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Introduction: Total body metabolism continuously adapts to match energy
supply with demand. During exercise metabolic alterations occur because
skeletal muscles require a continuous supply of newly generated ATP to
match the demand of the intensity of the exercise, and products of muscle
metabolism must be eliminated. The metabolic and energetic flexibility greatly
impact maximum physical fitness and exercise duration, as well as the speed
of elimination of metabolism end-products. However, so far, the temporal
profiling of metabolomic changes in response to exercise of persons with
different fitness levels remains relatively unexplored. This study examined
metabolic changes during each person’s peak aerobic exercise and one-hour
post-exercise recovery in 29 Baltimore Longitudinal Study of Aging (BLSA)
participants.

Methods: Blood samples were collected at baseline, and at 3-min intervals
during both incremental exercise on a treadmill until exhaustion and during
recovery. Participants were classified based on the stage when they reached
exhaustion as low fitness (LF, completing up to 3 treadmill incremental stages)
or high fitness (HF, completing up to 7 incremental stages). The time course of
exercise-associated changes in the circulating metabolome were mapped and
unique metabolomic trajectories were identified with likelihood-ratio testing
and hierarchical clustering.

Results: The HF group had rapid clearance of bile and amino acids
at exercise onset, along with effective clearance of triacylglycerols and
glycerophospholipids during recovery. In contrast, the LF group had much
reduced clearance of these metabolites and had persistent elevation of
triacylglycerols and glycerophospholipids.

Discussion:These findings highlight differences in bile acid clearance and purine
metabolism in people of differing fitness levels and provide novel insights into
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the role of metabolic adaptive responses to aerobic exercise assessed through
circulating metabolomic measures.
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1 Introduction

Changes in energy metabolism continuously match fluctuations
in energetic demand that occur in response to exogenous stressors.
Acute metabolic responses are essential components of the
downstream activation of transcriptional, inflammatory, and tissue
remodeling mechanisms (Egan and Sharples, 2023). Moreover, the
ability to return to, and maintain, a stable homeostatic baseline
(i.e., recover) following the stressor is an important marker of
resilience (Egan and Sharples, 2023; Egan et al., 2013). Indeed,
the dynamic metabolic response profile to a stressor is often used
to understand resilience capacity in epidemiological studies and
clinical practice. For example, the cardiovascular and metabolic
response to different levels of physical activity is traditionally used
as a measure of physical fitness and coronary reserve.

Metabolic response to exercise and recovery patterns after
exercisemay provide clues about an individuals’ responses to various
physical stressors (Walston et al., 2023; Lei et al., 2022; Ferrucci et al.,
2020). For example, mapping trajectories of circulating metabolic
responses to exercise can provide unique insight into mechanisms
of differential fitness level across individuals.

Temporal profiling of metabolic responses to acute physical
stress has been integral to the field of exercise physiology for
decades (Costill, 1970; Craig et al., 1981; Romijn et al., 1993;
Romijn et al., 1995; Bangsbo et al., 2002; Lavin et al., 2022). Such
studies have laid the foundation for our ability to establish the
relationships between physical activity levels, cardiovascular fitness,
inflammation, metabolic health, chronic disease, mortality, and
healthy aging (Steensberg et al., 2000; Gries et al., 2018; Perkins et al.,
2020; Lavin et al., 2020; Chambers et al., 1985; Imboden et al., 2018;
Imboden et al., 2019; Kaminsky et al., 2018). However, research in
this field has not yet fully benefited from the new high-throughput
technologies that can measure different biomarkers in biological
fluids and analyze them with new powerful bioinformatic methods.
Metabolomics has emerged as a powerful tool for investigating
rapid physiological changes, offering significant advantages over
traditional transcriptomic approaches. Metabolomics provides real-
time insights into metabolic processes, including those influenced
by post-transcriptional and post-translational modifications. The
study of metabolites is particularly well-suited for detecting
swift responses to environmental stimuli and systemic changes
that may not be captured by transcriptomic analysis alone
(Han et al., 2024; Wu et al., 2024). Thus, measuring a comprehensive
profiling of the metabolic responses to exercise provides a unique
opportunity to correlate these metabolic trajectories with level of
physical fitness.

This study presents an innovativeworkflowdesigned to delineate
distinct metabolic response patterns in individuals with variable
cardiorespiratory fitness, which may provide new knowledge on
the mechanism that drive differential risk for adverse health

outcomes. Current research into exercise metabolomics focuses
predominantly on steady-state exercise, with little insight toward
the dynamic metabolic processes occurring during standard graded
exercise testing (Jaguri et al., 2023). Our approach uses advanced
high-throughput metabolomics and bioinformatics to generate a
comprehensive and systemic profile of metabolic responses before,
during, and after non-steady state aerobic exercise, building upon
previous research (Contrepois et al., 2020; Parstorfer et al., 2025).
This methodology captures rapid physiological changes at short
intervals over a 2-h period, yielding novel insights into themetabolic
responsiveness and physical fitness of middle-aged and older adults.

The overall aim of this study is to identify critical changes
of metabolic pathways that could be considered as targets for
interventions aimed at preventing the decline of exercise capacity
that occur with aging and other condition and to monitor the
effectiveness of such interventions.

2 Materials and methods

2.1 BLSA participants

Study participants belong to the Baltimore Longitudinal
Study on Aging (BLSA) which has been in operation since
1958, standing out as one of the United States' longest-running
investigations into healthy aging (Ferrucci, 2008). The BLSA
employs a comprehensive approach, regularly assessing community-
dwelling volunteers through a variety of clinical examinations,
advanced imaging techniques, and extensive laboratory testing.
It does not enroll participants at their first visit who have hip
or knee joint replacement; severe knee osteoarthritis; history
of stroke or Parkinson’s disease; or inability to walk without
using a weight bearing assistive device. However, participants
remain enrolled in the study as they develop chronic medical
conditions, as well as physical and cognitive impairment over
time. The BLSA protocol is approved by the Institutional Review
Board of the Intramural Research Program of National Institutes
of Health (IRB#03-AG-0325). All participants provided written
informed consent.

2.2 Maximal aerobic exercise test

Participant preparation involved placing 10 electrodes in
standard stress EKG positions. A VO2 mask was fitted over the
mouth and nose, and an O2 saturation monitor was placed on
the earlobe. A blood pressure (BP) cuff was secured on the upper
arm, and baseline EKG and BP were recorded prior to starting the
test. The steady state protocol began with participants walking for
5 min at a speed of 1.5 mph. BP measurements were taken at 2
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and 4 min during initial walking. Rate of perceived exertion (RPE)
was recorded at the end of each testing intervals. The maximal
treadmill protocol was designed with a variable duration and was
contingent upon participants reaching volitional fatigue. For male
participants, the test began at a speed of 3.5 mph with a 0% incline.
After 45 s, the incline was increased to 3%, followed by increments
of 3% every 3 min. For female participants, the protocol started at
a speed of 3.0 mph with a 0% incline. Similar to the male protocol,
the incline was increased to 3% after 45 s and followed a comparable
pattern, ultimately reaching a maximum incline of 21% at the 18-
min mark. During the exercise phase, BP measurements were taken
every 2 min. The test continued until participants reported reaching
maximum fatigue, unless contraindicated due to EKG changes,
arrythmias or chest pain. In addition, the speed of the treadmill was
adjusted to accommodate each participant’s physical ability, with the
goal of achieving maximum heart rate. Following test termination,
participants were asked to sit for the recovery phase. Oxygen
consumption and BP were recorded during the 60 min of recovery
time, and RPE was recorded at the end of recovery (Figure 1A).

2.3 Blood collection

A venous line was established for blood collection. The
treadmill protocol continued seamlessly during blood draws,
with participants maintaining their assigned incline and speed.
To facilitate blood collection during active treadmill testing,
participants were instructed to rest their arm on the handrail.
Bloods were collected at predetermined time points: baseline, within
the first minute and every 3 min of each treadmill grade or speed
increment, and at 1, 5, 15, 30, and 60 min into the recovery. If blood
collectionwas not feasible at a scheduled time point, that sample was
omitted, and collection proceeded at the next designated time point.
Plasma glucose and lactate were assayed for each time point, in real
time, using a Pentra C400 Analyser (Horiba). HBA1c was assayed
from whole blood, also in real time, on an Affinion2 (Abbott) the
morning of each study.

2.4 Targeted metabolomics

Metabolites were extracted from plasma (10 µL) and
concentrations obtained using the MxP 500 (Biocrates Life Science
AG, Austria) following the manufacturer’s protocol. Metabolites
were measured using a Nexera HPLC system (Shimadzu)
coupled to a 6500+ QTRAP®mass spectrometer (AB Sciex)
with an electrospray ionization source as previously described
(Moaddel et al., 2022). Briefly, a 96-well based sample preparation
device was used to quantitatively analyze the metabolite profile.
Samples were analyzed by flow injection analysis-tandem mass
spectrometry (FIA-MS/MS) and liquid chromatography-tandem
mass spectrometry (LC-MS/MS) (Moaddel et al., 2022). Analytes
in the LC-MS/MS part are quantified using either external 7-point
calibration curves with labeled standards or internally with labeled
standards (detailed information on the calibration is provided on
the Biocrates website - www.biocrates.com). Analytes in the FIA-
MS/MS part are quantified using internal standards. Concentrations
were calculated using the Analyst/MetIDQ software and reported in

µmol/L. Data were quantified using appropriate mass spectrometry
software (Sciex Analyst® ) and imported into Biocrates MetIDQ™
software for further analysis. The data was normalized to internal
quality controls.

2.5 Statistical analysis

To evaluate temporal changes in metabolite levels, metabolites
with more than 30% missing values were excluded as an initial
filtering step to ensure data reliability. Mixed effects models were
employed using the lme4 package in R, which accounts for
repeated measurements within individuals. For each metabolite,
two mixed effects models were fitted: a full model and a nested
reduced model. Both models included subject as a random effect
to account for individual differences, while “time,” “age,” and “sex,”
which are consistent across individuals, were included as fixed
effects. The reduced model excluded “time,” ensuring it was nested
within the full model. All models were fitted using maximum
likelihood estimation (ML) rather than restricted maximum
likelihood estimation (REML) to facilitate model comparisons.
To assess whether including specific factors, such as time or the
interaction between time and fitness, significantly improved model
fit, likelihood ratio tests (LRTs) were performed using the anova
() function in R with the LRT option enabled. The resulting p-
values indicatedwhether adding these factors significantly enhanced
the model’s explanatory power. This approach was repeated for
multiple comparisons, including differences between participants
with high versus low fitness and testing the interaction between
time and fitness. “Time” wasmodeled either as a categorical variable
to capture non-linear effects or as a continuous variable when
testing interactions with fitness level. Since LRTs do not indicate the
direction of effects, separate mixed effects regression analyses were
conducted for the low-fitness and high-fitness groups, with time
(modeled as a continuous variable), age, and sex as fixed effects and
subject as a random effect. Statistical significance was determined
using the lmerTest package, which computes p-values based on
Satterthwaite’s degrees of freedom method. For each metabolite, the
beta coefficients for timewere correlated between the high- and low-
fitness groups, and the squared Pearson correlation coefficient (R2)
was reported to quantify the relationship.

Participants were divided into high- and low-fitness groups
based on the highest stage achieved during a fitness test. The high-
fitness group consisted of three subjects who attained stage B6 or
higher (two at B7 and one at B6) and was expanded to include
nine subjects who reached B5, resulting in a total of 12 high-fitness
subjects.The low-fitness group included seven subjects who reached
B2, supplemented by ten subjects who achievedB3, yielding a total of
17 low-fitness subjects. Missing data for subjects who did not reach
later stages (e.g., B3 for the low-fitness group or B6/B7 for the high-
fitness group)were handled by themixed effectsmodeling approach,
which is robust to incomplete time points, thus obviating the need
for imputation. All analyses, including regression and likelihood
ratio tests, were conducted using these stratified groups.

We plotted all significant metabolites (40 from the peak exercise
model and 38 from the recovery model) and visually tracked
their dynamics, categorizing them into 4 patterns, regardless of
whether the metabolites were significant in one or both models.
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FIGURE 1
Experimental Design and Fitness Group Characteristic. (a) Schematic representation of the experimental protocol illustrating metabolomic sampling
timepoints at baseline (rest, B0), during incremental exercise stages (B1-B7), and throughout the one-hour recovery period (P1-P60). (b) Fitness group
stratification based on time to exhaustion during graded treadmill exercise. (c) Comparison of key physiological parameters between Low and High
fitness groups, including Age, Height, Weight, BMI, Body Fat Percentage, VO2 peak, Respiratory Exchange Ratio, and Glucose levels. P-values from
t-tests are indicated for each parameter. (d) Real-time lactic acid measurements (mg/dL) in Low (n = 17) and High (n = 12) fitness groups during
exercise and recovery. (e) Real-time glucose measurements (mg/dL) in Low (n = 17) and High (n = 12) fitness groups during exercise and recovery.

Specifically, the results of the mixed effect models were group into
four longitudinal patterns: “Difference maintained,” for metabolites
that were already different between fitness groups and remained
similarly different throughout all time points; “Baseline different,”
for metabolites with similar blood levels at baseline that converged
to similar level over time; “End different,” for metabolites that were
similar at baseline but showed progressively increased difference
with time; and “Switch,” when baseline levels were different between
LF and HF and the expression pattern reversed with time.

Metabolite expression alterations were examined independently
for LF and HF groups during two separate stages: the exercise
period (roughly 9 min, from B0 to B3) and the recovery phase (1 h,
from P1 to P60). The first 9 min of exercise was selected for this
comparison as it allowed for the greatest number of participants to
be represented. The HF group underwent an additional Exhaustion
peak analysis, as these participants reached the 7th incline (B7).

Visual representations of all five models, showcasing the top 10
upregulated and top 10 downregulated metabolites, can be found
in (Supplementary Figure S1). A comprehensive list of all identified
metabolites is provided in Supplementary Data S1, Sheet S1.

Microsoft Excel (Microsoft office) was used for data collection
and Rstudio to analyze data, generate models and visualize plots.

3 Results

3.1 Metabolomic profiles in
single-cross-sectional time point during
early exercise and relative recovery

This investigation encompassed a cohort of 29 participants
from the Baltimore Longitudinal Study of Aging (BLSA), with
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ages spanning 33–94 years. Participants were stratified into
two fitness groups based on their time to exhaustion during
the maximal exercise test (Figure 1B; Supplementary Table S1),
with Low Fitness (LF) participants (n = 17) reaching
exhaustion within 9 min (B3) and High Fitness (HF)
participants (n = 12) able to maintain sustained exercise for at
least 15 min.

Participants in LF were older, had lower VO2 peak and higher
HbA1c and percentage body fat compared to HF participants.
No significant differences were observed for height, weight and
BMI (Figure 1C). Overall study design is depicted in Figure 1A.
As expected, lactic acid exhibited a robust increase at the onset
of exercise with a full recovery following exercise in both groups;
however, maximum lactate levels were much increased at the end
of the maximum exercise period for the HF group (Figure 1D).
Glucose increased after B3 and decreased during recovery in
the HF group (Figure 1E).

3.2 Fitness-stratified metabolic signatures
reveal enhanced early exercise metabolite
circulation in low fitness individuals despite
recovery overlap

The beta coefficients estimating changes of metabolites from
baseline to the stage of B3 were significantly different from
zero for 134 unique metabolites, the LF group and 16 unique
metabolites in the HF group, with 22 metabolites common to both
groups (Figure 2A; Supplementary Data S1). When we compared
each group at their respective peak exhaustion points—stage B3
for the LF group and stage B7 for the HF group—rather than
limiting both groups to the first 3 stages, we still found minimal
overlap (Figure 2B). Only 21metabolites showed significant changes
in both groups, while 29 metabolites changed significantly only
in the HF group. Notably, 7 bile acids showed decreased levels
(downregulation) in the High Fitness (HF) group, both when
measured up to stage B3 and when measured up to their exhaustion
point (B7). Of 7 bile acids, only 2—glycolithocholic acid (GLCA)
and deoxycholic acid (DCA)—also showed significant changes in
the Low Fitness (LF) group at their exhaustion point. Beyond GLCA
and DCA, only 5 other metabolites showed significant changes
across all 3 comparison groups (LF from baseline to B3, HF from
baseline to B3, and HF from baseline to B7). These metabolites
were: lactic acid, acetyl carnitine, diglyceride 16:0_18:1 (DG 16:0_
18:1), triglyceride 18:0_36:1 (TG 18:0_36:1), and trigonelline. All of
these metabolites changed in the same direction across all groups
(Supplementary Data S1, Sheet S3).

During recovery, themetabolomic profiles of both fitness groups
converged substantially, with 322 metabolites showing changes in
both LF and HF groups (Figure 2C). We found that 14 metabolites
changed exclusively in the LF group, and 75 metabolites changed
exclusively in theHF group. For example, when looking at the classes
of metabolites, several were following the same pattern, where they
were decreasing in both fitness groups: ceramides (11 in HF, 8 in
LF); HexCer (13 in HF, 6 in LF); DGs (6 in HF, 5 in LF); LPCs (10 in
HF, 9 in LF); PCs (64 in HF, 56 in LF); SMs (14 in HF, 9 in LF); TGs
(219 HF, 199 LF) and lactic acid, of which only HexCer d16:1/22:0
and TG 20:4/33:2 were the only metabolites to be specifically

identified in the LF group. The BCAAs were also decreasing in
both fitness groups, with only valine not significant (p = 0.10) in
the LF group.

3.3 Linear mixed model interaction analysis
of low and high fitness identifies distinct
metabolic dynamics

Further analyses were done to investigate metabolites that
differentially changed over time in the LF and the HF groups though
mixed effect models. Two distinct models were implemented. The
first approach explored the effect of exercise from baseline to
exhaustion (Supplementary Figure S2) and the second the effect of
recovery between the LF andHF groups (Supplementary Figure S3).
Overall, 40 metabolites showed significant differential changes
in the peak exercise model and 38 metabolites in the recovery
model. Figure 3 illustrates the four categories, presenting
one significant (p < 0.05) example for each category from
either the Exercise or Recovery model. After establishing this
categorization, we generated a Summary Table to interpret the
results (Table 1).

Of interest, only 4 metabolites had the same classification
in exercise and recovery. Cysteine was the only metabolite that
maintained differences across both fitness groups during exercise
and recovery, while TGs (TG 18:0_30:1, TG 18:1_26:0 and TG 18:1_
30:2) started different at the onset of both exercise and recovery
and ended not significantly different (Table 1). While it may seem
surprising that these TGs at B3 were similar but started different at
P1, this may be due to the response to exhaustion in the LF group
(which ends at B3) versus the HF group (which can go to B7).

Interestingly, in both exercise and recovery, the metabolomic
changes predominantly observed were in TGs, bile acids and SMs.
Only 17 TGs had baseline line levels that were different, with 14
TGs similar at the end of exercise and throughout recovery and 3
switching at the end of exercise. There were 5 TGs that were similar
at baseline, but were different at the start of the recovery, except for
TG 20:5_36:3. Of the bile acids, only TCA and GCA had different
profiles, with GCA maintaining its baseline difference throughout
exercise while they converged to be similar between LH and HF at
the end of recovery. TCA, on the other hand, started different at
baseline during exercise but converged to similar levels between the
two group at the end (B3 for LF and B7 for HF). Similar to the TGs
discussed above, the difference in the level of exhaustion (B3 for LF
and B7 for HF), may explain why they may have been similar by B3
but resulted in different baseline levels at P1.The rest of the bile acids
were similar at baseline; however, circulating levels were different
at the start of recovery but by the end of recovery both groups had
similar levels. Of the ceramides and SMs, at baseline only Cer d18:0_
24:1 was different between the LF and HF groups. At the start of
recovery 4 hydroxy-SMs, Cer d18:1_26 and Hex3_Cerd18:1_16:0
were different, whereas SM 20:2, and three ceramides were different
at the end of recovery.

Overall, our findings suggest that the classes of metabolites that
changed differentially between LF and HF included predominantly,
TGs, and bile acids, and a few ceramides and SMs.
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FIGURE 2
Correlation between trend of significant metabolic dynamics in low- and high-fitness groups during early exercise and recovery. (a) Linear model in
low- and high-fitness, separately, for baseline, B1, B2, and B3. (b) Linear model in low- and high-fitness, separately, for baseline, P1, P5, P15, P30, and
P60. (c) Linear model in low- and high-fitness, separately, for 1, 5, 15, 30 and 60 minutes recovery (p1, p5, p15, p30 and p60). Metabolite classifications:
gray (non-significant in both groups), red (high-fitness-specific significance), blue (low-fitness-specific significance), purple (significant in both groups).

FIGURE 3
Metabolic responses across study design phases identified by mixed linear model analysis. (a-h) show metabolites that reached statistical significance
in at least one of three analytical models: early exercise (B-B3), peak exercise (B-B2/B3 for low fitness; B-B5/B6/B7 for high fitness), and recovery
(1–60 min post-exercise). Dotted lines connect the final exercise timepoint to the first recovery timepoint; these connections span different models
and were not included in statistical analyses. Significance levels: p ≤ 1,∗p ≤ 0.05,∗∗p ≤ 0.01,∗∗∗p ≤ 0.001.

4 Discussion

In this study,we identifiedmetabolomic changes, predominantly
consisting of TGs, bile acids and SMs and ceramides, that were either
shared or specific to high fitness (HF) versus low fitness (LF) groups
in healthy middle-aged and older adults.

One striking physiological difference captured by this
investigation is the exercise-associated changes in circulating TG
levels. During exercise, TGs are released from adipose tissue stores

and enter the bloodstream. They are then translocated across
the muscle cell membrane by fatty acid translocases to support
intracellular ATP generation (Egan et al., 2013; Romijn et al., 1993;
Romijn et al., 1995). Thus, changes in the circulating concentration
of TGs during exercise are the result of changes in the rate of
their liberation from adipose tissue (i.e., lipolysis) and uptake by
skeletal muscle tissue. In our study, the differences in the TGs
followed different profiles in that participants with higher levels
of physical fitness maintained steady state circulating TG levels
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TABLE 1 Low vs. High fit interaction model.

Metabolite
category

Difference maintained Start different End different Switch

Exercise Recovery Exercise Recovery Exercise Recovery Exercise Recovery

Triacylglycerols

- - TG18:0_30:1∗ TG18:0_30:1∗ - TG16:0_40:7 TG16:1_32:0 -

- - TG18:1_26:0∗ TG18:1_26:0∗ TG16:0_32:3 - TG20:5_36:3 -

- - TG18:1_30:2∗ TG18:1_30:2∗ TG16:0_33:2 - TG22:5_34:1 -

- - TG14:0_32:2 - TG16:1_32:2 - - -

- - TG14:0_34:2 - TG17:0_34:2 - - -

- - TG14:0_36:1 - TG17:1_34:3 - - -

- - TG16:0_28:1 - TG17:1_36:3 - - -

- - TG16:0_28:2 - TG17:1_36:4 - - -

- - TG16:0_30:2 - TG18:0_34:3 - - -

- - TG16:0_32:2 - TG18:3_32:1 - - -

- - TG18:0_32:1 - TG20:1_34:3 - - -

- - TG18:0_32:2 - TG20:5_34:1 - - -

- - TG18:1_28:1 - TG20:5_34:2 - - -

- - TG18:1_30:1 - - - - -

- - TG18:2_28:0 - - - - -

- - TG18:2_30:0 - - - - -

- - TG18:2_30:1 - - - - -

- - - TG20:0_34:1 - - - -

- - - TG20:4_36:3 - - - -

- - - TG20:4_36:5 - - - -

- - - TG20:5_36:3 - - - -

- - - TG18:0_38:6 - - - -

Bile acids

GCA - TCA TCDCA - - - -

- TCA - TDCA - - - -

- - - TLCA - - - -

- - - GCA - - - -

- - - GCDCA - - - -

- - - GDCA - - - -

- - - GLCA - - - -

(Continued on the following page)
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TABLE 1 (Continued) Low vs. High fit interaction model.

Metabolite
category

Difference maintained Start different End different Switch

Exercise Recovery Exercise Recovery Exercise Recovery Exercise Recovery

Ceramides,
sphingomyelins

- - - SM-OH C14:1 - SM C20:2 Cer d18:0_24:1 -

- - - SM-OH C22:1 - - - Cer d18:1_26:0

- - - SM-OH C22:2 - - - Hex3_Cer
d18:1_16:0

- - - SM-OH C24:1 - - - -

Aa-related
metabolites,
biogenic
amines

Cys∗ Cys∗ - a-aaa - - - Trigonelline

- Choline - - - - - Trp

Phospoholypids
- PCaaC36:5 - Pcae C34:3 - - - -

- PCaeC36:5 - PCaeC36:4 - - - -

Carnitines
- - - - C0 - C2

- - - - - - C3

Carboxilic and
fatty acid

- - - Lac - - DHA -

Cholesterol
esters

- - - CE 15:0 - - - -

throughout increasing exercise intensities, indicating an exquisite
balance between the rates of lipolysis and uptake by skeletal muscle.
In the individuals with lower fitness (Figure 2), however, circulating
TG levels increased at the onset and throughout exercise. It is
likely that in the skeletal muscle of the LF individuals, there was
an increased reliance on intramuscular glycogen and TG stores
due to the elevated relative intensity of exercise at lower absolute
workloads (Egan et al., 2013; Romijn et al., 1993; Romijn et al.,
1995). Linear regression analysis in the fitness groups indicates
that the magnitude of metabolic changes to the onset of exercise is
related to fitness levels (Supplementary Figure S2). Moreover, the
LF group may have increased lipoprotein lipase activity due to a
degree of insulin resistance in skeletal muscle, thereby limiting fatty
acid uptake into this tissue (Kim et al., 2001). Participants in LF
as expected had larger metabolomic changes from baseline to B3,
consistent with the LF group exercising near or at their VO2max,
resulting in differences in metabolic responsiveness between LF and
HF at 9 min (exhaustion for LF).

Another notable finding from this investigation is that the more
fit adults had lower circulating levels of both bile and certain amino
acids at baseline (Supplementary Figure S2), and they remained
lower through increasing exercise intensities as well as at 1 hour of
recovery compared to LF group. This pattern aligns with previous
research showing lower circulating bile acid levels in physically
active adults compared to less active individuals (Danese et al.,
2017). It is difficult to speculate on underlying mechanisms, but
possible mechanisms may include a change in gut microbiota

composition, which has been shown to play a role in affecting
cardiorespiratory fitness in healthy young adults (Durk et al., 2019)
or perhaps a blood flow redistribution between different organs
during exercise (Joyner andCasey, 2015).The literature suggests that
these findings are most likely driven by the relative redistribution
of tissue blood flow during exercise away from the splanchnic
bed, which would reduce the net appearance of bile acids into
the bloodstream (Joyner and Casey, 2015; Rowell et al., 1965;
Rowell et al., 1984). In addition, there were notable differences
as well including the change in CEs, where 10 were decreasing
in the HF group and none in the LF group, consistent with
exercise increasing cholesterol uptake by hepatocytes in HF group.
Acylcarnitines (C0, C2, C3, C4) were also decreasing in HF
group, with only C2 significantly changing (increasing) in the
LF group. The continued increase of C2 during recovery in the
LF suggests stronger exercise-induced homeostatic perturbations.
Several studies have shown an association with circulating levels
of ceramides, sphingomyelins and exercise (Bergman et al., 2015;
Carrard et al., 2021; Reidy et al., 2020). While there were relatively
few sphingomyelins/ceramides that were different between HF
and LF group, exercise has been shown to lead to a reduction
of ceramides in circulation (Carrard et al., 2021). Also, in our
study, most changes were observed during recovery, consistent
with results from a publication that reports decreased levels
during recovery (Bergman et al., 2015).

This study has limitations. Age-matched and fitness-matched
cohorts could potentially shed further insight on the influence of
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these components on the circulating metabolome. The influence
of blood flow redistribution between tissues is an important
confounding variable that is difficult to adequately correct for
without invasive measures of real-time tissue-specific blood flow.
For these reasons, we cannot definitively conclude that any
individual metabolite or metabolic pathway is a primary driver
of age-associated fatigability. However, this investigation provides
a comprehensive time course of changes in the circulating
metabolome in a group of well-characterized, healthy older adults.

In summary, this investigation provides novel temporal profiles
of the metabolomic response to increasing exercise intensities to
volitional exhaustion, and throughout recovery from exercise in
healthymiddle-aged and older individuals.The current data indicate
that older adults of varying fitness levels have distinct metabolomic
responses to the onset of aerobic exercise and through gradually
increasing exercise intensities. These distinctions are especially
prevalent in the trajectory of bile acids and lipids (Figure 2). These
data are potentially useful in laying the foundation for development
of biomarkers for physical fitness that can be detected in the
early stages of an exercise test. To continue the development
of clinically useful screening panels for physical fitness in older
adults it is important to further refine this approach, continually
implement metabolomic profiling, and correlate unique patterns of
metabolic responses with the development of future comorbidities
and mortality.
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SUPPLEMENTARY FIGURE S1
Metabolic dynamics during exercise and recovery in low- and high-fitness
groups. (a–b) Volcano plots comparing differential metabolite expression (log2
fold change vs. −log10 p-value) for (a) low-fitness and (b) high-fitness groups
during early exercise. (d–e) Volcano plots for (d) low-fitness and (e) high-fitness

groups during recovery (1, 5, 15, 30, and 60 minutes post-exhaustion).
Significantly upregulated metabolites (adjusted p < 0.05) appear in red (right side
of quadrants), while downregulated metabolites are in blue (left side of quadrants).
Dashed lines represent p = 0.05 thresholds.

SUPPLEMENTARY FIGURE S2
Plot of metabolic responses during baseline to peak of exhaustion (exercise
phases, B-B2/B3 for low fitness; B-B5/B6/B7 for high fitness). Only significant
(p<0.05) metabolites are visualized.

SUPPLEMENTARY FIGURE S3
Plot of metabolic responses during recovery phase (up to 1 hour post peak of
exhaustion during exercise). Only significant (p<0.05) metabolites are visualized.
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