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Background: Tryptophan (Trp) metabolism plays a vital role in tumor
development and outcomes. However, Trp in esophageal squamous cell
carcinoma (ESCC) remains poorly understood. We aimed to explore the role
and mechanism of Trp metabolism in ESCC.

Methods: We integrated single-cell RNA (scRNA) sequencing, bulk
transcriptome, proteomics, and microbiome data from public databases.
Tryptophan-related cell populations and their interactions were explored using
the “seurat” R package at the single-cell level. Least absolute shrinkage and
selection operator (LASSO) and univariate Cox regression were used to select
prognostic TrpGs and construct a risk model. The overall survival, immune
infiltration, checkpoint expression, drug sensitivity, and microbiota composition
between high- and low-risk groups were evaluated. Independent prognostic
factors were identified via multivariate Cox analysis and validated by gPCR
analysis, and a nomogram was constructed for survival prediction.

Results: We identified 28 differentially expressed tryptophan-related genes (DE-
TrpGs), and fibroblasts emerged as the cell type with the highest TrpG score,
although reduced in ESCC. Eighteen DE-TrpGs showed downregulation in
tumor fibroblasts at the single-cell level. Fibroblast-epithelial communication
involved the LAMININ, HSPG, and AGRN pathways. Five prognostic TrpGs
(MAOA, AKR1A1, ALDHO9A1, HAAO, and ALDH2) were selected to construct
the risk model. The expression of MAOA, AKR1Al, ALDH9A1l, HAAO, and
ALDH2 was significantly downregulated in ESCC tumor tissues compared
to non-tumor tissues. High-risk patients showed poorer overall survival
(OS), distinct immune cell infiltration, elevated expression of KIR2DLI,
LGALSS, TNFRSF18, and TNFRSF4, increased sensitivity to imatinib and
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axitinib, resistance to multiple chemotherapeutics, and reduced Fusobacteria
and Tenericutes abundance. HAAO, ALDH2, and lymph node stage were
identified as independent prognostic factors and were used to develop a
predictive nomogram.

Conclusion: We identified a Trp metabolism-associated fibroblast population
in the ESCC tumor microenvironment (TME) and developed a five-gene TrpG
signature for prognostic prediction in ESCC patients.

KEYWORDS

tryptophan metabolism, esophageal squamous cell carcinoma, multi-omics, tumor
environment, prognosis

1 Introduction

Esophageal cancer (ESC) is a common cancer, ranking seventh
in terms of incidence and sixth in mortality among all cancer
types (Sung et al., 2021). Overall, incidence and mortality rates are
two- to three-fold higher in men than in women (Morgan et al.,
2022). Regions with high incidence rates include Eastern Asia,
along with Southern Africa, Eastern Africa, Northern Europe, and
South Central Asia (Abnet et al., 2018). Esophageal squamous cell
carcinoma (ESCC) and adenocarcinoma (EADC) are the two most
common histologic subtypes. Smoking and heavy drinking are
the major risk factors for ESCC in Western countries; however,
the major risk factors are different in developing countries,
and dietary components are suspected risk factors (Armstrong,
2018; McCorm et al., 2017). ESCC is characterized by late-stage
diagnosis, metastasis, therapy resistance, and frequent recurrence
(Morgan et al., 2022; Reichenbach et al., 2019). Survival of ESCC
remains low, with an appropriate range of 10%-30% at 5 years
post-diagnosis in the majority of countries (Allemani et al., 2018).
Clinical management of ESCC includes endoscopic resection,
surgical resection, radiochemotherapy, neochemotherapy, and
adjuvant immunotherapy (Puhr et al, 2023). However, clinical
outcomes remain poor, with limited efficacy, severe side effects, and
heterogeneity (Yang et al., 2020). Thus, understanding the molecular
characteristics of ESCC helps explore efficiency biomarkers and
personalized therapeutic options.

Metabolism reprogramming is a hallmark of malignancy and
plays a pivotal role in tumorigenesis, development, metastasis,
therapy resistance, and recurrence (Faubert et al., 2020). Targeting
metabolic characteristics is a crucial opportunity for cancer therapy.
However, the majority of metabolic biomarkers for cancer therapy
remain unclear. Tryptophan (Trp) is an essential amino acid for
humans. Most tryptophan is metabolized through the kynurenine
(Kyn) pathway (Xue C. et al, 2023), and Trp metabolism is
involved in the regulation of immune and energy balance in
cancer (Molfino et al., 2024; Seo and Kwon, 2023). Notably, Trp
metabolism promotes macrophage M1 polarization and serves
as a promising predictor for the effectiveness of immunotherapy
in breast cancer (XueL. et al, 2023). Rate-limiting enzymes
indoleamine-2,3-dioxygenase 1 (IDO1), IDO2, tryptophan-2,3-
dioxygenase (TDO), and kynurenine monooxygenase (KMO)
initiate the Kyn pathway, converting Trp into L-kynurenine (Kyn)
and other downstream metabolites (Platten et al., 2019). IOD1 and
TDO have been implicated in cancer-related immunosuppression,
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and their inhibition can alleviate this immunosuppressive effect
(Liang et al, 2021; Du et al,, 2020). These findings collectively
highlight Trp metabolism as a key regulator of immune evasion in
cancer. Serum metabolomics analyses have revealed that elevated
serum L-tryptophan levels are associated with a reduced risk
of developing ESCC (LiX. et al, 2021). Additionally, other
metabolomic studies have demonstrated that dysregulated Trp
metabolism contributes to the progression and metastasis of
ESCC (Cheng et al, 2017; Chen et al, 2022). However, the
regulatory mechanisms of Trp metabolism within the tumor
microenvironment (TME) of ESCC remain largely unknown.
Given the critical role of Trp metabolism in tumorigenesis
and cancer progression, a comprehensive analysis of its key
molecular biomarkers is warranted to identify novel therapeutic
targets for ESCC.

In the present study, we comprehensively explored the Trp-
related gene (TrpG) signature and specific cell types in ESCC based
on single-cell RNA-sequencing data, transcriptome data, proteomics
data, and microbial abundance profiles. We further evaluated
and experimentally validated the clinical significance of the TrpG
signature, as well as its immune characteristics, drug sensitivity, and
microbial composition. Our findings highlight potential biomarkers
and therapeutic targets for interventions aimed at modulating
tryptophan metabolism in ESCC.

2 Materials and methods
2.1 Data collection and processing

Gene expression profiles and corresponding clinical features
of ESCC patients were obtained from the GSE53625 (179 tumor
tissues and 179 normal tissues) and GSE121931 (125 tumor tissues)
cohorts from the Gene Expression Omnibus (GEO) database.
Raw proteomics data and corresponding clinical features from
PXD021701 (124 ESCC tissues and 124 normal tissues) were
obtained from the PRoteomics ID Entifications Database (PRIDE
Archive). ESCC scRNA-seq data were acquired from GSE197677
(10 solid tumor tissues and four normal tissues). Microbial
abundance profiles at different taxonomic levels were obtained
from the Cancer Microbiome Atlas (TCMA, https://tcma.pratt.
duke.edu/) database for 40 ESCC tumor samples. A total of 66
tryptophan metabolism-related genes (TrpGs) were obtained from
the Human Gene Set “KEGG_TRYPTOPHAN_METABOLISM”
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in the Molecular Signatures Database (MSigDB, https://www.
gsea-msigdb.org/gsea/msigdb), and from the “superpathway of
tryptophan utilization” in PathCards (https://pathcards.genecards.
The TrpGs

org/Card/superpathway_of_tryptophan_utilization).
are listed in Supplementary Table S1.

2.2 ldentification of the differentially
expressed TrpGs in ESCC

Differentially expressed genes (DEGs) between ESCC tumor
tissues and normal tissues (GSE53625 cohort) were identified using
the “Limma” R package with the criteria of [log(Fold change, FC)| >
0.5 and P-value < 0.01. Then, the differentially expressed TrpGs (DE-
TrpGs) were selected by overlapping the DEGs in ESCC and TrpGs
from the public databases.

2.3 Single-cell RNA sequencing data
processing, cell annotation, and
calculation of TrpG score

The scRNA-seq data were processed and assessed using the
“Seurat” R package. Quality control, normalization, and clustering
were finished before data acquisition (Okuda et al., 2023). Therefore,
a total of 29,473 genes and 67,626 cells, and an expression
matrix were included for subsequent analyses in this study. Cells
were annotated using known cell marker genes. The “COSG” R
package was used to implement Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses
for each cell type, based on the top 2,000 marker genes in each
cell type. We also detected the expression of DE-TrpGs in each cell
population. The TrpG score for each cell population was calculated
using the “UCell” R package based on 66 TrpGs. The cell population
with the highest TrpG score was selected for further analysis.

2.4 Intercellular communication analysis

The “CopyCAT” R package was used to analyze the copy number
variant (CNV) characteristics of the epithelial cell populations
and distinguish tumor cells from normal ones. The “COSG” R
package was used for GO enrichment analysis based on the
marker genes. Then, the “CellChat” R package was used to
investigate the potential interactions between tumor cells and
high-TrpG score cells. The CellChat analysis was complementarily
used for cell communication analysis based on the CellChat DB,
which contains 2,021 validated interactions, including 60% of
paracrine/autocrine signaling interactions, 21% of extracellular
matrix (ECM)-receptor interactions, and 19% of cell-cell contact
interactions (Jin et al., 2021).

2.5 Construction and validation of a TrpG
risk model

The least absolute shrinkage and selection operator machine
learning algorithm (LASSO) regression was used to select the
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prognostic TrpGs in the GSE121931 cohort using the “glmnet” R
package. Univariate Cox regression analysis was used to screen
protective factors for ESCC among the above LASSO-generated risk
factors in the GSE121931 and PXD021701 cohorts. The hazard ratio
(HR) and 95% confidence intervals (CI) were calculated. TrpGs
with HR > 1 were identified as risk factors, and those with HR
< 1 were identified as protective factors. A bilateral p < 0.05 was
considered statistically significant. Based on these protective factors,
the “ggrisk” R package was used to calculate a risk score and
construct a TrpG risk model in the GSE121931 cohort. The ESCC
patients were distributed into high-risk score and low-risk score
groups based on the median value of the risk score. Kaplan-Meier
overall survival (OS) curves were drawn using the “survival” R
package for the training (GSE121931) and validation (PXD021701)
cohorts. Receiver operating characteristic (ROC) curves for 1-, 2-,
and 3-year survival probabilities for ESCC patients were drawn using
the “timeROC” R package. Then, a nomogram was established using
the “rms” R package according to independent prognostic factors.
The calibration curves and decision curves were drawn to verify the
accuracy of the nomogram.

2.6 Analysis of the immune cell infiltration
landscape in TrpG risk score groups

The marker gene set of 28 immune cells was obtained and
referenced from a previous article (Charoentong et al., 2017). The
“IOBR” R package was used to estimate the proportion of immune
cells in the high- and low-risk groups. The correlation between
infiltrated cells and risk scores was also assessed by the “IOBR” R
package. The immune score, stromal score, and ESTIMATE score
were calculated using the ESTIMATE algorithm in the “TOBR” R
package. The differences in each score between the high- and low-
risk groups were determined by Student’s t-test, “**p < 0.001, **p
< 0.01, and *p < 0.05. The differences in the expression of immune
checkpoint genes between the high- and low-risk groups were
determined by Student’s t-test (***p < 0.001,**p < 0.01, and *p
< 0.05), and the correlation between the expression of immune
checkpoint genes and risk scores was detected using a Spearman’s
correlation analysis.

2.7 Drug sensitivity analysis of ESCC
patients in different TrpG risk score groups

The NCI-60 and RNA-seq
expression profiles from the CallMiner™ (https://discover.nci.nih.

compound activity data
gov/cellminer/home.do) were obtained to investigate the drug
sensitivity. Drugs approved by the Food and Drug Administration
(FDA) or in clinical trials were selected for analysis. The
“pRRophetic” R package and ridge regression analysis were used
to predict and evaluate the half maximal inhibitory concentration
(IC50) value for each sample. The differences in IC50 value between
the high- and low-risk groups were detected by the Student’s t-test
(**"p <0.001, "*p < 0.01, and *p < 0.05).
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2.8 ldentification of the TrpG risk score
associated with microbiota landscapes

The microbial abundance profiles at different taxonomic levels
for 40 ESCC tumor samples were obtained from the TCMA
database. The differences in microbiota were assessed using a
Student’s t-test (***p < 0.001, " *p < 0.01, and *p < 0.05).

2.9 Specimen collection

A total of 10 ESCC tumor samples and 10 normal samples
were obtained from patients who had been diagnosed with ESCC
and had not received any preoperative treatment at the Shandong
Public Health Clinical Center. The protocol for collecting clinical
samples was approved by the Ethics Committee of the Shandong
Public Health Clinical Center (approval number: 2021 XKYYEC-
37), and the patients provided informed consent before samples
were collected. The patients underwent surgical resection, and the
samples were frozen in liquid nitrogen immediately after collection
and stored at —80°C for further RNA extraction.

2.10 RNA extraction and quantitative
real-time polymerase chain reaction
(qPCR) analysis
TRIzol reagent (Takara, Dalian, China) was used to
isolate the total RNA from tissues, following the standard
protocol. RNA quantification was performed with a Nanodrop
(Thermo Fisher Scientific, MA, United States). To compare
expression levels between two groups, quantitative real-time
PCR (qRT-PCR) was performed using the RNA-direct SYBR
Realtime PCR Master Mix (Takara) and a Stratagene Mx3000P
Real-Time PCR System (Agilent Technologies, CA, United
States). The expression of each gene was determined by
using GAPDH as the reference gene. Each experiment was
performed in triplicate to obtain the average value. The qRT-
PCR results were analyzed with the 272" method. The primers
used are: GAPDH: CCTCAACTACATGGCTGAGAAC and
CAAGGGGTCTACATGGCAACT, MAOA: CCAGCGGTAGAAAT
CACCCA and TCTGATGAGCACATACACGTTACTT, AKRIAIL:
GGGTACCTGGAAGAGTGAGC and GATCTGAGCTGGAGATC
GGC, ALDHY9Al:  CAACCGGCCGAGTGATAGC  and
TGTGGTCGGTTGATGAGTGG, HAAO: AACAAGCTCATGCAC
CAGGA and CATGGTGTCGCCCACATAGT, ALDH2: TA

ATCCAGGTTGCTGCTGGG and AGTGCTCACCTCCTCCTTG.

2.11 Statistical analysis

All experimental results are expressed as the mean + standard
deviation (SD). Statistical analyses were performed using GraphPad
Prism software, version 8.3.0 (GraphPad Software, CA, United
States). The significant difference was determined using a two-
tailed Student’s t-test (two-group comparisons). P < 0.05 indicated
statistical significance.
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3 Results
3.1 Identification of the DE-TrpGs in ESCC

The workflow of this study is shown in Figure 1. A total
of 6,029 DEGs (3,074 upregulated and 2,955 downregulated)
between ESCC samples and normal samples in the GSE53625
cohort were identified with the criterion of [log(FC)| > 2 and
p < 0.01 (Figure2A; Supplementary Table 52). Then, 28 DE-
TrpGs were obtained by overlapping the 6,029 DEGs and
66 TrpGs (Figures 2B, C), which contained eight upregulated
(STAT1, IL4I1, TDO2, NMNAT3, KMO, IDO1, OGDHL, and
ACAT2) and 20 downregulated DE-TrpGs (ALDH9A1, ALDH3A2,
ADHI1B, AOX1, MAOA, ECHS1, ALDH2, ACAT1, HAAO,
ALDH7A1, HADHA, MAOB, AKR1A1, CYP4X1, INMT, CYP2Ul,
CAT, HADH, NMNATI1, and UGT2BI11) between ESCC and
normal samples (Figure 2B). These results indicate that tryptophan
metabolism is potentially involved in the ESCC tumorigenesis
and progression.

3.2 Identification of eight cell populations
in ESCC and calculation of TrpG score

We further investigated the influence of tryptophan metabolism
in the tumor microenvironment (TME) of ESCC based on single-
cell gene expression profiles. Eight primary cell populations were
identified with marker genes in ESCC (Figures 3A, B), including
25,627 T cells, 1,477 mast cells (Mast), 3,324 natural killer (NK)
cells, 7,998 myeloid cells (Myeloid), 14,425 fibroblasts (Fib),
1,574 endothelial cells (Endo), 8,344 B cells, and 4,857 epithelial
cells (Epi). We also found an increased abundance of immune
cells (T cells and B cells) and epithelial cells, and a decreased
abundance of fibroblasts in ESCC tumor samples compared
with normal samples (Figure 3C). GO and KEGG enrichment
analysis illustrated the different biological functions in the different
cell populations (Figures 3D, E). Especially, extracellular matrix
structural constituents, collagen-containing extracellular matrix,
focal adhesion, and ECM-receptor interaction were significantly
enriched in fibroblasts. The T cell receptor signaling pathway was
significantly enriched in the T cell population. We also found
the fibroblast population with the highest TrpG score in the
tumor microenvironment (TME) of ESCC (Figure 3F), and the
TrpG score in ESCC tumor samples was lower than in normal
samples (Figure 3G). We next explored the expression of 28 DE-
TrpGs, from which bulk RNA-seq data analysis in different cell
types showed that 18 DE-TrpGs (ALDH9A1, ALDH3A2, ADHI1B,
AOX1, MAOA, ECHSI1, ALDH2, ACAT1, HAAO, ALDH7AI,
HADHA, AKRI1A1l, CYP4Xl1, INMT, CYP2Ul, CAT, HADH,
and NMNAT1) were significantly expressed at the single-cell
level, especially the downregulated expression of fibroblasts in
ESCC tumor samples compared with normal samples (Figure 3H).
The single-cell RNA-seq results were consistent with the bulk
RNA-seq results: 18 DE-TrpGs were downregulated in ESCC
tumor samples compared with normal samples and were clearly
observed in fibroblasts.
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3.3 Intercellular communication analysis of
the fibroblasts and tumor cells

The TrpG scores of fibroblasts were found to be significantly
different between the normal groups and the ESCC group.
Therefore, we focused on the fibroblast subtypes in ESCC. As
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shown in Figure 4A, four subtypes of fibroblasts were identified,
including normal fibroblasts (normal Fib), myofibroblasts
(myCAF), antigen_CAFs, and perivascular-like fibroblasts (PVL).
The subtypes of normal Fib were mainly enriched in normal
samples, and the others were significantly enriched in ESCC
samples (Figure 4B). Furthermore, 564 malignant epithelial
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FIGURE 3

Identification of eight cell populations in ESCC and calculation of TrpG scores. (A) UMAP plots of the distribution of the eight cell populations based on
marker gene expression. (B) Bubble plots of the top four marker gene expressions of each cell cluster. (C) Histogram of the cell numbers of each cell
cluster in the ESCC samples and the normal samples. (D, E) Histograms of the top four GO and KEGG enrichment findings for each cell population. (F)
UMAP plots of the distribution of the eight cell populations with different TrpG scores. (G) Histogram of the cell numbers of each cell cluster with
different TrpG scores in the ESCC samples and the normal samples. (H) Bubble plots of the 28 DE-TrpG expressions of each cell cluster.

cells (aneuploid) and 83 benign epithelial cells (diploid) were
identified by calculating the CNV using the “copyCAT” R package
(Figures 4C, D). Biological functional enrichment analysis indicated
that malignant epithelial cells were significantly enriched in MYC
targets, MTORCI signaling, interferon alpha/gamma response, and
PI3K/AKT/MTOR signaling pathways (Figure 4E).

Then, we created a communication network to illustrate
the communication between fibroblasts and epithelial cells.
ECM-receptor analysis results indicated that malignant epithelial
cells mainly interacted with normal fibroblasts and myofibroblasts,
but a weaker association was found between benign epithelial
cells and myofibroblasts (Figure 4F). Heatmaps displayed the
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normal fibroblasts and myCAF, and malignant epithelial cells
represented the main signaling providers and the receptors,
The intercellular interactions were
mainly active in signaling pathways, including pathways involving
LAMNIN, HSPG, and ARGN (Figure 4G). Furthermore, secreted
signaling analysis results indicated a strong interaction between
malignant epithelial cells and normal fibroblasts and myofibroblasts
and a weaker interaction between benign epithelial cells and
myofibroblasts (Figure 4H). Heatmaps also represented normal
fibroblasts or myofibroblasts as the main signaling providers,

respectively (Figure 4G).

and the malignant epithelial cells were represented as the main
receptors (Figure 4I). The intercellular interactions were mainly
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involved in activation of several signaling pathways, including
MK, PTN, EGE and IGF (Figure 4I). Taken together, a strong
interaction between malignant epithelial cells and normal fibroblasts
or myofibroblasts and a weak interaction between benign epithelial
cells and fibroblasts or myofibroblasts indicate that communication
between malignant epithelial cells and normal fibroblasts or
myofibroblasts is transformed in the TEM of ESCC.

3.4 ldentification and validation of the
prognostic TrpGs in ESCC

Based on bulk RNA-seq data and scRNA-seq data analyses,
18 DE-TrpGs (ALDH9A1, ALDH3A2, ADHIB, AOX1, MAOA,
ECHSI1, ALDH2, ACAT1, HAAO, ALDH7A1, HADHA, AKR1A1,
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CYP4X1, INMT, CYP2U1, CAT, HADH, and NMNAT1) were
screened in ESCC, then incorporated into a LASSO regression
model to select the diagnostic TrpGs in ESCC. As a result, 13 TrpGs
(ALDH9A1, ADHI1B, AOX1, MAOA, ECHS1, ALDH2, ACAT1,
HAAO, ALDH7A1, HADHA, AKRI1A1, CAT, and HADH) were
identified in the GSE121931 cohort (Figures 5A, B). In addition,
univariate Cox analysis was performed to identify the protective
factors for ESCC: 10 protective factors (MAOA, INMT, ALDH7A1,
AOX1, AKRI1A1l, ALDH9AI, ACAT1, HAAO, ALDH2, and
HADH) were identified in the GSE121931 cohort (Figure 5C). Ten
protective factors (HAAO, KYAT3, ADH1B, ALDH2, ALDH9A1,
ALDH9A2, MAOA, CAT AKRIAI, ECHS1) were identified in
the PXD021701 cohort (Figure 5C). Finally, five protective factors
(MAOA, AKR1A1, ALDH9A1, HAAO, and ALDH2) were obtained
by overlapping the above results (Figure 5D).
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A TrpG risk score was calculated, and the patients were
distributed into high-risk and low-risk groups based on the
median risk score in both the GSE121931 and PXD021701
cohorts (Figures 5E, H). Kaplan-Meier OS curves indicated that
patients with high-risk scores have a poor survival time in
both the GSE121931 and PXDO021701 cohorts (Figures5F I).
AUC values for 1-, 2-, and 3-years were 0.630, 0.651, and
0.633 in the GSE121931 cohort, respectively (Figure 5G). AUC
values for 1-, 2-, and 3-years were 0.629, 0.620, and 0.600 in
the PXD021701 cohort, respectively (Figure 5]). These findings
suggested that the five-TrpG signature had good prognostic value
in both cohorts. Multivariate Cox regression analysis was used
to identify the independent prognostic factor for ESCC patients
by incorporating the clinical clinicopathological characteristics
(tumor grade and lymph node stages), and the five-TrpG signature,
HAAO, ALDH2, and lymph node stages were identified as the
independent factors for ESCC to generate a nomogram for 1-,
2-, 3-year survival prediction (Figure 5K). The calibration curve
indicated the good performance of the nomogram for 2-year
survival prediction (Figure 5L). The decision curves indicated the
sensitivity of the factors (Figure 5M). Additionally, we collected
ESCC samples to examine the expression levels of five protective
factors (MAOA, AKR1Al, ALDH9A1, HAAO, and ALDH2).
The results revealed that the expression of MAOA, AKRIAI,
ALDH9A1, HAAO, and ALDH2 was significantly downregulated in
ESCC tumor tissues compared to non-tumor tissues (Figure 6).
These findings suggest that these five genes may serve as
potential protective factors and hold promise as diagnostic
biomarkers for ESCC.

3.5 Correlation analysis between the TrpG
risk score and immune cell infiltration,
immune checkpoint gene expression, and
drug sensitivity

We next evaluated the correlation between the TrpG risk score,
immune characteristics, and drug sensitivity. The results indicated
that the high enrichment scores of regulatory T cells (Treg),
CD56 dim natural killer (NK) cells, eosinophils, type 17 T helper
(Th17) cells, activated CD8 T cells, neutrophils, and activated B
cells were significantly enriched in the high-TrpG risk score group
compared with the low-TrpG risk score group. However, CD56
bright (NK) cells, activated dendritic cells (DCs), effector memory
CDA4T cells, gamma delta (y§) T cells, central memory CD4 T
cells, and immature DCs were significantly decreased in the high-
TrpG risk score group compared with the low-TrpG risk score
group (Figures 7A, B). We also found a high immune score in
the high-TrpG risk score group compared with the low-TrpG risk
score group (Figure 7C). Moreover, we found high expression of
immune checkpoint genes (KIR2DL1, LGALS9, TNFRSF18, and
TNFRSF4) in the high-TrpG risk score group compared with the
low-TrpG risk score group (Figure 7D). The above findings suggest
that the TrpG risk score is positively associated with immune
cell infiltration; a high TrpG risk score possibly indicates more
immune activation. We also estimated the sensitivity to drug
therapy, resulting in ESCC patients with high-TrpG risk scores being
less sensitive to drugs, such as lapatinib, gemcitabine, etoposide,
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erlotinib, elesclomol, doxorubicin, docetaxel, dasatinib, cisplatin,
and bleomycin; however, they were more sensitive to imatinib
and axitinib (Figure 7E).

3.6 Correlation analysis between the TrpG
risk score and microbial abundance

Furthermore, to explore whether there were specific candidate
microbial abundances associated with the TrpG risk score.
As shown in Figure 8, we discovered that the relative abundance
of Fusobacteria and Tenericutes was decreased in the high-TrpG
risk score group compared to the low-TrpG risk score group.
These findings indicate that microbes may be involved in the
progression of ESCC.

4 Discussion

Growing evidence highlights the vital role of tryptophan
(Trp)
(ESCC), particularly involving key enzymes such as IDOI1
and TDO2. Elevated IDOL1
unfavorable clinical outcomes in ESCC patients (Kiyozumi et al.,

metabolism in esophageal squamous cell carcinoma

expression is associated with
2019). Similarly, TDO2 overexpression correlates with tumor
growth, progression, immune regulation, and poor outcomes
in ESCC patients (Pham et al, 2018; Zhao et al, 2021).
Nevertheless, many Trp metabolism-related markers in ESCC
remain unidentified.

In the present study, transcriptome analysis identified 28
DE-TrpGs in ESCC compared with normal samples, including
eight upregulated (STAT1, IL4I1, TDO2, NMNAT3, KMO,
IDO1, OGDHL, and ACAT2) and 20 downregulated DE-TrpGs
(ALDH9A1, ALDH3A2, ADH1B, AOX1, MAOA, ECHS1, ALDH2,
ACAT1, HAAO, ALDH7A1, HADHA, MAOB, AKR1A1, CYP4X1,
INMT, CYP2U1l, CAT, HADH, NMNAT1, and UGT2BI11).
Meanwhile, based on the scRNA-seq data, eight primary cell
populations were identified in ESCC: T cells, mast cells, NK cells,
myeloid cells, fibroblasts, endothelial cells, B cells, and epithelial
cells. Of these cell populations, the population of fibroblasts with
the highest TrpG score was identified in the TME of ESCC.
Notably, 18 of the 20 downregulated DE-TrpGs (ALDH9AI,
ALDH3A2, ADHI1B, AOX1, MAOA, ECHS1, ALDH2, ACAT1,
HAAO, ALDH7A1, HADHA, AKR1A1, CYP4X1, INMT, CYP2U]1,
CAT, HADH, and NMNATI) showed significantly reduced
expression specifically in ESCC fibroblasts compared to their
normal counterparts. Consequently, we focused our analysis on
fibroblasts and further defined them as four distinct subtypes,
including normal fibroblasts, myofibroblasts, antigen_CAFs, and
perivascular-like. We also identified malignant epithelial cells and
observed altered communication between these malignant cells and
either normal fibroblasts or myofibroblasts within the ESCC TME.
This intercellular crosstalk appears to be mediated through several
signaling pathways, including LAMININ, HSPG, ARGN, MK, PTN,
EGEF, and IGE.

Cell-to-cell communication within the TME critically influences
tumor progression. A feedback loop between lung fibroblasts and
lung cancer cells has been identified in lung cancer, with the
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Validation of the five prognostic TrpGs in ESCC. (A—E) Histogram plots showing the expression of (A) MAOA; (B) AKR1A1; (C) ALDH9AL; (D) HAAO; (E)

ALDH2 in ESCC tumor and non-tumor normal samples.

feedback loop maintained by Trp metabolism to sustain lung
cancer progression (Hsu et al, 2016). It has also been found
that fibroblasts release a tryptophan metabolite that blocks cancer
cell epithelial-mesenchymal transition (EMT), migration, invasion,
and metastasis (Cheng et al., 2016). A scRNA-sequencing analysis
indicated that TDO2+ myofibroblasts distant from the tumor
nest induce the transformation of CD4" T cells into Tregs and
cause CD8" T cell dysfunction in oral squamous cell carcinoma
(OSCC) (Hu et al., 2022). IDO1+ ovarian cancer (OC) cells were
found to be mediated by exosomes to promote endothelial cell
mitophagy (Ying et al., 2024). Building on this evidence on the role
of Trp metabolism in intercellular crosstalk, we reported for the
first time that communication between malignant epithelial cells
and normal fibroblasts or myofibroblasts is dysregulated by Trp
metabolism in ESCC.

Therefore, we explored the prognostic values of the 18 DE-
TrpGs that were downregulated in tumor samples compared
with normal samples using either bulk RNA-seq data or
scRNA-seq data. Five TrpGs (MAOA, AKRIAl, ALDHO9AI,
HAAO, ALDH2) were identified and validated as the protective
factors for ESCC by machine learning. Consistent with this
finding, analysis of clinical samples confirmed significantly
downregulated expression of MAOA, AKR1Al, ALDHO9AI,
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HAAO, and ALDH2 in ESCC tumor tissues compared to
normal tissues.

Monoamine oxidase A (MAOA), primarily known as a
mitochondrial enzyme in the brain (Kolla and Bortolato,
2020) and as an immune checkpoint in antitumor therapy
(Wang et al., 2021), also negatively regulates the Trp metabolism-
mediated anti-ferroptotic pathways that promote tumor growth
(Liu et al,, 2023). Consistent with this role, we found that
MAOA acts as a protective factor in ESCC by influencing
the Trp metabolism. Aldehyde reductase (AKRI1AI)
novel mammalian S-nitroso-glutathione reductase (SNO-CoA)
(Stomberski et al., 2019).

The polymorphic allele C of the AKRI1A1 rs2088102 might act
as a potential protective factor for chemotherapy in breast cancer

is a

patients (Cui et al., 2021). Here, we first reported the protective
role of AKR1AL1 in ESCC, mediated by Trp metabolism regulation.
Aldehyde dehydrogenase 9 family member A1 (ALDH9A1) and
aldehyde dehydrogenase 2 (ALDH2) belong to the aldehyde
dehydrogenase (ALDH) superfamily, catalyzing aldehyde oxidation
to carboxylic acids using NAD(P)+ as a coenzyme (Suazo et al.,
2023; Lietal, 2016; ] et al., 2019). The role of ALDH9A1 in tumors
is rarely reported, with susceptibility loci of ALDH9A1 for renal
cell carcinoma (RCC) and prostate cancer (Henrion et al., 2015;
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Correlation analysis between the TrpG risk score and immune cell infiltration, immune checkpoint gene expression, and drug sensitivity. (A) Boxplots
show the differences in infiltrated immune cells between the high-risk and low-risk groups. (B) The heatmap showing the infiltrated immune cells
between the high-risk and low-risk groups. (C) Violin plots of the differences in the ESTIMATE score, immune score, stromal score, and tumor purity
between the high-risk and low-risk groups. (D) Left: Violin plots of the differences in the expression of immune checkpoints (KIR2DL1, LGALS9,
TNFRSF18, TNFRSF4) between the high-risk and low-risk groups. Right: Histogram of the correlation between the expression of immune checkpoints
and risk score. (E) Histogram of the response to drug therapy between the high-risk and low-risk groups.

Bova et al,, 2016). Our study newly identified a potential function
for ALDH9A1 in ESCC. Conversely, ALDH2 contributes to the
occurrence, progression, and treatment of various types of cancer
and acts as a potential therapeutic target for cancer therapy (Zhang
and Fu, 2021; Yao et al,, 2021). Genetic polymorphisms of ALDH2
are associated with the risk of ESC in China (Yang et al., 2007;
Wu et al., 2013).

3-Hydroxyanthranilate 3,4-dioxygenase (HAAO) encodes the
enzymes essential for the NAD + de novo synthesis pathway
(Schiile et al., 2021). Methylation of HAAO serves as a valuable

Frontiers in Molecular Biosciences

11

prognostic marker in ovarian cancer (OC) and prostate cancer (PC)
(Huang et al., 2009; Litovkin et al., 2014; Li Y. et al., 2021), and loss
of HAAO promotes cancer cells resistant to ferroptosis (Liu et al.,
2023). We were the first to identify HAAO as a valuable prognostic
marker for ESCC.

We constructed a TrpG risk score to predict ESCC prognosis.
Critically, ESCC patients with high-risk scores exhibited
significantly poorer survival outcomes. Our analysis revealed
distinct patterns of immune cell infiltration associated with TrpG
risk scores. High-risk scores showed increased levels of Treg,
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Correlation analysis between the TrpG risk score and microbial abundance.

CD56dim NK cells, eosinophils, Th17 cells, activated CD8T
cells, neutrophils, and activated B cells. Conversely, the high-risk
score displayed reduced levels of CD56bright NK cells, activated
DC, effector memory CD4 T cells, y§ T cells, central memory
CD4 T cells, and immature DCs. Furthermore, the TrpG high-risk
group demonstrated significantly higher expression of the immune
checkpoint molecules (KIR2DL1, LGALS9, TNFRSF18, TNFRSF4).
Given these distinctly different immune profiles between the TrpG
high-risk and low-risk groups, we investigated correlations with
drug therapy sensitivity. ESCC patients with high-TrpG risk scores
are more sensitive to imatinib and axitinib than those with low-
TrpG risk scores. Finally, microbiome analysis indicated that
the relative abundance of the bacterial phyla Fusobacteria and
Tenericutes is associated with low-TrpG risk scores.

5 Conclusion

In the present study, we integrated multi-omics data,
including single-cell RNA sequencing (scRNA-seq), bulk RNA-
seq, transcriptomics,
profiles, to systematically identify fibroblasts critically involved
in tryptophan (Trp) metabolism within ESCC. We identified
five key Trp metabolism-related genes (TrpGs) and leveraged

proteomics, and microbial abundance

these to construct a robust five-gene prognostic risk model for
ESCC patients.
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