plasmacytoid carcinoma represents the most common
subtype of ovarian cancer, characterized by its aggressive nature
and generally poor prognosis for affected patients (Wang Y. et al.,
2022). Epithelial ovarian cancer, particularly high-grade serous
ovarian carcinoma, characterized by extensive genomic instability,
high rates of intraperitoneal metastasis, and frequent development
of chemoresistance. Surgery and chemotherapy are the primary
treatments forovariancancer;however, chemotherapyresistance leads
to patients’ recurrence within a few years of initiating treatment
(Wood and Ledermann, 2022; Yang et al., 2020; Jiang et al., 2020).
Despite initial responses to cytoreductive surgery and platinum-
based chemotherapy, themajority of patients experience relapse, often
within 18 months, due to acquired resistance and the persistence
of tumor subclones (Dou et al., 2023). Immunotherapy has grown
rapidly in the past 20 years, modernizing cancer treatment and
ushering in precision healthcare (Morand et al., 2021; Kuroki and
Guntupalli, 2020;Zhang L.etal., 2024;Yeetal., 2025).Themechanisms
underlying immuneevasion remain inadequatelyunderstood, thereby
constraining the efficacy of cancer immunotherapy. Recent advances
in molecular profiling have revealed that ovarian cancer is not
a single disease but rather a heterogeneous group of neoplasms
with distinct molecular, cellular, and clinical characteristics. This
heterogeneity is further complicated by the TME, which plays a
pivotal role in immune evasion, therapeutic resistance, and disease
progression. Emerging immunotherapeutic strategies, including
immune checkpoint inhibitors and adoptive T cell therapies, have
shown limited efficacy in unselected ovarian cancer populations.
A deeper understanding of immune-tumor interactions and the
identification of key immunomodulatory drivers are urgently needed
to improve patient stratification and treatment outcomes (Xu et al.,
2020). In this context, our study focuses on FN1+ tumor cells using
an integrated multi-omics approach, aiming to elucidate their role in
immune escape and prognostic stratification. This work contributes
to the broader effort to develop precision immunotherapies tailored
to the complex immunobiology of ovarian cancer.

Single-cell RNA sequencing (scRNA-seq) is a powerful method
for examining ovarian cancer heterogeneity with unprecedented
detail (Xu et al., 2022; Zhang et al., 2023a; Zhao et al., 2025a;
Zhao et al., 2025b). This method enables researchers to delineate
diverse cell types, ascertain biological states, and reveal dynamic
interactions within the tumor microenvironment by examining
individual cells (Olbrecht et al., 2021; Olalekan et al., 2021). The
TME strongly influences tumor growth, progression, and therapy
response (Yu et al., 2023; Han et al., 2023). In the TME, immune
cells and ovarian cancer cells engage in reciprocal signaling that
modifies the immune response and influences the progression of
the disease (Luo et al., 2021). Ovarian cancer with TME has been
shown to recruit several immune cell types, and recent years have

yielded a more profound understanding of the intricacies of their
interactions (So et al., 2018; Lin S. C. et al., 2022; Kasikova et al.,
2024). The TME of ovarian cancer is recognized for its significant
immunosuppressive properties, facilitating evasion of immune
surveillance and unrestricted tumor proliferation (Cai and Jin,
2017). Consequently, it is essential to deepen our comprehension
of the underlying mechanisms to formulate enhanced tactics and
augment the clinical applicability of immunotherapy.

Spatial Transcriptomics (ST) is a technology that examines
and delineates the expression profiles of specific cell types in a
spatial context to elucidate expression variations among organs,
tissues, and pathological conditions, and it can resolve transcript
profiles of tissues at distinct spatial locales (Rao et al., 2021). ST
technology, when integrated with traditional single-cell sequencing,
in situ methods, and other histological techniques, facilitates
the examination of cellular heterogeneity and localization within
tissue architecture. This approach offers a more accurate research
trajectory for disease investigation, significantly enhancing the
comprehension of pathogenic mechanisms and informing targeted
therapeutic strategies.

In the current study, we dissected tumor-immune cell
interactions in ovarian cancer to improve immunoprecision therapy
and identify barriers to immunotherapy by using scRNA-seq
and ST. Utilizing CellChat, we further examined intercellular
communication within the tumor microenvironment and found
FN1-CD44, a significant signaling network that may be targeted
for immunoprecision treatments (Wan et al., 2024). We identified
it as a significant mediator of interactions between tumor cells
and stromal components, indicating its significance in establishing
microenvironments favorable to tumor proliferation. This cellular
communication may be the most effective intervention for ovarian
cancer. Simultaneously, we illustrated the distribution of important
subtypes and signaling pathways in tissue sections from ovarian
cancer patients utilizing ST techniques, which have confirmed their
viability as immunotherapeutic targets. Ultimately, in vitro assays
for functional confirmation demonstrated that FN1 knockdown
diminished tumor cell invasiveness and activity. These findings offer
significant insights into themolecularmechanisms of ovarian cancer
and pinpoint potential targets for personalized immunotherapy.

2 Methods

2.1 Origin of data

The GEO database (https://www.ncbi.nlm.nih.gov/geo/)
supplied the ovarian cancer single-cell RNA sequencing dataset,
obtained under accession number GSE181955. The samples
comprised one normal ovary, two primary ovarian cancer
specimens, and two omental tissues. Tissue slices for spatial
transcriptomics were acquired from GSE211956. This study did
not necessitate ethical approval as it utilized publicly available data.

2.2 RNA sequencing in single cells

The Seurat package (version 4.3.0) was used to process gene
expression data in R (version 4.2.0) (Butler et al., 2018). 500
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< nCount <100,000, 300 <nFeature <7,500, mitochondrial gene
expression ≤25% of total genes, and erythrocyte gene expression
≤5% of total genes were the quality control criteria used to screen
the cells. The data were first normalized using “NormalizeData”
(Jiang et al., 2022), followed by “FindVariableFeatures” (Wu et al.,
2021; Zhao et al., 2024a; Lin L. et al., 2024; Ni et al., 2025; Hou et al.,
2025; Li et al., 2025;Wang et al., 2024) to select the first 2,000 variable
genes, then followed by “ScaleData” to standardize the data. Next, we
downscaled the obtained data using principal component analysis
(PCA) and used the Harmony R package (version 0.1.1) to handle
batch effects.Then, we used the “FindClusters” and “FindNeighbors”
tools (Ge et al., 2024; Jin et al., 2024; Nie et al., 2024; Zhang Y. et al.,
2024) to cluster the first 30 principal components (PCs) into cells.
Lastly, based on the important PCs, gene expression was visualized
using uniform manifold approximation and projection (UMAP)
(Ge et al., 2024; Ding et al., 2023).

2.3 Cell type identification

To identify marker genes for each cluster, Seurat’s
FindAllMarkers tool was used to conduct a differential gene
expression analysis across cell clusters (Zhang et al., 2019;
Huang et al., 2024; Ding et al., 2023). After that, we used the singleR
package to identify and label various cell clusters according to the
patterns of marker gene composition. These were then manually
confirmed and improved using the CellMarker database.

2.4 Preference analysis of cells

Odds ratios were computed using the methods outlined in
the study to evaluate the preference of tumor cell subtypes
for cancer (Zheng et al., 2021).

2.5 Cell stemness analysis

The authors used AUCell (Aibar et al., 2017), a technique
for locating active genes in scRNA-seq data, to evaluate the
stemness of TC subtypes. Furthermore, cell stemness was assessed
using the CytoTRACE R package (version 0.3.3), which allowed
for speculative inference about the chronological order of cell
differentiation (Lin et al., 2024b; Sun et al., 2024; Li et al., 2024).

2.6 Trajectory analysis of TCs subtypes

The Monocle 2 algorithm (Qiu et al., 2017; Zhao et al.,
2023; Feng et al., 2025), which condensed high-dimensional gene
expression data into a lower-dimensional space for display, was
used to predict pseudotime trajectories of TCs subtypes. Trajectories
were created from the cells, and each branch point was recognized.
The Slingshot R package (version 2.6.0) was used to investigate
lineage and pseudotime links in more detail (Zhou et al., 2024;
Zhao et al., 2024b; Shao et al., 2024). This technique fitted branching
trajectories with synchronized master curves and created lineage
structures using clustering-based minimal spanning trees.

2.7 Analysis of cellular subtype enrichment

Using the ClusterProfiler R package (version 4.6.0), we enriched
differentially expressed genes (DEGs) using Gene Ontology (GO)
(Zhao et al., 2022a; Lin et al., 2022b; Zhao Z. J. et al., 2021), Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Wang et al., 2020;
Zhao Z. et al., 2021), and Gene Set Enrichment Analysis (GSEA)
(Zhang et al., 2023b; Chen Y. et al., 2022a; Sun et al., 2022a). We set
significance of all terms at an adjusted p-value whose threshold was
less than 0.05 and analyzed the data (Alexa et al., 2006). The filtering
criteria for fold change were based on a log2 fold change threshold
of 1, which means that only genes with a fold change greater than
or equal to 1 (or less than or equal to −1) were considered as
differentially expressed.

2.8 Gene regulatory network analysis

SCENIC identified active transcriptional regulators from single-
cell data. The pySCENIC R software package (version 0.10.0) and
Python (version 3.7) for single-cell regulatory network inference
and clustering analysis were utilized to identify transcription factors
(TFs) with notable expression differences in various TCs subtypes.
To start, we used GRNBoost to find putative target genes linked
to every TF. In order to find potential sites for direct binding,
more DNA-motif analysis was carried out. AUCell has been used
to evaluate the activity of the regulators in individual cells, and the
top five TFs have been chosen based on the results. The website
https://reorigins.aertslab.org/cistarget/ is where the human gene-
motif rankings were first created. The Connection Specificity Index
(CSI) methodology has been used to define regulatory modules in
order to find certain association partners (Suo et al., 2018). Lastly, we
classified different regulator modules using hierarchical clustering
based on Euclidean distance. Studying the relationships between
various regulators is made easier by building the regulator linkage
network with a threshold value of 0.65.

2.9 Molecular signaling communication
analysis

CellChat inferred ligand-receptor-mediated intercellular
communication. Depending on the ligand-receptor level,
regulatory frameworks were constructed and interactions were
analyzed using the CellChat R software program (version 1.6.1)
(Jin et al., 2021; Lin et al., 2024c; Liu et al., 2024). Using the
“netVisualDiffInteraction” and “IdentifyCommunicationPatterns”
features, we estimated the number of communication patterns
and visualized variations in intercellular communication strength,
setting a significant level where the p-value was 0.05.

2.10 Spatial transcriptomics deconvolution
and analysis of cellular interactions

We utilized the integrated scRNA-seq dataset as a reference
to execute cell type decomposition within the histological
structures of the ST slide, employing the robust cell type
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decomposition (RCTD) approach with doublet_mode set to “full”
(Cable et al., 2022).

Cell-cell interactions were assessed using stLearn, followed
by a modified pseudo-time trajectory analysis in spatial contexts
via stLearn (Pham et al., 2023), which utilized PAGA trajectory
analysis based on tissue-wide SME normalized gene expression
data to reveal relationships among subtypes. A pseudotime
spatial trajectory algorithm was utilized to describe the malignant
growth across the sections, identifying spatial and transcriptional
connections among the subtypes.

2.11 Building prognostic models

We investigated the impact of ovarian cancer-associated TCs
on patient survival prediction using key marker genes unique to
crucial TCs subtypes. To find the most significant predictive genes,
LASSO regression (Zheng R. et al., 2022; Zheng R. Z. et al., 2022;
Li X. Y. et al., 2022) was performed after univariate Cox analysis.
A risk score model, which is defined as Risk score = ∑ni Xi×Yi,
was then established by doing multivariate Cox regression analysis
to determine risk coefficients for each gene (Chen B. et al., 2022;
Zou et al., 2022; Zhao J. et al., 2022). Using the “surv_cutpoint”
tool to find an ideal threshold, patients were divided into low-risk
and high-risk categories. The “Survival” R package (version 3.3.1)
was used to analyze the survival of these cohorts (Lin et al., 2022c;
Lin et al., 2022d; Lin et al., 2023), and the “ggsurvplot” function
was used to show the survival curves. ROC curves were produced
using the “timeROC” package (version 0.4.0) in order to evaluate
the model’s prediction accuracy (Wang J. et al., 2022). AUC was
then defined as the area under the ROC curve and responds to
the accuracy of this predictive model (Zhao et al., 2022c). In order
to purify transcriptomes from bulk data without distinguishing
individual cells, CIBERSORT was also used to estimate the number
of cell types in bulk RNA-seq data (Newman et al., 2019).
Transcripts per million (TPM) values were used to pre-normalize
the TCGA bulk RNA-seq data. Using 1,000 permutations without
batch correction, a signature matrix was constructed using TPM-
normalized datasets for particular cell types. To enable CIBERSORT
to estimate the cell type fractions in both cohorts, ovarian cancer
patients from the TCGA database were randomly assigned to
training and testing cohorts in a 1:1 ratio according to survival status.

2.12 Analysis of immune infiltration

TheCIBERSORTRprogram (version 0.1.0) was used to quantify
immune cell infiltration and expression differences between various
risk score groups. Correlations between immune cells and risk
scores, modeled genes, and OS were then examined. Tumor purity,
immunological score, EATIMATE score, and stromal score levels
across different risk groups were assessed using the Xcell algorithm
and the ESTIMATE R package (version 1.0.13).

2.13 Culture of cell lines

We used the American Type Culture Collection’s Caov-
3 and SK-OV-3 cell lines, which we cultivated at 37°C,

5% CO2, and 95% humidity. The SK-OV-3 cell line was
kept in MD10 medium with the same serum and antibiotic
concentrations, whereas the Caov-3 cell line was cultivated in
MD02 medium with 10% fetal bovine serum and 1% penicillin-
streptomycin.

2.14 Transfection of cells

For every transfection, we utilized Lipofectamine 3000
RNAiMAX (Invitrogen, United States). Six-well plates were seeded
with cells at 50% confluence, and the cells were transfected
with the knockdown models (Si-FN1-1 and Si-FN1-2) and
negative control (si-NC), respectively. GenePharma’s (Suzhou,
China) short interfering RNA (siRNA) constructs were used to
knock down FN1.

2.15 Test of colony formation

The cells were cultivated for 10 days after being seeded
into six-well plates. The cells were then fixed for 15 minutes
using 4% paraformaldehyde. The cells were then stained
for 15 min using 0.5% crystal violet. Lastly, we used ImageJ
software (National Institutes of Health, Bethesda, Maryland,
United States) to take pictures of the colonies and determine
their number.

2.16 Test of cell activity test

Transfected Caov-3 and SK-OV-3 cell lines were seeded at 5 ×
103 per well in 96-well plates, and their cell activity was assessed
using the CCK-8 test. The cells were then cultivated for the entire
day. We next filled each well with 10 μL of CCK-8 reagent (Vazyme,
A311-01) and incubated them for 2 hours at 37°C in the dark. Lastly,
on days 1, 2, 3, and 4 after transfection, we measured absorbance at
450 nm using amicroplate reader (Thermo, A33978) and plotted the
average OD values.

2.17 Test of transwell

Prior to the experiment, we first starved the cells for the
entire day in serum-free media. The cell suspension was then
added to the superior chamber of Costar plates that had been
pre-treated with Matrigel (BD Biosciences, United States), while
serum-enriched media was present in the inferior chamber.
Following 2 days of incubation, we treated the cells with 4%
paraformaldehyde and evaluated their capacity for invasion using
crystal violet staining.

2.18 Test of wound-healing

Stable transfected cells were put into 6-well plates, and their
growth was monitored until confluence. We made a scratch in
each well using a sterile 200-μL pipette tip, cleaned the wells
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FIGURE 1
Summary chart. The concept and methodology of our entire paper were illustrated in the graphic. Prior to clustering and evaluating the TCs, we first
acquired the raw data of ovarian cancer patients from GEO. Next, we clustered the main cells within the data. Second, we performed a number of
analyses for the TCs, such as communication, transcription factor, enrichment, and trajectory analyses. We then identified the relevant subtype and
developed a predictive model using the subtype. Lastly, using the signaling molecules of interest identified by the communication analysis, we
conducted in vitro studies.

with PBS to get rid of any debris, and then incubated them
in a medium free of serum. We took pictures of the scratch
both then and 48 h later, and we measured its width using
ImageJ software.

2.19 Proliferation test of
5-Ethynyl-2′-deoxyuridine (EdU)

In 6-well plates, 5 × 103 transfected Caov-3 and SK-OV-3 cells
were added to each well, and the cells were cultivated for the entire
night. In the meanwhile, we combined 10 mM EdU with serum-
free medium to create a 2× EdU working solution. Following a 2-h
incubation period at 37°C, we rinsed the cells with PBS, fixed them
for 30 min with 4% paraformaldehyde, and permeabilized them for
15 min with 2 mg/mL glycine and 0.5% Triton X-100. After that, we
dyed them for half an hour at room temperature using 1X Apollo
and 1X Hoechst 33,342. Finally, cell proliferation was evaluated
using fluorescence microscopy.

3 Results

3.1 ScRNA-seq single-cell mapping found
six primary cell types in ovarian cancer

Initially, eight tissue samples—normal ovarian tissue, omental
tissue, and ovarian cancer tissue—were obtained from GEO to
ascertain the cell types implicated in the progression of ovarian
cancer. We would conduct a series of multi-omics analyses and
experimental validation of the obtained sample data (Figure 1).
Genes failing to meet the minimal expression threshold were
excluded following an assessment of the quality and completeness
of the raw data. Following the removal of batch effects and
quality control, 35,726 cells were retained and categorized into 28
clusters (Figure 2A). Through the analysis of cellular genetic profiles
and prevalent markers, these 28 cell clusters were conclusively
identified as six principal cell types: fibroblasts (DCN), myeloid cells
(LYZ), proliferating cells (MKI67), epithelial cells (EPCs, WFDC2),
T/NK cells (CCL5), B and plasma cells (IGKC) (Figure 2B). The
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FIGURE 2
Single-cell mapping of ovarian cancer. (A–D) The UMAP plot (A) displayed the distribution of 28 cell clusters in both normal participants and ovarian
cancer patients; six primary cell types were subsequently clustered (B). Additionally, the UMAP figure displayed the distribution of tissue origins (C) and
cell phases (D). (E) The proportions of various cell types from different tissue origins (above) and cell phases (below) were displayed by bar graphs. (F)
Using an enrichment bubble plot, the top five marker genes for ovarian cancer were shown to have differential expression across the six main cell types
and three tissue sources. Bubble colors were associated with zscore, or normalized data. (G) UMAP plots and violin plots, respectively, were used to
show the expression levels of nCount-RNA, nFeature-RNA, G2/M.Score, and S. Score in each cell type and tissue origin. And ns represented difference
not significant, ∗∗∗represented p < 0.001, ∗∗∗∗represented p < 0.0001.
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fraction of EPCs was increasing, but the proportion of T/NK
cells was decreasing in ovarian cancer tissues, omental tissues,
and normal ovarian tissues. Specifically, myeloid cells exhibited a
decline from omental tissue to ovarian cancer tissue and an increase
correspondingly fromnormal ovarian tissue to omental tissue. EPCs
predominantly resided in the G1 and S phases, whereas T/NK cells
were more prevalent in the G1, G2/M, and S phases, with G2/M
being themost frequent (Figures 2C–E).Themain enriched genes in
the bubble diagram for each cell type corresponded with the known
marker genes (Figure 2F). Finally, the quantity of RNAs expressed in
EPCs was illustrated by violin plots and UMAP plots, which further
indicated that the characteristic RNAs were predominant across
all cell types (Figure 2G). Ovarian cancer tissues demonstrated
significantly elevated expression levels of both items in comparison
to other tissues. We additionally associated EPCs with ovarian
cancer, as prior studies indicated that ovarian cancer originates
from three distinct tissue types: around 3 to 5 percent from germ
cells, 5 to 8 percent from stromal cells, and 85 to 95 percent from
epithelial cells.

3.2 Utilizing single cells for the purpose of
analyzing tumor cells in ovarian cancer

We then utilized inferCNV to distinguish malignant TCs from
EPCs due to the robust correlation between EPCs and ovarian
cancer TCs (Supplementary Figure S1). We chose T cells and NK
cells as reference cell types for the inferred CNV analysis based
on their well-established role as non-malignant, genetically stable
immune populations within the tumor microenvironment. These
cells are not expected to harbor tumor-specific genomic alterations,
making them appropriate baselines for distinguishing CNV signals
that are characteristic of malignant cells. To distinguish various TCs
subtypes, we down-clustered the 10,953 TCs identified according to
the flag genes produced by the cells.The subtypes were subsequently
assigned their corresponding genes: C0 TNFRSF18+ TCs, C1
DAPL1+ TCs, C2 SLC40A1+ TCs, C3 FN1+ TCs, C4 MEIS2+ TCs,
and C5 CFAP126+ TCs (Figures 3A–C). C0 TNFRSF18+ TCs were
found in all three tissues, C1 DAPL1+ TCs and C4 MEIS2+ TCs
were more common in both normal and tumor tissues overall,
and C2 SLC40A1+ TCs were most common in one of the tumor
samples.The analysis found that the omental tissues were dominated
by C3 FN1+ TCs (Figures 3D,E). The propensity of ovarian
cancer cells to disseminate to the omentum and the incidence of
intraperitoneal metastases are well recognized (Arie et al., 2013;
Miyamoto et al., 2023). Furthermore, the omentum was among
the initial sites where malignancies establish or disseminate into
the peritoneal cavity, serving as a vital pre-metastatic environment
for the progression of invasive disease (Etzerodt et al., 2020;
Bella et al., 2022). A comparable study indicated that FN1, the
gene associated with C3 FN1+ TCs, served as a marker correlated
with unfavorable outcomes, while another investigation revealed
its involvement in regulating the advancement of ovarian cancer
(Wei et al., 2021; Meagher et al., 2022). The precise mechanism
by which it led to ovarian cancer remained unidentified. The
amplification of JUNB was associated with a worse outcome
in ovarian cancer patients, while the gene MSLN, prevalent in
C3 FN1+ TCs, was previously thought to have a role in the

peritoneal dissemination of ovarian TCs (Hilliard, 2018; Perez-
Benavente et al., 2022) (Figure 3F). These investigations further
corroborated our previous hypotheses. Consequently, ovarian tumor
cells were likely to establish the initial cluster of tumors in the
omentum, which would then generate malignant cancer cells
and ultimately result in ovarian cancer. Furthermore, we might
deduce that C5 CFAP126+ TCs predominantly favored the G2/M
phase, while C2 SLC40A1+ TCs exhibited a high preference
for the S phase. We subsequently calculated the variances in
nCount RNA, nFeature RNA, and CNV score expression levels
among subtypes and tissue sources (Figure 3G). It would be
beneficial for us to examine the pathways of the TCs from
omental tissues to ovarian cancer tissues, as the three results
exhibited notable discrepancies between ovarian cancer andomental
tissues, highlighting significant heterogeneity between these two
tissue types.

3.3 Cellular stemness of CytoTRACE AUC
score showed C3 FN1+ TCs
hyperdifferentiation with high cellular
stemness

Subsequently, to assess the malignancy level of the TCs in
each subtype, we utilized CytoTRACE to gain an early insight
into the differentiation extent of each subtype (Figures 4A–C).
C2 SLC40A1+ TCs and C5 CFAP126+ TCs, characterized by
a significant prevalence in ovarian cancer tissues, demonstrated
a low degree of differentiation, suggesting a higher malignancy
in these two subtypes of TCs. This was consistent with the
tissue percentage and tissue preference of each subtype found
in Figures 3D,E. We focused on C3 FN1+ TCs, which exhibited
a relatively lower degree of malignancy, suggesting that they
might still be in the growth and development phase rather than
fully mature. This corroborated our previous hypothesis that
malignant TCs linked to ovarian cancer may develop in the
omentum. Bubble plots, which were displayed as violin plots
and UMAP plots, showed that the stemness genes enriched to
C3 FN1+ TCs were primarily BMI1, CTNNB1, KDM5B, and
MYC (Figures 4D,E). Significant differences in expression levels
were observed for these four genes between ovarian cancer and
omental tissues. Expression levels were markedly elevated in
ovarian cancer tissues compared to omental tissues, suggesting a
potential role in facilitating the malignant proliferation of TCs
within omental tissues. Previous studies have demonstrated that
BMI1 promotes TCs growth and metastasis in ovarian cancer
by altering TCs angiogenesis and extracellular matrix structure,
primarily through the regulation of adhesion plaques and the
PI3K/AKT signaling pathway (Zhao et al., 2018). The Wnt/β-
catenin pathway, established by CTNNB1 encoding β-catenin, was a
crucial signaling pathway implicated in the epithelial-mesenchymal
transition (EMT) and has been shown to play a significant role in the
carcinogenesis of ovarian cancer. (Arend et al., 2013). Ultimately, we
evaluated the stemness of each subtype’s cells using AUC scoring,
revealing that C3 FN1+ TCs obtained a high score, indicating
their potential to promote the proliferation of malignant TCs
(Figure 4F).
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FIGURE 3
Single cell analysis in tumor cells (TCs). (A) six subtypes of TCs from ovarian cancer patients were displayed by UMAP plot. (B) The first five marker
genes for different TCs subtypes were shown by the heatmap, with purple representing high expression. (C) The expression and distribution of the six
TCs subtypes named genes were demonstrated by UMAP plot. (D) The proportion of TCs subtypes from each sample origin was displayed by bar
graphs. (E) Ro/e score was used to estimate tissue origins (left) and cell phases (right) preference of different TCs subtypes. (F) Differential expression of
the first five marker genes in the 6 TCs subtypes and in the three tissue origins were shown by bubble plot. Bubble colors are linked to normalised data
(zscore). (G) Bar graphs displayed the expression levels of nCount-RNA, nFeature-RNA and CNVscore in each TCs subtype as well as tissue origin. And
ns represents difference not significant, ∗represented p < 0.05, ∗∗∗∗represented p < 0.0001.
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FIGURE 4
Cell stemness analysis of TCs subtypes. (A) The distribution of CytoTRACE values for TCs subtypes was shown by the left panel. Colors represented
upper or lower cell stemness. And the spatial distribution of TCs subtypes was shown by the right panel. (B) The TCs subtypes were arranged based on
the CytoTRACE prediction order and presented in boxline plots. (C) The genes associated with CytoTRACE were showed in bar graph, where greater
than 0 is a positive association shown in red and less than 0 is a negative association shown in blue. (D) Bubble plot showed the expression levels of
stemness genes in each TCs subtype and tissue origin. (E) Four stemness genes (BMI1, CTNNB1, KDM5B and MYC) expressed in each TCs subtype and
tissue origin were presented in UMAP and violin plots. And ns represents difference not significant, ∗represented p < 0.05, ∗∗∗∗represented p < 0.0001.
(F) UMAP plot and bar graphs showed the AUC values and their distribution for cell stemness for each TCs subtype and tissue origin. And ns represents
difference not significant, ∗represented p < 0.05, ∗∗∗∗represented p < 0.0001.
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FIGURE 5
Prediction of developmental differentiation trajectories in TCs. (A–C) Monocle 2-predicted trajectories of TCs differentiation were displayed by
pseudotime trajectory plots, which showed the distribution of Monocle-predicted pseudotemporal order (A), subtypes (B) and tissue origins (C),
respectively. (D) Considering the proportion of TCs subtypes at each of the seven time points, the order was ranked according to the pseudotemporal
state. (E and F) Pseudotime order expression of each TCs subtype (E) and tissue origin (F) was shown by violin plots, with lower expression levels
representing a more advanced order of expression. And ns represents difference not significant, ∗∗∗∗represented p < 0.0001. (G and H) Differentiation
trajectories’ distribution of six TCs subtypes (G) and tissue origins (H) simulated with the pseudotemporal order in TCs. (I) Heatmap showed the
correlation features of the pseudotime trajectory system of TCs. Pseudotime values are linked to differentiation, with 0 indicating the beginning point
and 40 indicating the ending point. (J) The trajectories of the named genes for the six TCs subtypes, showing changes along the lineage, were
demonstrated by the dynamic trends plots obtained after SlingShot visualization.

3.4 C3 FN1+ TCs were found at an early
stage of tumor formation

We employed the Monocle and SlingShot methodologies for
trajectory inference to examine the sequence of developmental

trajectories of TCs subtypes. We initially constructed a graph
depicting the differentiation trajectory of pseudotime utilizing
Monocle (Figure 5A). C0 TNFRSF18+ TCs, C4 MEIS2+ TCs, and
C5 CFAP126+ TCs were distributed at all developmental stages,
whereas C1 DAPL1+ TCs was primarily disseminated in the latter
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stages of development, according to a comparison of the subtypes’
differentiation trajectories using Figure 5B. On the other hand, C3
FN1+TCs essentially did not go beyond node 1, while C2 SLC40A1+
TCs and C3 FN1+ TCs were primarily seen in the early phases
of tumor development. Figure 5C illustrated the differentiation
trajectories fromvarious tissue origins.Thedifferentiation trajectory
of TCs was divided into seven phases, with findings indicating
that the highest proportion of C3 FN1+ TCs, the earliest subtype
in development, was observed in stage 1 (Figure 5D). The violin
plots illustrating the developmental sequence indicated that omental
tissues developed prior to ovarian cancer tissues, exhibiting a
statistically significant difference, with C3 FN1+ TCs identified as
the earliest subtype of TCs (Figures 5E,F).

To further elucidate trajectories among all TC subtypes and
tissues, we subsequently employed SlingShot analysis. As the diverse
tissues advanced in the sequence of omental-ovarian cancer, with
minimal involvement from normal tissues in the developmental
process, the distinct subtypes evolved and differentiated in the
subsequent order: C3 FN1+ TCs, C2 SLC40A1+ TCs, C1 DAPL1+
TCs, C0 TNFRSF18+ TCs, C4 MEIS2+ TCs, and C5 CFAP126+
TCs (Figures 5G,H). The results of SlingShot’s analysis aligned with
Monocle’s findings, indicating that omental tissue and C3 FN1+
TCs subtypes were likely origins of ovarian cancer formation.
Examining the role of C3 FN1+ TCs in the malignant proliferation
of TCs within omental tissue, leading to carcinogenesis, might
provide new insights for targeted therapies in ovarian cancer. The
functional processes associated with the lineage trajectory of TCs
subtypes were subsequently determined using GO-BP enrichment
analyses (Figure 5I). Lastly, the dynamic trend diagrams were
used to illustrate the distribution and variations in expression
of specific genes across TCs subtypes in pseudotime (Figure 5J).
The initial high expression of FN1, the gene that wass named for
C3 FN1+ TCs, and the subsequent low level of fluctuation state
following an abrupt decline piqued our interest. This illustrated
the importance of C3 FN1+ TCs being highly active during the
initial stages.

3.5 The C3 FN1+ TCs subtype promoted
the development of malignant TCs through
various mechanisms

We performed enrichment pathway analyses to examine the
role of C3 FN1+ TCs in tumor regeneration and to understand
the specific functional activities of these cells during early
developmental stages. It was intriguing to observe that the pathway
identified by GO-BP enrichment analysis of C3 FN1+ TCs was
cytoplasmic translation, a mechanism that was closely associated
with TCs proliferation (Figures 6A,D). Furthermore, prior research
has shown that protein translation promoted the growth of
ovarian cancer tumors, a mechanism that was similar to the
one we have identified (Guo et al., 2019). Moreover, the KEGG
enrichment analysis was used to identify the critical pathways
for C3 FN1+ TCs, including ribosome, allograft rejection, and
type I diabetes mellitus. It was intriguing to observe that we
collected research that established type I diabetes mellitus as a
risk factor for cancer and that individuals with this condition
were more likely to develop ovarian cancer (Swerdlow et al.,

2023; Suh and Kim, 2019). Utilizing the word cloud, we identified
morphogenesis as the most relevant pathway associated with C3
FN1+ TCs, indicating its involvement in the early development of
ovarian cancer (Figure 6B). The hypothesis was validated through
a review of relevant literature, which revealed that multiple
genes associated with tissue and cellular morphogenesis play
a role in the development of ovarian cancer (Shi-Peng et al.,
2017; Chen et al., 2021). GSEA has identified enriched activities
including the development of epithelium, cell differentiation,
positive regulation of developmental processes, cell adhesion,
morphogenesis of animal organs, and growth factor response
(Figure 6C).The cancer cells from the omentum spread and adhered
to the ovary, leading to the development of ovarian carcinoma and
morphological changes in the ovary. Additionally, the epithelial
cells in C3 FN1+ TCs experienced mutations during development
to form TCs, which subsequently responded to growth factors,
proliferated, and differentiated, ultimately resulting in the formation
of malignant proliferating cells. Finally, we identified upregulated
and downregulated pathways in C3 FN1+ TCs through GSEA
once again (Figure 6E). The pathway was enhanced in response
to antigen processing, peptide antigen presentation, and epidermal
growth factor. Epidermal growth factor has been demonstrated
to enhance ovarian epithelial cell proliferation, facilitate EMT,
elevate cancer cell invasiveness and drug resistance, and negatively
impact patient differentiation and prognosis (Rodriguez et al., 1991;
Grassi et al., 2017; Oh et al., 2014).

3.6 The role of C3 FN1+ TCs subtypes in
the development of ovarian cancer
through the M2 regulatory factor module

We employed pyscenic to examine the gene regulatory
architecture of C3 FN1+ TCs to understand the influence of TFs
on cellular activities. A preliminary categorization of all TCs
based on regulatory activity was conducted initially (Figure 7A).
The UMAP plot derived from the activities of the TFs exhibited
reduced discretization, as indicated by the clustering results, thereby
excluding confounding variables. The C3 FN1+ TCs exhibited
limited discretization and were predominantly located on the right
side of the figure. Based on the CSI, we divided the TF subtypes
into two regulatory factor modules, M1 and M2, in order to
see the correlation between them (Figure 7B). Each of these two
regulatory factor modules gathered TFs that might potentially
work together to regulate genes. In the M2 regulatory module,
we could observe that C3 FN1+ TCs had the greatest regulon
activity score (Figure 7C). As a result, the primary regulators
of the transcription carried out by C3 FN1+ TCs were also the
regulatory factors grouped in M2. ATF3, CEBPB, NR2F1, JUND,
and YY1 were the five main regulators in C3 FN1+ TCs, as shown
in Figures 7D–F. We demonstrated the distribution of these five
regulators on UMAP and the expression of each in the various
TCs subtypes (Figures 7G–L). Almost all five regulators exhibited
low expression in other TCs subtypes while demonstrating high
expression in C3 FN1+ TCs, suggesting a specialized expression
pattern. Research indicated that cells from recurrent solid tumors
demonstrated increased expression of ATF3, implying its role in
promoting ovarian cancer aggressiveness, treatment resistance,
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FIGURE 6
Enrichment analysis of TCs for genes and pathways. (A) The GO-BP and KEGG enrichment term scores were displayed by heatmap. (B) The activity of
different pathways in TCs subtypes was demonstrated by the word cloud diagrams. (C) GSEA analysis map depicting various pathways in each TCs
subtype was generated. (D) The bar graphs revealed the GO-BP results for each TCs subtype separately. (E) GSEA results among C3 FN1+ TCs.
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FIGURE 7
Analysis of upstream transcript levels for TCs. (A) UMAP plots of all TCs were visualised according to regulator activity. (B) Based on regulon connection
specificity index matrix, regulon modules were identified. (C) Regulon activity scores of different TCs subtypes in regulatory modules M1 and M2. (D)
Expression ranking of regulatory modules M1 and M2 related genes in all TCs. (E) The heatmap illustrated the expression of the regulators in each TCs
subtype, with red indicating higher expression and blue indicating lower expression. (F and G) Regulated genes highly expressed in the C3 FN1+ TCs
subtype and their expression distribution in UMAP. (H–L) The expression of the five highly expressed genes (ATF3, CEBPB, NR2F1, JUND and YY1) in the
C3 FN1+ TCs subtype and their distribution were shown separately.
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and recurrence (Bopple et al., 2024). Furthermore, elevated JUNB
levels have been shown to enhance tumor growth and metastasis
in mice by altering the TGF-β2-stimulated response from an
antiproliferative to a pro-invasive one. Additionally, tumor genomic
data suggest that JUNB amplification correlates with poor prognosis
in ovarian cancer patients (Perez-Benavente et al., 2022). The most
notable finding was that NR2F1, absent in nearly all other subtypes,
regulated the TGF-β1-driven EMT, influencing immunological
response and platinum sensitivity (Liang et al., 2022). In a nutshell,
TF analyses suggested that C3 FN1+ TCs played a promoting
role in ovarian carcinogenesis and were associated with poor
prognosis.

3.7 An examination of the global
communication of cells diagnosed with
ovarian cancer

For the purpose of defining and comprehending complex
biological interactions, we conducted research on communication
webs between ligands and receptors as well as intercellular
linkages. Using CellChat analysis, we initially reported the
intercellular communication webs that were present in ovarian
cancer, which included a large number of cell types and a
variety of TCs subtypes (Figure 8A). Concurrently, utilizing the
C3 FN1+ TCs subtype of interest as the originating cell, we
established a communication network for it (Figure 8B). We
observed a notable cellular association between proliferating cells
and myeloid cells, as well as C3 FN1+ TCs cells. To understand
the communication patterns in ovarian cancer, we analyzed the
relationship between the populations of cells that released and
received signaling molecules and the fundamental communication
dynamics among the cells (Figure 8C). This discovery enabled
us to identify three distinct patterns of incoming and outgoing
signaling, together with the signaling molecules associated with
each pattern. Subsequently, we employed heatmaps to illustrate
the expression of numerous signaling molecules in both incoming
and outgoing signaling pathways across different cell types and
TCs subtype, respectively (Figure 8D). The efferent signaling
pathway in C3 FN1+ TCs exhibited substantial expression of MIF,
APP, FN1, AGRN, WNT, and NECTIN. Finally, we measured
the ligand-receptor network to ascertain the exact outgoing
and incoming cellular communication patterns relevant to the
six TCs subtypes (Figure 8E). C3 FN1+ TCs predominantly
accepted THBS, GRN, and EGF signaling molecules in incoming
communication, while they primarily emitted COLLAGEN, FN1,
and SEMA3 signaling molecules in outgoing communication.
The focus of our investigation was the FN1 dominant signaling
pathway. Additional research was required to comprehensively
elucidate the impact of FN1 signaling molecules on ovarian cancer
development.

3.8 Further examination of the pro-cancer
role of the FN1 signaling pathway

A circular diagram illustrated the intercellular communication
framework, with FN1 serving as the signaling molecule. A

hierarchical diagram was utilized to refine the specific intercellular
connections between cells utilizing FN1 as the signaling molecule
(Figures 9A,B). The findings indicated that C3 FN1+ TCs,
fibroblasts, T/NK cells and myeloid cells exhibited significant
signaling cross-talk, with FN1 serving as the secreted ligand.
Subsequently, we elucidated the intercellular communication
network of the FN1-CD44 signaling pathway and further identified
the receptor CD44 (Figures 9C,D). Myeloid cells and T/NK cells
were two examples of ligand-receiving target cells associated
with both targeted therapy and ovarian cancer. Myeloid cells,
encompassing monocytes, granulocytes, dendritic cells, and
macrophages, constituted a significant proportion of the TME in
cancer and were crucial in regulating tumor spread (van Vlerken-
Ysla et al., 2023). The molecular pathways facilitating interaction
between macrophages and disseminated cancer cells might serve
as innovative targets for the prevention of metastasis and disease
recurrence. It was exhilarating to observe that tissue-resident
macrophages in the omentum have been empirically demonstrated
to facilitate the metastatic dissemination of ovarian cancer in prior
studies (Etzerodt et al., 2020; An and Yang, 2021; Jazwinska et al.,
2023). Furthermore, immunotherapy aimed at T cells in ovarian
cancer suggested that the advancement of ovarian cancer was
affected by the interactions between T cells and cancer cells (Blanc-
Durand et al., 2023; Nasiri et al., 2023). Using the centrality measure
method, which assessed the relative importance of each cell type in
this process, the cell types mediating and influencing FN1 signal-
mediated intercellular communication were identified. Myeloid
cells acted as receivers, mediators, and influencers within the
FN1 signaling pathway, whereas C3 FN1+ TCs were significantly
expressed as senders, as illustrated in Figure 9E. The heatmap again
demonstrated the significant signaling interactions generated by
fibroblasts and C3 FN1+ TCs functioning as secretory cells on
myeloid cells (Figure 9F). The findings demonstrated that C3 FN1+
TCs andfibroblasts primarily utilizedFN1 as a ligand to interact with
myeloid cells, with CD44 serving as the receptor. Bubble and violin
plots depicted cell-cell interactions among several ligands, with
FN1 serving as the ligand (Figures 9G,H). These findings increased
our interest in the study of FN1 as well as C3 TCs subtype even
more, so we next analyzed them further in the context of the clinic
through the ST.

3.9 Spatial transcription analysis elucidated
the spatial distribution of C3 FN1+ TCs
subtypes

We integrated scRNA-seq and spatial transcriptomics to
elucidate the gene regulatory programs and cell-cell interactions
that contribute to ovarian cancer development. Tissue sections were
collected fromanovarian cancer patient, and STdatawere processed
(Figure 10A). We executed deconvolution with the RCTD approach
to transfer cellular type labels from scRNA-seq data to ST data.
Figure 10B presented the two examined outcomes. The C3 FN1+
TCs subtypes and EPCs were situated in the upper right quadrant of
the slice, corresponding to the area identified as the tumor location
in the tissue (Denisenko et al., 2024). Simultaneously, the locations
of the C3 FN1+ TCs subtype and the C5 CFAP126+ TCs subtype
corresponded to areas containing tumor tissue. Consequently, the
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FIGURE 8
Analysis of communication interactions of various cells in ovarian cancer. (A) The count (left) and weights (right) of cell interactions in ovarian cancer
were demonstrated by circle plots. (B) The C3 FN1+ TCs subtype was taken as the sender and its interactions with the remaining cells were analysed.
(C) Heatmap demonstrated pattern recognition of all-cell interactions. The outgoing (left) and incoming (right) plots showed three pattern recognition
cases for incoming signals and three pattern recognition cases for outgoing signals. (D) Ligands and receptors linked to the outgoing and incoming
signals of cell interactions was displayed by heatmap. (E) The secretory cell communication patterns among various cells of ovarian cancer were
demonstrated by outgoing and incoming contribution bubble plots.

data derived from ST indicated that the C3 FN1+ TCs subtype
was indeed correlated with tumor formation in spatial locations.
Subsequently, we illustrated the enrichment of spatial distributions

for the C3 FN1+ TCs subtype, FN1, and myeloid cells. The findings
indicated that the spatial locations of the C3 FN1+ TCs subtype
and myeloid cells corresponded with the results derived from the
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FIGURE 9
Visualization of the FN1 signaling pathway. (A–D) Circle and hierarchical diagrams depicted FN1 signaling (A and B) and the intercellular
communication network of the FN1-CD44 signaling pathway (C and D). (E) The centrality score of the FN1 signaling pathway was demonstrated by
heatmap. (F) The cell interactions of the FN1 signaling pathway were demonstrated by heatmap. (G and H) Bubble plots (G) and violin plots (H) revealed
cell interactions in the FN1 signaling pathways.
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FIGURE 10
Analysis of spatial transcriptomics and cellular interactions. (A) Tissue section from a patient with ovarian cancer were shown. (B) Two results obtained
by using RCTD for deconvolution. (C) The enrichment of the C3 and C5 subtypes as well as FN1 on the section was shown. (D) Spots were
dichotomized as expressing ligand (red), expressing receptor (green), or both receptor and ligand (blue), with the criterion of whether the receptor
expression was greater than the minimum expression threshold. (E) The direction indicated by the arrow indicated the FN1-CD44 cell interactions in
section. (F) The statistical values of the FN1-CD44 interactions pairs in each spot were shown. lr_scores indicated the strength of the interactions in all
spots and the p-values were shown. Darker colors indicated stronger communications.
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RCTD, and that FN1 was also present in the vicinity of the C3 FN1+
TCs subtypes (Figure 10C). We utilized stLearn for extrapolation
to further examine the cellular interactions at specific spatial
areas. Our prior research of FN1-CD44 cell contacts in ovarian
cancer demonstrated the expression of the receptor, ligand, and
ligand-receptor in the corresponding sections (Figure 10D). The
ligand FN1 was mostly expressed by the C3 FN1+ TCs subtype
and fibroblasts, with the area of elevated expression aligning with
the spatial distribution of these two cell types. The expression
region of the receptor CD44 was situated between FN1, and
there were areas within the tumor where both ligand-receptors
were expressed. It was initially established that FN1 and CD44
interact through paracrine and proximal secretion mechanisms.
Figure 10E illustrated a substantial quantity of cellular contacted in
the area inhabited by fibroblasts, maybe linked to the preformation
communication of the tumor. By evaluating the intensity of contacts
across all areas in the tissue sections, we concluded that the intensity
of cellular interactions was highest and statistically significant in the
tumor region (Figure 10F). Our examination of the molecular and
cytoarchitectural aspects of ovarian cancer corroborated the finding
that the C3 FN1+ TCs subtype facilitated ovarian cancer via the
FN1-CD44 signaling pathway, and that they were linked through
a paracrine cell-cell communication network inside the ovarian
cancer milieu.

3.10 Create pertinent prognostic models to
confirm clinical viability

The prognosis of patients classified according to strong or
weak FN1 expression was initially validated. The survival curves
(Guan et al., 2023; Sun et al., 2022b) for the two groups exhibited
significant differences, suggesting that FN1 could serve as a valuable
prognostic indicator for ovarian cancer (Figure 11A). Subsequently,
univariate Cox regression analysis identified 17 mRNAs as potential
predictive characteristics derived from the top 100 marker mRNAs
of C3 FN1+ TCs (Figure 11B). Of these, it was discovered that
HMGN3 and CXCR4 were protective factors (HR <1), whereas the
other mRNAs were risk factors (HR >1). LASSO and multivariate
regression analysis were employed to address multicollinearity
among the mRNAs, ultimately identifying 10 genes associated with
prognosis (Figures 11C,D). Analysis of the coefficient values of these
prognostic mRNAs revealed that all were classified as risk mRNAs,
except for HMGN3 and CXCR4 (Figure 11E). The study involved
two groups: high and low FTRS (FN1+ TCs Risk Score) groups,
aimed at investigating the influence of FN1 high-expressing TCs
on ovarian cancer patients, utilizing the 10 prognostic mRNAs
identified from the TCGA cohort (Figures 11F–H). Furthermore,
we confirmed that the model effectively predicted the OS C-
index (Figure 11I). The model’s predictive accuracy was evidenced
by the ROC curve (Figure 11J). The survival outcomes were
notably poorer in the FTRS high-expression group, and there was
significant variation in survival between groups categorized by
FTRS (Figure 11K). We employed the ROC curve to evaluate the
rigor of this prediction, and the findings demonstrated enhanced
accuracy (Figure 11L). Furthermore, we illustrated the upregulation
and downregulation of the initial 30 DEGs via volcano plots
(Figure 11M). Subsequently, we examined the pertinent functional

pathways with KEGG enrichment methodologies. The signaling
pathways regulating stem cell pluripotency and receptor activation
in chemical carcinogenesis were highlighted in KEGG (Figure 11N).
Both pathways were associated with the initiation of ovarian
carcinogenesis, corroborating our previous theories regarding the
function of TCs that express FN1.

3.11 An investigation on the immunological
infiltration that occurred in ovarian cancer

The extent of immune infiltration in each group was assessed
to comprehensively map immune cells in ovarian cancer.
Figure 12A presented a thorough depiction of the distribution of
10 prognostically significant mRNAs and immune infiltration levels
assessed by the three methodologies: ESTIMATE, CIBERSORT,
and Xcell, illustrating the diverse immune infiltration statuses
across different risk groups. The relative abundance of stromal
and immune components within the tumor samples, enabling
us to assess overall immune infiltration and stromal content
differences between risk groups. The allocation of 22 immune
cells across different risk categories was subsequently illustrated
through a box line plot and heatmap utilizing the CIBERSORT tool
(Figures 12B,C). Although M0 macrophages, M2 macrophages,
and resting CD4 memory T cells constituted the predominant
components of the immunological environment in ovarian cancer,
the precise distinctions in distribution between the two groups
could not be discerned. Subsequently, we illustrated the correlation
between risk scores and 22 immune cell types within the tumor
microenvironment of ovarian cancer (Figure 12D).The two primary
risk factors were resting dendritic cells and active mast cells,
whereas the two most effective protective variables were M1
macrophages and B cell memory. Subsequently, we employed a
heatmap (Figure 12E) to analyze the correlations among diverse
immune cells, eight risk genes, two protective genes (HMGN3 and
CXCR4), risk scores, and prognosis. The risk scores corresponded
with the findings of Figure 12D; however, we were focused on the
contrasting results about the connection ofM1 andM2macrophages
with overall survival (OS). Prognosis exhibited a positive correlation
with M1 macrophages, whereas M2 macrophages demonstrated an
inverse effect. M2 macrophages were associated with the risk factor
TIMP3, while M1 macrophages were associated with the protective
component CXCR4. Previous studies have also used TIMP3 to
construct prognostic characteristics and risk stratification, and
patients in the high-risk group had a poorer prognosis (Feng et al.,
2022). Subsequently, to more effectively analyze the disparities in
immune cell expression between the two risk groups, we conducted
additional screening for immune cells that were more representative
of the ovarian cancer tumor microenvironment (Figures 12F,G).
A selection of six representative immune cells was made. It was
noteworthy that immune cells positively correlated with risk scores
were significantly expressed in the high group, while the low
group demonstrated elevated expression of immune cells negatively
correlated. Our primary emphasis was macrophages, revealing that
M1macrophages, favorably correlatedwith prognosis andnegatively
correlated with risk score, had substantially high expression
in the elevated group. This indicated that M1 macrophages
served as a protective immune cell type within the ovarian

Frontiers in Molecular Biosciences 18 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1611964
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Zhang et al. 10.3389/fmolb.2025.1611964

FIGURE 11
Construction of a risk score atlas for survival prognosis and enrichment pathway analysis in ovarian cancer. (A) Overall survival (OS) curves grouped by
FN1 expression levels. (B) Forest plot of one-way cox regression analysis. (C) Values of the super-parameter λ were obtained by cross-validation using
the minimum criterion in the LASSO-Cox model. The best lambda was used to generate a non-zero coefficient for the OS curve for the different scoring
subgroups, where the optimal lambda yielded 10 non-zero coefficients. (D) Forest plot of multifactor Cox regression analysis. (E) The coefficient values
of 10 mRNAs used for model building was showed by bar graph. (F–H) Risk profiles in the TCGA cohort. (I) The C-index of the AUC values for
predicting 1-year, 3-year, and 5-year survival based on risk scores was depicted by the boxline plot. (J) The sensitivity and specificity of the risk scores
for predicting 1-year, 3-year, and 5-year survival were depicted by the ROC curves. (K) OS curves for two scoring groups in a cohort. (L) The sensitivity
and specificity of survival prediction for 1-year, 3-year, and 5-year survival were shown by the ROC curves. (M) Significantly DEGs were shown by the
volcano plot. (N) The enrichment analysis results of differential genes in KEGG pathways for high and low FTRS groups were revealed by bar graphs.
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FIGURE 12
Analysis of immune infiltration in ovarian cancer. (A) The heatmap demonstrated the level of immune infiltration for different risk groups, which were
analyzed using a variety of tools. (B) Immunoinfiltration analyses of different risk groups were performed with the CIBERSORT tool alone and visualized
using heatmap. (C) The box line plot showed the predicted percentage of 22 immune cells in ovarian cancer. (D) The lollipop plot presented the
correlation coefficients between the 22 immune cells and the risk score. (E) Heatmap of the correlation between 10 prognostic genes and 22 immune
cells in ovarian cancer. And ∗represented p < 0.05, ∗∗represented p < 0.01. (F) The heatmap further demonstrated the differences in the distribution of
the selected 12 immune cells across the different risk groupings. (G) Box line plot demonstrated the differences in the distribution of the six immune
cells in ovarian cancer among different risk groups, and all were statistically significant. And ∗represented p < 0.05, ∗∗represented p <
0.01, ∗∗∗represented p < 0.001. (H) Immune score, stromal score, and estimate score were computed for the high- and low-FTRS groups.

(Continued)
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FIGURE 12 (Continued)

And ∗∗represented p < 0.01, ∗∗∗∗represented p < 0.0001. (I) The difference in TIDE scores between the two risk subgroups was demonstrated by
violin plot. And ∗∗∗represented p < 0.001. (J) IPS specifically predicted response to anti-CTLA4 in ovarian cancer patients in different risk groups,
with higher scores resulting in higher response rates. And ∗represented p < 0.05. (K) Violin plots illustrating the responsiveness of different risk
groups to six immune checkpoint treatments, where more expression meant better responsiveness to that immune checkpoint treatment.
And ∗∗∗represented p < 0.001. (L) The sensitivities of the different risk groups to the six drugs were visualized with box line plots, with a lower IC50
indicating a higher sensitivity to the drug. And ∗∗∗represented p < 0.001.

cancer TME. The literature also documented its cancer-inhibiting
properties (Gunassekaran et al., 2021).

We calculated the stromal score, immunological score, and
ESTIMATE score for both the low and high FTRS groups utilizing
ESTIMATE. All values in the low FTRS group were significantly
lower than those in the high FTRS group, indicating a greater degree
of immune cell infiltration in the high FTRS group (Figure 12H).The
group’s response to immunotherapy was then predicted using the
Tumor Immune Dysfunction and Exclusion (TIDE), with elevated
scores correlating to diminished efficacy of immune checkpoint
inhibition medications (Jiang et al., 2018). The TIDE score was
significantly higher in the high-risk group compared with the
low-risk group (Figure 12I), suggesting that high FN1 expression
significantly impeded the effectiveness of immune checkpoint
blockade therapy. Immunophenotypic scores (IPS) of ovarian cancer
patients were subsequently used to predict their responsiveness to
anti-CTLA4 therapy (Figure 12J).The data showed that the response
rate to anti-CTLA4 therapy was higher in the high-risk group.
Figure 12Kdepicted six immune checkpoints highly expressed in the
high-risk group, includingCD276, CD86, HAVCR2, LAIR1, TNFSF9,
and TNFRSF14, which collectively impeded antitumor immune
responses. Figure 12L depicted the six drugs with low IC50 values in
the high-risk group, suggesting that the high-risk group was more
sensitive to these drugs. Overall, the findings suggested that TCs
with elevated levels of FN1 might play a key role in immunotherapy
resistance and could serve as a compelling biomarker in predicting
survival time in patients with ovarian tumors.

3.12 Knockout FN1 in vitro studies
confirmed its involvement in ovarian
cancer

The Caov-3 and SK-OV-3 cell lines were utilized in in vitro
research to target FN1 mRNA degradation using siRNA to inhibit
FN1 expression. Initially, mRNA levels were evaluated prior to and
after to FN1 knockdown. Both cell lines exhibited a significant
decrease in mRNA expression levels relative to the control
group (Figure 13A). Following FN1 knockdown, the CCK-8 assay
demonstrated a significant reduction in TCs viability (Figure 13B).
Furthermore, the colony formation assay indicated that FN1
knockdown inhibited the aggregation of TCs (Figures 13C,D).
Furthermore, transwell and scratch assayswere employed to evaluate
the migratory and invasive capacities of TCs, revealing a significant
reduction in both following FN1 knockdown (Figures 13E–H). This
result was also observed by the EdU staining assay (Figure 13I). The
aforementioned findings indicated that FN1 knockdown inhibited
ovarian cancer tumor growth by obstructing TCs aggregation,
activity, invasion, and migration. This result has provided us with

a novel approach for targeted therapy in ovarian cancer inside the
clinical setting.

4 Discussion

Ovarian cancer exhibited considerable regional and temporal
diversity at the molecular, cellular, and anatomical levels.
Both innate and learned resistance arose from the varied
responses to systemic and surgical interventions due to this
complexity. Ovarian cancer is hence highly aggressive and often
fatal. Rather than being a singular disease, it has multiple
subtypes, each with distinct and evolving molecular profiles
that change as the disease advances and is managed. Treatment
options were further confounded by the dynamic interactions
between cancer cells and stromal components inside the tumor
microenvironment, which were essential in facilitating disease
progression and modulating the tumor’s response to therapy
(Hollis, 2023; Veneziani et al., 2023). The recent therapy strategy
for ovarian cancer involves the introduction of immune-related
molecularly targeted medicines, which elicit immunostimulatory
or immunosuppressive effects alongside their cytostatic and
cytotoxic actions against malignant cells (Moniot et al., 2024;
Fucikova et al., 2022; Kim et al., 2012; Gritsina et al., 2015).
Previous studies have primarily focused on profiling immune
cell infiltration and checkpoint expression in bulk RNA-seq data
or characterizing tumor heterogeneity through either scRNA-
seq or spatial transcriptomics independently. These studies
just highlighted immunotherapy potential by profiling immune
checkpoint landscapes or T cell functionality, but lacked integrative
spatial-functional insight. Our study advances this by combining
scRNA-seq, spatial transcriptomics, gene regulatory network
analysis (pySCENIC), and intercellular communication analysis
(CellChat) to elucidate a comprehensive tumor-immune interaction
map, particularly around FN1+ tumor cells. This integrative
framework surpasses earlier studies by adding spatial resolution
and direct experimental validation of therapeutic targets.

We identified six primary cell types, including EPCs, by the
analysis of ovarian cancer samples, omental tissue, and normal
ovarian tissue. These cell types exhibited an increasing percentage
correlated with cancer progression. This illustrated the significance
of EPCs in the progression of ovarian cancer. We discovered six
kinds of TCs utilizing inferCNV. The C3 FN1+ TCs distinguished
themselves through their strong association with omental tissue,
suggesting their role as metastasis drivers and early facilitators of
tumor nesting. This outcome aligned with prior studies indicating
that the omentum serves as a pre-metastatic site that facilitates the
proliferation of ovarian cancer cells (Li et al., 2023; Lee et al., 2019).
Our CytoTRACE research indicated that key stemness markers
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FIGURE 13
In vitro experiments targeting FN1 signaling molecules. (A) Knockdown of FN1 significantly reduced mRNA expression levels in both experimental
groups (Caov-3 and SK-OV-3). And ∗∗∗represented p < 0.001. (B) CCK-8 testing demonstrated that the viability of TCs was notably reduced following
the knockdown of FN1 in comparison to the control group. And ∗∗∗represented p < 0.001. (C and D) Colony formation testing displayed that the
knockdown of FN1 significantly reduced the number of colonies in the experimental group. And ∗∗∗represented p < 0.001. (E and F) The migration and
invasive abilities of TCs in both experimental groups were inhibited by FN1 knockdown, as demonstrated by the transwell experiments and shown in
the quantitative plots. This clarification has been added to all relevant figure notes to enhance reader understanding and interpretability of the results.
And ∗represented p < 0.05, ∗∗represented p < 0.01, ∗∗∗represented p < 0.001. (G and H) The quantitative plots showed a significant reduction in both
migration and proliferation abilities of TCs following FN1 knockdown, while the inhibition of TCs migration by FN1 knockdown was indicated by the
scratch assays. And ∗∗∗represented p < 0.001. (I) The knockdown of FN1 inhibited the proliferation of TCs was observed by EdU staining test.
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like as BMI1 and CTNNB1 were prevalent in C3 FN1+ TCs.
These cells were linked to pathways crucial for EMT and tumor
proliferation (Banerjee et al., 2017; Wen et al., 2019; Lozneanu et al.,
2021). The elevated stemness of this subtype indicates its potential
involvement in the first stages of cancer, which may influence
the onset of metastasis. The participation of C3 FN1+ TCs as an
initial subtype was validated by monocle and SlingShot trajectory
analyses, which positioned them at the commencement of the
developmental pathway. C3 FN1+ TCs were posited as essential
for understanding carcinogenesis and evolution, derived from
developmental trajectories of ovarian to omental cancer tissues.
These data suggested that concentrating on the first molecular
mechanisms associated with this subtype might be crucial for
developing innovative intervention strategies and personalized
treatment.

The SCENIC investigation found ATF3, JUND, and NR2F1
as significantly active in C3 FN1+ TCs. NR2F1’s involvement in
EMT and chemoresistance, along with ATF3’s association with
heightened treatment resistance, rendered these factors pivotal in
cancer progression (Fu et al., 2021; Li D. et al., 2022; Liu et al., 2023;
Rodriguez-Tirado et al., 2022). CellChat research revealed that C3
FN1+ TCs were involved in significant intercellular communication,
specifically through the FN1-CD44 signaling pathway. Fibroblasts
and myeloid cells collaborated to create an environment conducive
to cancer proliferation and dissemination (Umansky et al., 2019;
Zhang H. et al., 2023; Biffi and Tuveson, 2021). In order to provide
additional evidence that there was a connection between tumor
subtypes that had a higher FN1 expression and the growth and
metastasis of the tumor, we decided to investigate the ST. To translate
cell type annotations from scRNA-seq to ST data, tissue sections
taken from a patient with ovarian cancer were evaluated using the
RCTD approach. According to the findings of the investigation,
the C3 FN1+ TCs subtype were found to be spatially connected
with tumor sites, and their positions were shown to be consistent
with the distribution of myeloid cells and circulating FN1. Through
further analysis utilizing stLearn, it was shown that FN1, which
was largely expressed by C3 FN1+ TCs subtype and fibroblasts,
interacted with the receptor CD44 through paracrine and proximal
secretion. This interaction suggested that FN1 played a crucial
role in conveying information between tumors. According to the
findings of the study, the C3 FN1+ TCs subtype was responsible
for the promotion of ovarian cancer through the FN1-CD44
signaling pathway. This route was supported by a paracrine cell-cell
communication network that existed inside the microenvironment
of the tumor.

The fact that FN1 had a role in both cell adhesion and
migration brought to light the biological potential of this protein
as a therapeutic target (Zhang et al., 2017; Zhou et al., 2022).
The effective communication between C3 FN1+ TCs and immune
cells highlighted their ability to employ immune evasion strategies,
which might enhance cancer survival and dissemination. Patient
stratification could be reliably achieved through the utilization
of FN1, which might serve as a prognostic biomarker for
ovarian cancer. The Caov-3 and SK-OV-3 cell lines utilized
in in vitro FN1 knockdown studies demonstrated dramatic
decreases in cell survival, motility, and invasion. These findings
indicated the therapeutic potential of targeting FN1 to disrupt
the supportive networks of C3 FN1+ TCs, hence reducing tumor

development and metastasis while enhancing immuno-precision
therapy methods.

The creation of an FTRS model that exhibited robust
predictive capability for patient survival, grounded in ten
prognostic mRNAs. Upon the creation of an FTRS model,
it was observed that patients exhibiting elevated FTRS levels
had significantly diminished survival probabilities. This score
signified a more aggressive TME that could influence treatment
resistance, as it was associated with heightened immune infiltration
and immunosuppressive conditions. A higher FTRS score
predicted a worse prognosis as well as poorer immunotherapy
responsiveness. The immunological landscape of ovarian cancer,
wherein specific immune cell types—such as M1 and M2
macrophages—substantially influence patient prognosis and their
responsiveness to immunotherapy. Numerous prior papers have
demonstrated that M2-type macrophages facilitate immune escape
in the tumor microenvironment through diverse mechanisms,
resulting in an immunological-hyporesponsive milieu (Ma et al.,
2021; Yu et al., 2024; Ning et al., 2023). Immunological checkpoint
therapy and personalized treatment strategies might be influenced
by immunological escape in high-risk populations. Drug sensitivity
testing offered valuable insights into precision medicine for ovarian
cancer treatment by identifying potential targeted therapies for
high-risk populations. The FTRS model, based on ten prognostic
mRNAs, effectively predicts ovarian cancer patient survival by
reflecting an immunosuppressive tumor microenvironment linked
to poor prognosis, immunotherapy resistance, and potential targets
for precision treatment.

Nonetheless, there were some shortcomings in our study.
This study utilized only eight tissue samples, potentially failing
to represent the diversity of ovarian cancer across different
patient populations. Secondly, computational predictions had
limitations, and the analysis of immune infiltration patterns, TIDE
scores, and immune checkpoint expression were largely based
on bioinformatics algorithms and hypothesis generation that had
not been experimentally or clinically validated. Although these
methods could provide valuable clues, the results needed to be
interpreted with caution and future confirmation was still needed
in combination with functional experiments and clinical data.
Thirdly, although the function of FN1 was validated through in vitro
experiments utilizing Caov-3 and SK-OV-3 cell lines, these findings
may not adequately reflect the in vivo tumor microenvironment.
Future research should employ in vivo models to corroborate
these findings.

To sum up, this study concluded that C3 FN1+ TCs
represented a significant early high-stem subtype that contributed
to the progression of ovarian cancer. Their significant role
in transcriptional regulation and intercellular communication
underscored their importance in influencing the TME. Focusing
on FN1, a critical target gene, enabled the development of novel
immunoprecision therapies aimed at halting tumor growth and
enhancing patient prognosis. The distribution of key immune
cell types, including M1 macrophages as protective factors and
M2 macrophages as risk factors, significantly impacted the
immunological landscape of ovarian cancer within the TME. The
findings underscored the significance of the TME in shaping disease
progression and patient outcomes. The immunologic profile of the
high-risk population was correlated with reduced responsiveness
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to immune checkpoint treatments. This highlighted the necessity
for the development of targeted immunotherapies. The creation of
novel immunoprecision drugs tailored for ovarian cancer patients
might enhance the immune system’s capacity to combat ovarian
cancer and increase its efficacy in immunotherapy, resulting in better
patient outcomes.
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