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Background: Osteoporosis (OP) is a systemic metabolic bone disease that
may increase the risk of disability or death. Increasing evidence suggests that
circadian rhythms play an important role in OP, yet the specific mechanisms
remain unclear. Therefore, this study aims to utilize bioinformatics and
machine learning algorithms to identify novel diagnostic biomarkers related
to the circadian rhythm in OP, providing new targets for early diagnosis and
treatment of OP.

Methods: The OP dataset GSE56815 was downloaded from the GEO database,
differential expression analysis was performed to identify differentially expressed
genes (DEGs) between OP and control samples. DEGs were intersected with
circadian rhythm-related genes (CRRGs) to obtain circadian rhythm-related
differentially expressed genes (CRRDEGs), which were subjected to Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses. Four machine learning algorithms were applied to identify
key genes for constructing a diagnostic model. The diagnostic performance
of the model was validated by plotting receiver operating characteristic (ROC)
curves using the GSE7158 dataset. Gene set enrichment analysis (GSEA) was
performed on the key genes. Single-sample gene set enrichment analysis
(ssGSEA) was used to analyze immune cell infiltration and explore the correlation
between key genes and immune cells. Drug-gene interaction networks and
competitive endogenous RNA (ceRNA) networks were constructed using
the key genes.

Results: A total of 140 CRRDEGs were identified. By comparing four machine
learning algorithms, the top five genes from the SVM algorithm (ECE1,
FLT3, APPL1, RAB5C and FCGR2A) were determined as key genes for
OP. The diagnostic model based on these five key genes demonstrated
high diagnostic performance, with AUC of 0.904 for the training set and
0.887 for the validation set. Immune cell infiltration analysis revealed that
Type 2 T helper cells and CD56dim natural killer cells were significantly
upregulated in the OP group, while activated dendritic cells were significantly
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downregulated. The drug-gene interaction network and ceRNA network
constructed based on the key genes revealed potential therapeutic
targets for OP.

Conclusion: This study identified ECE1, FLT3, APPL1, RAB5C and FCGR2A as
circadian rhythm-related novel diagnostic biomarkers for OP, providing new
insights for further understanding the early diagnosis and treatment of OP.
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1 Introduction

Osteoporosis (OP) is a common systemic metabolic bone
disease characterized by decreased bone mass and microstructural
damage, leading to an increased risk of bone fragility and fractures
(Letarouilly et al., 2019; Barbuto et al., 2024). Clinically, OP-related
fractures are one of the leading causes of disability and death in
elderly patients (Ensrud and Crandall, 2024; Stromsnes et al., 2024).
With the continuous growth of the global population, the prevalence
of age-related chronic diseases is gradually increasing (Hu et al.,
2025). Epidemiological surveys indicate that the prevalence of OP in
individuals over 50 years old is 19%, and in those over 65 years old, it
is 32% (Shen et al., 2022). Due to the asymptomatic nature of early-
stage OP, it is often diagnosed only when fractures occur, imposing
significant health and economic burdens on patients (Qi et al., 2025).
Therefore, early detection, prevention, and diagnosis of OP have
become crucial public health issues.

Circadian rhythms are endogenous regulators present in both
the central nervous system and peripheral tissues, with a cycle
of approximately 24 h (Liu et al., 2024; Brécier et al., 2023).
In the body, circadian rhythms influence various biological and
physiological processes, such as sleep, metabolism, blood pressure,
heart rate, cell cycle, and bone tissue growth (Stothard et al.,
2020; Tian and Ming, 2022). Increasing research indicates that
circadian rhythms play an important role in bone remodeling and
growth (Mei et al., 2024; Kikyo, 2024). For example, circadian
rhythms can affect the concentration of bone turnover markers
(BTMs) in plasma, thereby influencing the bone remodeling process
(Redmond et al., 2016). The circadian rhythm gene BMAL1 has
been shown to inhibit osteoclast formation by suppressing the NF-
κB signaling pathway, thus affecting osteogenesis ability (Li et al.,
2018). Additionally, the circadian rhythmgeneREV-ERB can impact
the proliferation and differentiation of bone marrow mesenchymal
stem cells (BMSCs) into osteoblasts, and its agonists have the ability
to inhibit osteoclast formation and bone loss (Song et al., 2018).
However, the mechanisms and roles of circadian rhythms in OP
remain unclear. Therefore, studying the effect of circadian rhythms
on OP is crucial for further understanding the pathogenesis of OP.

Machine learning has been widely applied in the medical
field, particularly in disease prediction, drug target discovery,
and personalized diagnostics (Xuan et al., 2023; Weintraub et al.,
2018). However, its application in the diagnosis and treatment
of OP remains limited. In this study, we aimed to identify
circadian rhythm-related biomarkers for OP using bioinformatics
and machine learning techniques (Figure 1). We first obtained
OP datasets from the GEO database and intersected it with

circadian rhythm-related genes (CRRGs) to identify circadian
rhythm-related differentially expressed genes (CRRDEGs). Then,
four machine learning algorithms were applied to identify key
genes and construct a diagnostic model for OP. Meanwhile,
the diagnostic value of the model and key genes was validated
using the training set. Furthermore, immune cell infiltration
analysis was performed using single-sample gene set enrichment
analysis (ssGSEA), and the correlation between key genes and
immune cells was explored. Finally, a drug-gene interaction
network and competitive endogenous RNA (ceRNA) network
were constructed using the key genes. These results may offer
novel insights into potential strategies for the early diagnosis and
treatment of OP.

2 Materials and methods

2.1 Data collection

In this study, the datasets GSE56815 andGSE7158were obtained
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/).
GSE56815was used as the training set and included peripheral blood
mononuclear cell (PBMC) samples from 40 patients diagnosed with
OP and 40 healthy controls. GSE7158 served as the validation set
and contained PBMC samples from 12 OP patients and 14 healthy
controls. Additionally, 1,363 CRRGs were collected from the CGDB
database (http://cgdb.biocuckoo.org).

2.2 Circadian rhythm-related differentially
expressed genes

Differential expression analysis was performed using the
“limma” package in R to identify differentially expressed genes
(DEGs) between OP samples and control samples. The filtering
criteria were |log FC| >0.1 and P < 0.05. The results were
then visualized using the “pheatmap” and “ggplot2″ packages
in R. Additionally, the intersection of DEGs and CRRGs was
obtained to identify CRRDEGs, which were displayed using a Venn
diagram.

To evaluate whether the overlap between DEGs and circadian
genes was statistically significant, we performed Fisher’s exact test
using the total gene set. The test assessed the enrichment of CRRGs
within the DEGs.
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FIGURE 1
The flowchart of this study.

2.3 Functional enrichment analysis

Gene ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis were performed on CRRDEGs using the “clusterProfiler”
package in R. The filtering criterion was adjusted P < 0.05 to explore
the biological functions of the CRRDEGs.

2.4 Machine Learning for Key Gene
Selection

In this study, four machine learning algorithms were used to
select key genes from the circadian rhythm-related differentially
expressed genes (CRRDEGs): Support Vector Machine (SVM),
Random Forest (RF), Generalized Linear Model (GLM) and
Extreme Gradient Boosting (XGB). Specifically, the “caret” package
in R was used to build the models, while the “DALEX” package
in R was used to generate residual distribution results for model

interpretation. Additionally, the “pROC” package inRwas employed
to plot receiver operating characteristic (ROC) curves to evaluate the
accuracy of the prediction models. Finally, by determining the best-
performing model, the top five most important genes were selected
as key genes.

2.5 Construction and validation of the
diagnostic model

A disease diagnostic model was constructed using the key
genes. Firstly, the “rms” package in R was used to build a
nomogram for the diagnostic model, and the calibration curve
was employed to verify the accuracy of the model. Next, Decision
Curve Analysis (DCA) was used to assess the clinical utility of
the model. Additionally, the Receiver Operating Characteristic
(ROC) curve was applied to predict the diagnostic value of
the key genes in OP. Finally, the diagnostic performance of
the model was evaluated using the training set GSE7158. This
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comprehensive analysis ensures the models effectiveness in
distinguishing OP from control samples and its potential for clinical
application.

2.6 Gene set enrichment analysis of the key
genes

To further explore the potential regulatory pathways of the
key genes in OP, GSEA analysis was performed using the
“GSEA” package in R, with P < 0.05 considered as significantly
enriched.

2.7 Immune cell infiltration analysis

Immune cell infiltration analysis was performed using ssGSEA.
Additionally, the “GSVA” package in R was used to study the
relationship between key genes and immune cells, and the results
were visualized using the “ggplot2″ package in R.

2.8 Construction of the drug regulation
network and ceRNA network

The drug-gene interactions between the key genes and potential
drugs were analyzed using the Drug-Gene Interaction Database
(DGIdb) (https://www.dgidb.org/), and the data results were
output. Then, drugs labeled as ‘Approved’ under ‘regulatory
approval’ were imported into Cytoscape software for visualization.
Additionally, miRNAs associated with the key genes were
predicted using the miRanda (http://www.microrna.org/), miRDB
(http://mirdb.org/), and TargetScan (http://www.targetscan.org/)
databases. Subsequently, lncRNAs related to the key genes were
predicted using the spongeScans database (http://mirtoolsgallery.
tech/mirtoolsgallery/node/1798). Finally, the ceRNA network
was constructed using Cytoscape software, and the results were
visualized.

3 Results

3.1 Identification of CRDEGs

A total of 1,215 DEGs were identified from the OP and control
group samples, with 579 upregulated genes and 636 downregulated
genes (Supplementary Table S1). A volcano plot (Figure 2A) was
used to visualize theDEGs.Aheatmapwas created to visually display
the top 20 upregulated and 20 downregulated genes (Figure 2B).
Additionally, the intersection of DEGs and CRRGs revealed 140
CRRDEGs (Supplementary Table S2), with 71 upregulated and 69
downregulated genes (Figure 2C). A gene correlation heatmap was
used to present the top 40 CRRDEGs (Figure 2D).

To assess the statistical significance of this overlap, Fisher’s exact
test was performed using the full set of 14,208 profiled genes.The test
yielded a p-value of 0.0191, suggesting a non-random enrichment of
CRRGs among DEGs.

3.2 Functional enrichment analysis

The biological significance of CRRDEGs was further analyzed
through GO and KEGG enrichment analyses. GO enrichment
analysis revealed that, in biological processes (BP), CRRDEGs
were mainly enriched in processes such as regulation of
innate immune response, regulation of T cell activation, and
biological process involved in symbiotic interaction (Figure 3A).
In cellular components (CC), CRRDEGs were mainly enriched
in processes such as specific granule lumen, specific granule
and tertiary granule lumen (Figure 3B). In molecular functions
(MF), CRRDEGs were mainly enriched in processes such
as virus receptor activity and exogenous protein binding
(Figure 3C). Furthermore, KEGG enrichment analysis indicated
that CRRDEGs were primarily enriched in signaling pathways such
as Insulin signaling pathway, Endocytosis and Insulin resistance
(Figure 3D) (Supplementary Table S3).

3.3 Machine Learning for Key Gene
Selection

In this study, four machine learning algorithms (RF, SVM, GLM
and XGB) were employed to identify key genes related to circadian
rhythm in OP. Residual analysis showed that the SVM model had
the lowest residual values, while the GLM model had the highest
(Figures 4A,B). The ROC curve indicated that the SVM model
achieved the highest AUC value (0.958), outperforming RF (0.910),
XGB (0.840), and GLM (0.750), suggesting superior classification
performance (Figure 4C). In addition, we compared the feature
importance profiles across all models (Figure 4D).

To reduce the risk of overfitting, five-fold cross-validation was
applied and hyperparameter optimization was performed during
model training. Based on the above analysis, the SVM model was
identified as the optimal algorithm. Subsequently, the top five genes
ranked by the SVM model (ECE1, FLT3, APPL1, RAB5C and
FCGR2A) were selected as key genes (Supplementary Table S4) and
used to construct a diagnostic model for OP.

3.4 Construction and validation of the
diagnostic model

To further improve the clinical applicability of diagnosing OP,
a nomogram diagnostic model was constructed using the five key
genes (Figure 5A). The calibration curve showed that the calibration
dashed line was nearly overlapping with the model’s diagonal line,
indicating a high predictive value (Figure 5B).DCA results indicated
that the model curve was higher than both the ALL and None
curves, suggesting high clinical utility (Figure 5C). Furthermore, the
models AUC value was 0.904 (95%CI: 0.831–0.960), indicating high
diagnostic performance (Figure 5G). ROC curve analysis showed
that ECE1, FLT3, APPL1, RAB5C and FCGR2A all demonstrated
high diagnostic performance (0.6 < AUC <0.8) (Figure 5H).

Meanwhile, the diagnostic accuracy of the model was validated
using the external dataset GSE7158. The nomogram shows that the
key genes have high diagnostic efficacy for the model (Figure 5D).
The calibration curve indicates that the calibration dashed line is
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FIGURE 2
Identification of DEGs. (A) Volcano plot of DEGs. Red indicates upregulated genes, green indicates downregulated genes, and black indicates
non-significant genes. (B) Heatmap of the top 40 DEGs. Red indicates upregulated genes, and green indicates downregulated genes. (C) Venn diagram
of the intersection of DEGs and CRRGs. (D) Gene correlation heatmap of the top 40 CRRDEGs.

close to the model’s diagonal, suggesting good predictive value for
clinical diagnosis (Figure 5E). DCA results demonstrate that these
key genes have good clinical applicability (Figure 5F). ROC curve
analysis shows that the model AUC value was 0.887 (95% CI:
0.732–1.000), indicating high diagnostic performance (Figure 5I).
ROC curve analysis of the key genes shows that these genes have
high diagnostic value (0.5 < AUC <0.7) (Figure 5J). In conclusion,
this model exhibits high diagnostic performance in OP diagnosis.

3.5 GSEA analysis

GSEA results show that ECE1 is mainly enriched in pathways
such as Cell Cycle, Dilated Cardiomyopathy, Hypertrophic
Cardiomyopathy, Nucleotide Excision Repair, and Proteasome
(Figure 6A); FLT3 is mainly enriched in pathways such as Cell
Cycle, Chemokine Signaling Pathway, Focal Adhesion, MAPK
Signaling Pathway and Natural Killer Cell Mediated Cytotoxicity
(Figure 6B); APPL1 is mainly enriched in pathways such as
Antigen Processing and Presentation, Autoimmune Thyroid
Disease, Natural Killer Cell Mediated Cytotoxicity, Proteasome

and Systemic Lupus Erythematosus (Figure 6C); RAB5C is mainly
enriched in pathways such as Acute Myeloid Leukemia, Chemokine
Signaling Pathway, Lysosome, Neurotrophin Signaling Pathway and
Parkinson’s Disease (Figure 6D); FCGR2A is mainly enriched in
pathways such as Chemokine Signaling Pathway, Hematopoietic
Cell Lineage, Lysosome, Pentose and Glucuronate Interconversions,
and Spliceosome (Figure 6E).

3.6 Immune cell infiltration analysis

The boxplot results show that, compared with the control
group, Type 2 T helper cells and CD56dim natural killer cells are
significantly upregulated in the OP group, while activated dendritic
cells are significantly downregulated (Figure 7A). Additionally, the
correlation analysis between key genes and immune cell infiltration
shows that RAB5C is positively correlated with Central memory
CD8 T cells,Macrophages andMDSCs; FLT3 is positively correlated
with Type 2 T helper cells, but negatively correlated with Central
memory CD4 T cells, Monocytes, Regulatory T cells and T follicular
helper cells; FCGR2A is positively correlated with Central memory
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FIGURE 3
Functional enrichment analysis. (A) Bubble plot of BP enrichment analysis. (B) Bubble plot of CC enrichment analysis. (C) Bubble plot of MF enrichment
analysis. (D) Bubble plot of KEGG enrichment analysis.

CD8 T cells, but negatively correlated with Immature dendritic
cells and Type 1 T helper cells; ECE1 is positively correlated with
Monocytes; APPL1 is positively correlated with Effector memory
CD4 T cells and Gamma delta T cells, but negatively correlated
with CD56dim natural killer cells, Central memory CD4 T cells,
Central memory CD8 T cells, Monocytes and Natural killer cells
(Figure 7B).

3.7 Construction of the drug regulation
network and ceRNA network

The drug-gene interaction analysis results show that one
drug targets ECE1; 49 drugs target FLT3; six drugs target

FCGR2A; no potential drugs were found for APPL1 and RAB5C
(Supplementary Table S5). Additionally, the data was visualized
using Cytoscape (Figure 8).

To further explore the potential regulatory mechanisms
of key genes, a lncRNA-miRNA-mRNA regulatory network
was constructed. In this study, the miRNA targets of the five
key genes were predicted using three databases: miRanda,
miRDB and TargetScan. Subsequently, the lncRNA targets were
predicted using the spongeScans database, and the ceRNA
network was constructed using Cytoscape software (Figure 9).
In conclusion, the ceRNA network constructed in this
study may help further understand the potential regulatory
mechanisms of OP, providing new directions for disease
treatment.
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FIGURE 4
Machine Learning for Key Gene Selection. (A) Residual plot for the RF, SVM, GLM and XGB models. (B) Residual cumulative distribution plot for the RF,
SVM, GLM and XGB models. (C) ROC curve analysis for the RF, SVM, GLM and XGB models. (D) Feature importance generated by the RF, SVM, GLM and
XGB models.

4 Discussion

OP is a systemic bone disease in middle-aged and elderly
individuals, characterized primarily by low bone mass and
disruption of bone microstructure, which increases the risk of
fractures (Ensrud and Crandall, 2017). Due to the early symptoms

of OP and the lack of clear diagnostic indicators, patients who
experience fractures often suffer from severe pain, reduced
mobility, and a decline in their quality of life (Yu and Xia,
2019; Alimy et al., 2024). It is estimated that approximately nine
million fractures occur annually among OP patients worldwide
(Yaacobi et al., 2017). Previous studies have suggested that
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FIGURE 5
Construction and validation of the diagnostic model. (A) Nomogram of the diagnostic model. (B) Calibration curve of the diagnostic model. (C) DCA
curve of the diagnostic model. (D) Nomogram of the diagnostic model for the validation set. (E) Calibration curve of the diagnostic model for the
validation set. (F) DCA curve of the diagnostic model for the validation set. (G) ROC curve analysis of the diagnostic model. (H) ROC curve analysis of
the key genes. (I) ROC curve analysis of the diagnostic model for the validation set. (J) ROC curve analysis of the key genes for the validation set.

dysregulation of circadian rhythm-related genes may contribute to
the development of OP, but the underlying molecular mechanisms
remain incompletely understood (Li et al., 2016). In this study, we
integrated bioinformatics and machine learning approaches for the
first time to identify circadian rhythm-related biomarkers associated
with OP, providing new insights into its pathogenesis.

In this study, 140 CRRDEGs were identified through
bioinformatics, and GO and KEGG enrichment analyses were
performed. GO enrichment analysis revealed that these genes
were primarily involved in immune-related processes, including
the regulation of innate immune response and regulation of T
cell activation. Previous studies have demonstrated that activation
of innate immune cells can promote the release of inflammatory
cytokines, which in turn induce osteoclast differentiation and
play a critical role in the pathogenesis of OP (Saxena et al.,
2021). Moreover, T cells can influence the differentiation and
activity of osteoblasts and osteoclasts through paracrine signaling,
thereby affecting bone remodeling (Fischer and Haffner-Luntzer,

2022). KEGG enrichment analysis indicated that these genes were
associated with the insulin signaling pathway and insulin resistance.
The insulin signaling pathway has been shown to regulate the activity
of osteoblasts and osteoclasts, thus influencing bone metabolism
(Fulzele et al., 2010). In addition, insulin resistance has been linked
to structural abnormalities in bone tissue and reduced bone mineral
density (Jia et al., 2024). Interestingly, circadian rhythms play a
critical role in regulating insulin sensitivity in peripheral tissues
(including bone),disruption of circadian rhythms may exacerbate
metabolic dysfunction and accelerate bone loss (Luo et al.,
2021).Collectively, these findings suggest that circadian rhythm-
related genes may contribute to the development of OP, providing a
theoretical basis for early diagnosis and therapeutic.

To identify key genes closely associated with circadian rhythm
in OP, we used four machine learning algorithms and compared
the results, determining the top five genes from the SVM
algorithm as key genes for OP: ECE1, FLT3, APPL1, RAB5C
and FCGR2A. Endothelin-converting enzyme 1 (ECE1) is a
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FIGURE 6
GSEA analysis. (A) GSEA analysis of ECE1. (B) GSEA analysis of FLT3. (C) GSEA analysis of APPL1. (D) GSEA analysis of RAB5C. (E) GSEA
analysis of FCGR2A.

FIGURE 7
Immune cell infiltration analysis. (A) Boxplot analysis of 28 immune cell infiltrations between the OP group and the control group. (B) Heatmap of the
correlation analysis between key genes and immune cells. ∗P < 0.05; ns denotes no significance.

highly specific metalloprotease that is abundantly expressed in
endothelial cells of various organs, such as the brain, heart,
liver, adrenal glands, and kidneys (Kuruppu and Smith, 2012;
Xu et al., 1994) Additionally, ECE1 can cleave big endothelin-1
to produce the bioactive endothelin-1 (ET-1) (Arfian et al., 2020).
ET-1 has been shown to promote osteoblast differentiation and
mineralization, thereby influencing bone growth (Johnson et al.,
2014). Interestingly, alterations in the activity of the ECE1 gene
may affect bone density, thus contributing to the progression of
OP (Hansen et al., 2019). FMS-like tyrosine kinase 3 (FLT3) is
a type III receptor tyrosine kinase expressed in hematopoietic
cells, involved in the regulation, maintenance, proliferation, and
differentiation of cells (Liu and Gu, 2024; Negotei et al., 2023).

Previous studies have indicated that FLT3 may influence bone
density and the occurrence of fractures in postmenopausal women,
thereby affecting the progression of OP (Koh et al., 2007). Hu
et al. found that FLT3 may be involved in ferroptosis in OP,
although its exact mechanism remains unclear (Long et al., 2024).
Interestingly, FLT3 ligands can promote osteoclast differentiation,
thus affecting bone remodeling in arthritis (Svensson et al., 2016).
APPL1 is an adaptor protein that influences cellular functions,
such as cell proliferation, migration, and adhesion, by regulating
intracellular transport and signal transduction pathways (Wen et al.,
2020; Diggins and Webb, 2017). Increasing evidence suggests
that APPL1 plays a significant role in the pathogenesis of OP.
Zhang et al. found that the expression of APPL1 is reduced
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FIGURE 8
Construction of the drug-gene interaction network. The red ovals represent key genes, and the blue diamond represent predicted drugs.

in OP and negatively regulates adipogenic differentiation in
human mesenchymal stem cells (Zhang et al., 2022). Yuan et al.
confirmed the downregulation of APPL1 expression in OP and its
positive regulation of osteogenic differentiation in bone marrow
mesenchymal stem cells (Yuan et al., 2023). Notably, APPL1 also
plays a critical regulatory role in bone metabolism. Lin et al. found
that the knockout of APPL1 may affect adipogenesis and osteoblast
differentiation in bone marrow mesenchymal stem cells (Lin and
Dong, 2020). In this study, APPL1 may be a potential therapeutic
target for OP and circadian rhythms. RAB5C is a member of the
Rab protein family, primarily located on the cell membrane, and
plays a crucial role in endocytosis, membrane protein recycling,
and signal transduction (Koop et al., 2023; Wang et al., 2024).
Additionally, RAB5Cmay be involved in regulating various immune
and inflammatory responses (Prashar et al., 2017). Zhang et al.
found that RAB5C may play an important role in the onset
and progression of ankylosing spondylitis by regulating immune
cell function (Zhang et al., 2021). Interestingly, RAB5C may be
involved in osteoclast polarization and the regulation of bone
resorption activity (Zhao et al., 2002). Furthermore, RAB5C may
play a key role in chondrogenesis. Studies have shown that the
knockout of RAB5C can enhance the chondrogenic potential
of chondrocyte progenitor cells (Janssen et al., 2021). Notably,
RAB5C may have an important role in postmenopausal OP,

though its exact mechanism remains unclear (Wang et al., 2020).
FCGR2A is a member of the immunoglobulin Fc receptor family,
primarily located on the surface of macrophages and neutrophils,
and plays a crucial role in the phagocytosis and clearance of
immune complexes (Niu et al., 2024; Szpakowicz et al., 2023).
Additionally, FCGR2A is associated with various autoimmune
diseases, such as rheumatoid arthritis (Márquez Pete et al., 2021),
systemic lupus erythematosus (Cornwell et al., 2023), and ulcerative
colitis (Zhang et al., 2016). Interestingly, FCGR2A has been shown
to play a key role in regulating macrophage polarization. Luo et al.
found that the knockout of FCGR2A can inhibit M1 macrophage
polarization and NF-κB phosphorylation, while enhancing M2
polarization (Luo et al., 2024). Notably, FCGR2A is involved
in osteoclast differentiation and may influence bone metabolism
(Zhu et al., 2025). Increasing evidence suggests that FCGR2A
may play a significant role in the pathogenesis of OP. Xia et al.
identified FCGR2A as a potential target for OP diagnosis and
treatment through bioinformatics (Xia et al., 2017). Another study
indicated that the transcriptional activity of FCGR2A is reduced
in OP bone tissue, which may provide new insights into the OP
microenvironment (Balla et al., 2009). The above studies indicate
that these key CRRDEGs play a crucial role in the occurrence and
development of OP, to provide novel directions for advancing the
understanding of OP pathogenesis.
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FIGURE 9
Construction of the ceRNA network. The red rectangles represent key genes, the green diamonds represent miRNAs, and the blue diamond
represent lncRNA.

Dysregulation of immune cells forms an important basis for
immune dysfunction and plays a pivotal role in the development
of OP (De Martinis et al., 2006). In this study, we found that
Type 2 T helper cell、CD56dim natural killer cell and activated
dendritic cell may be closely associated with the pathogenesis of
OP. Th2 cells are known to contribute to bone homeostasis by
producing anti-inflammatory cytokines such as IL-4 and IL-13,
thereby suppressing osteoclast differentiation and bone resorption
(Srivastava et al., 2018). NK cells, as components of the innate
immune system, have been linked to cellular senescence and skeletal
aging (Brauning et al., 2022). Dendritic cells interact with both
osteoclasts and osteoblasts, and may influence bone remodeling and
skeletal homeostasis (Ding et al., 2025). Moreover, we analyzed the
correlation between key circadian-related genes and immune cell
infiltration. The results showed that RAB5C was associated with
macrophages, FLT3 with Type 2 T helper cell, FCGR2A with central

memory CD8+ T cells, ECE1 with monocytes, and APPL1 with
CD56dimnatural killer cell.These findings provide new insights into
the relationship between OP and immune cell dynamics.

In addition, the drug-gene interaction analysis suggested
multiple approved agents that may target the key genes identified
in our model, particularly FLT3 and FCGR2A. These drugs
are potentially involved in modulating osteoimmune responses
and regulating bone homeostasis, thereby offering promising
directions for therapeutic intervention. While these interactions are
computational predictions, they provide a valuable starting point for
subsequent experimental validation and clinical exploration.

This study also has some limitations. First, this study was based
on publicly available datasets with relatively small sample sizes,
which may affect the statistical power and generalizability of the
findings.Therefore, future studies should include larger sample sizes
and independent datasets to validate the accuracy and reliability
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of the results. Secondly, although the model was validated on an
independent dataset, potential algorithmic biases may still exist
due to factors such as parameter selection and data preprocessing.
In future studies, we plan to adopt ensemble learning methods
and perform external validation using independent cohorts to
further improve the model robustness and generalizability. Finally,
this study lacks experimental validation, which is essential for
confirming the biological functions of the key genes in osteoporosis
and circadian rhythm regulation. Therefore, we plan to conduct
both in vitro and in vivo experiments in future studies to further
investigate their functional mechanisms.

5 Conclusion

In this study, we identified five key genes related to the
circadian rhythm in osteoporosis (RAB5C, ECE1, FLT3, FCGR2A,
andAPPL1) using bioinformatics andmachine learning approaches.
The diagnostic model constructed based on these five genes showed
high diagnostic performance. In addition, we predicted potential
regulatory mechanisms involving the interactions between the key
genes and immune cells, drugs, and ceRNA networks. Our findings
may provide potential targets for the early diagnosis and treatment
of OP. However, more experiments and integrated multi-omics data
are needed to validate these findings.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Author contributions

JD: Methodology, Data curation, Software, Writing – original
draft, Visualization, Conceptualization. TZ: Investigation, Writing
– original draft, Data curation. RM: Investigation, Data curation,
Writing – original draft. WZh: Investigation, Writing – original

draft, Visualization. JZ: Supervision, Writing – review and editing,
Investigation. WP: Data curation, Writing – review and editing,
Investigation, Supervision, Writing – original draft.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmolb.2025.
1614221/full#supplementary-material

References

Alimy, A. R., Anastasilakis, A. D., Carey, J. J., D’Oronzo, S., Naciu, A. M.,
Paccou, J., et al. (2024). Conservative treatments in the management of acute
painful vertebral compression fractures: a systematic review and network meta-
analysis. JAMA Netw. Open 7, e2432041. doi:10.1001/jamanetworkopen.2024.
32041

Arfian, N., Suzuki, Y., Hartopo, A. B., Anggorowati, N., Nugrahaningsih, D. A. A.,
and Emoto,N. (2020). Endothelin converting enzyme-1 (ECE-1) deletion in association
with Endothelin-1 downregulation ameliorates kidney fibrosis in mice. Life Sci. 258,
118223. doi:10.1016/j.lfs.2020.118223

Balla, B., KóSA, J. P., Kiss, J., Podani, J., TakáCS, I., LazáRY, A., et al.
(2009). Transcriptional profiling of immune system-related genes in postmenopausal
osteoporotic versus non-osteoporotic human bone tissue.Clin. Immunol. 131, 354–359.
doi:10.1016/j.clim.2009.01.004

Barbuto, S., Vetrano, D., Aguanno, F., Minicucci, C., Catalano, V., Passaseo, A.,
et al. (2024). Diagnosis and therapeutic management of bone disease in patients with
chronic kidney disease or kidney transplant recipients. G. Ital. Nefrol. 41, 2024-vol6.
doi:10.69097/41-06-2024-05

Brauning, A., Rae, M., Zhu, G., Fulton, E., Admasu, T. D., Stolzing, A., et al. (2022).
Aging of the immune system: focus on natural killer cells phenotype and functions.Cells
11, 1017. doi:10.3390/cells11061017

BréCIER, A., Li, V. W., Smith, C. S., Halievski, K., and Ghasemlou, N. (2023).
Circadian rhythms and glial cells of the central nervous system. Biol. Rev. Camb Philos.
Soc. 98, 520–539. doi:10.1111/brv.12917

Cornwell, M. G., Bannoudi, H. E., Luttrell-Williams, E., Engel,
A., Barrett, T. J., Myndzar, K., et al. (2023). Modeling of clinical
phenotypes in systemic lupus erythematosus based on the platelet
transcriptome and FCGR2a genotype. J. Transl. Med. 21, 247. doi:10.1186/
s12967-023-04059-w

DE Martinis, M., DI Benedetto, M. C., Mengoli, L. P., and Ginaldi, L. (2006).
Senile osteoporosis: is it an immune-mediated disease? Inflamm. Res. 55, 399–404.
doi:10.1007/s00011-006-6034-x

Diggins, N. L., and Webb, D. J. (2017). APPL1 is a multifunctional endosomal
signaling adaptor protein. Biochem. Soc. Trans. 45, 771–779. doi:10.1042/bst20160191

Frontiers in Molecular Biosciences 12 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1614221
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1614221/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1614221/full#supplementary-material
https://doi.org/10.1001/jamanetworkopen.2024.32041
https://doi.org/10.1001/jamanetworkopen.2024.32041
https://doi.org/10.1016/j.lfs.2020.118223
https://doi.org/10.1016/j.clim.2009.01.004
https://doi.org/10.69097/41-06-2024-05
https://doi.org/10.3390/cells11061017
https://doi.org/10.1111/brv.12917
https://doi.org/10.1186/s12967-023-04059-w
https://doi.org/10.1186/s12967-023-04059-w
https://doi.org/10.1007/s00011-006-6034-x
https://doi.org/10.1042/bst20160191
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Du et al. 10.3389/fmolb.2025.1614221

Ding, X., Yang, J.,Wei, Y.,Wang,M., Peng, Z., He, R., et al. (2025).The nexus between
traditional Chinese medicine and immunoporosis: implications in the treatment and
management of osteoporosis. Phytother. Res. 39, 1826–1846. doi:10.1002/ptr.8397

Ensrud, K. E., and Crandall, C. J. (2017). Osteoporosis. Ann. Intern Med. 167,
Itc17–itc32. doi:10.7326/aitc201708010

Ensrud, K. E., and Crandall, C. J. (2024). Osteoporosis. Ann. Intern Med. 177,
Itc1–itc16. doi:10.7326/aitc202401160

Fischer, V., and Haffner-Luntzer, M. (2022). Interaction between bone and immune
cells: implications for postmenopausal osteoporosis. Semin. Cell Dev. Biol. 123, 14–21.
doi:10.1016/j.semcdb.2021.05.014

Fulzele, K., Riddle, R. C., Digirolamo, D. J., Cao, X., Wan, C., Chen, D., et al. (2010).
Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body
composition. Cell 142, 309–319. doi:10.1016/j.cell.2010.06.002

Hansen, K. E., Johnson, M. G., Carter, T. C., Mayer, J., Keuler, N. S., and Blank, R. D.
(2019). The -839(A/C) polymorphism in the ECE1 isoform b promoter associates with
osteoporosis and fractures. J. Endocr. Soc. 3, 2041–2050. doi:10.1210/js.2019-00057

Hu, Y., Xu, H., Ji, W., Yang, J., Li, H., Li, K., et al. (2025). Prevalence of frailty in
senile osteoporosis: a systematic review and meta-analysis.Arch. Gerontol. Geriatr. 130,
105718. doi:10.1016/j.archger.2024.105718

Janssen, J. N., Izzi, V., Henze, E., CingöZ, G., Lowen, F., KüTTNER, D., et al. (2021).
Enhancing the chondrogenic potential of chondrogenic progenitor cells by deleting
RAB5C. iScience 24, 102464. doi:10.1016/j.isci.2021.102464

Jia, X., Zhang, G., and Yu, D. (2024). Application of extracellular
vesicles in diabetic osteoporosis. Front. Endocrinol. (Lausanne) 15, 1466775.
doi:10.3389/fendo.2024.1466775

Johnson, M. G., Kristianto, J., Yuan, B., Konicke, K., and Blank, R. (2014).
Big endothelin changes the cellular miRNA environment in TMOb osteoblasts
and increases mineralization. Connect. Tissue Res. 55 (Suppl. 1), 113–116.
doi:10.3109/03008207.2014.923866

Kikyo, N. (2024). Circadian regulation of bone remodeling. Int. J. Mol. Sci. 25, 4717.
doi:10.3390/ijms25094717

Koh, J. M., Oh, B., Lee, J. Y., Lee, J. K., Kimm, K., Park, B. L., et al. (2007).
Association of FLT3 polymorphisms with low BMD and risk of osteoporotic fracture
in postmenopausal women. J. Bone Min. Res. 22, 1752–1758. doi:10.1359/jbmr.070705

Koop, K., Yuan, W., Tessadori, F., Rodriguez-Polanco, W. R., Grubbs, J., Zhang, B.,
et al. (2023). Macrocephaly and developmental delay caused by missense variants in
RAB5C. Hum. Mol. Genet. 32, 3063–3077. doi:10.1093/hmg/ddad130

Kuruppu, S., and Smith, A. I. (2012). Endothelin converting
Enzyme-1 phosphorylation and trafficking. FEBS Lett. 586, 2212–2217.
doi:10.1016/j.febslet.2012.06.020

Letarouilly, J. G., Broux, O., and Clabaut, A. (2019). New insights into the epigenetics
of osteoporosis. Genomics 111, 793–798. doi:10.1016/j.ygeno.2018.05.001

Lin, Y. Y., and Dong, L. Q. (2020). APPL1 negatively regulates bone mass, possibly by
controlling the fate of bone marrow mesenchymal progenitor cells. Proc. Jpn. Acad. Ser.
B Phys. Biol. Sci. 96, 364–371. doi:10.2183/pjab.96.027

Liu, J., and Gu, J. (2024). Importance of PTM of FLT3 in acute myeloid leukemia.
Acta Biochim. Biophys. Sin. (Shanghai) 56, 1199–1207. doi:10.3724/abbs.2024112

Liu, T., Wang, L., Shi, T., Liu, H., Liu, B., Guo, J., et al. (2024). ED-71 ameliorates
bone loss in type 2 diabetes mellitus by enhancing osteogenesis through upregulation
of the circadian rhythm coregulator BMAL1. Drug Des. Devel Ther. 18, 3903–3919.
doi:10.2147/dddt.S470684

Li, X., Liu, N., Gu, B., Hu, W., Li, Y., Guo, B., et al. (2018). BMAL1 regulates
balance of osteogenic-osteoclastic function of bone marrow mesenchymal stem cells
in type 2 diabetes mellitus through the NF-κB pathway. Mol. Biol. Rep. 45, 1691–1704.
doi:10.1007/s11033-018-4312-7

Li, Y., Zhou, J., Wu, Y., Lu, T., Yuan, M., Cui, Y., et al. (2016). Association of
osteoporosis with genetic variants of circadian genes in Chinese geriatrics. Osteoporos.
Int. 27, 1485–1492. doi:10.1007/s00198-015-3391-8

Long, S. W., Li, S. H., Li, J., He, Y., Tan, B., Jing, H. H., et al. (2024). Identification of
osteoporosis ferroptosis-related markers and potential therapeutic compounds based
on bioinformatics methods and molecular docking technology. BMC Med. Genomics
17, 99. doi:10.1186/s12920-024-01872-0

Luo, B., Zhou, X., Tang, Q., Yin, Y., Feng, G., Li, S., et al. (2021). Circadian rhythms
affect bone reconstruction by regulating bone energy metabolism. J. Transl. Med. 19,
410. doi:10.1186/s12967-021-03068-x

Luo, J., Jin, G., Cui, S., Wang, H., and Liu, Q. (2024). Regulatory mechanism of
FCGR2A inmacrophage polarization and its effects on intervertebral disc degeneration.
J. Physiol. 602, 1341–1369. doi:10.1113/jp285871

MáRQUEZPete,N.,MaldonadoMontoro,M.D.M., PéREZRamíREZ,C.,MartíNEZ
MartíNEZ, F., MartíNEZ DE LA Plata, J. E., Daddaoua, A., et al. (2021). Influence
of the FCGR2A rs1801274 and FCGR3A rs396991 polymorphisms on response to
abatacept in patients with rheumatoid arthritis. J. Pers. Med. 11, 573. doi:10.3390/
jpm11060573

Mei, G., Wang, J., Wang, J., Ye, L., Yi, M., Chen, G., et al. (2024). The specificities,
influencing factors, and medical implications of bone circadian rhythms. Faseb J. 38,
e23758. doi:10.1096/fj.202302582RR

Negotei, C., Colita, A., Mitu, I., Lupu, A. R., Lapadat, M. E., Popovici, C. E.,
et al. (2023). A review of FLT3 kinase inhibitors in AML. J. Clin. Med. 12, 6429.
doi:10.3390/jcm12206429

Niu, X., Xu, C., Cheuk, Y. C., Xu, X., Liang, L., Zhang, P., et al. (2024). Characterizing
hub biomarkers for post-transplant renal fibrosis and unveiling their immunological
functions through RNA sequencing and advanced machine learning techniques. J.
Transl. Med. 22, 186. doi:10.1186/s12967-024-04971-9

Prashar, A., Schnettger, L., Bernard, E. M., and Gutierrez, M. G. (2017). Rab
GTPases in immunity and inflammation. Front. Cell Infect. Microbiol. 7, 435.
doi:10.3389/fcimb.2017.00435

Qi, J., Chen, G., Deng, Z., Ji, Y., An, S., Chen, B., et al. (2025). Hierarchical
porous microspheres-assisted serum metabolic profile for the early diagnosis
and surveillance of postmenopausal osteoporosis. Anal. Chem. 97, 345–354.
doi:10.1021/acs.analchem.4c04293

Redmond, J., Fulford, A. J., Jarjou, L., Zhou, B., Prentice, A., and Schoenmakers,
I. (2016). Diurnal rhythms of bone turnover markers in three ethnic groups. J. Clin.
Endocrinol. Metab. 101, 3222–3230. doi:10.1210/jc.2016-1183

Saxena, Y., Routh, S., and Mukhopadhaya, A. (2021). Immunoporosis:
role of innate immune cells in osteoporosis. Front. Immunol. 12, 687037.
doi:10.3389/fimmu.2021.687037

Shen, D., Feng, Y., Zhang, X., Gong, L., Liu, J., Li, Y., et al. (2022). Antiosteoporosis
studies of 20 medicine food homology plants containing quercetin, rutin, and
kaempferol: TCM characteristics, in vivo and in vitro activities, potential
mechanisms, and food functions. Evid. Based Complement. Altern. Med. 2022,
5902293. doi:10.1155/2022/5902293

Song, C., Tan, P., Zhang, Z., Wu, W., Dong, Y., Zhao, L., et al. (2018). REV-ERB
agonism suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss
partially via FABP4 upregulation. Faseb J. 32, 3215–3228. doi:10.1096/fj.201600825RRR

Srivastava, R. K., Dar, H. Y., and Mishra, P. K. (2018). Immunoporosis: immunology
of osteoporosis-role of T cells. Front. Immunol. 9, 657. doi:10.3389/fimmu.2018.00657

Stothard, E. R., Ritchie, H. K., Birks, B. R., Eckel, R. H., Higgins, J., Melanson, E. L.,
et al. (2020). Early morning food intake as a risk factor for metabolic dysregulation.
Nutrients 12, 756. doi:10.3390/nu12030756

Stromsnes, K., Fajardo, C. M., Soto-Rodriguez, S., Kajander, E. R. U., Lupu,
R. I., Pozo-Rodriguez, M., et al. (2024). Osteoporosis: causes, mechanisms,
treatment and prevention: role of dietary compounds. Pharm. (Basel) 17, 1697.
doi:10.3390/ph17121697

Svensson, M. N., Erlandsson, M. C., Jonsson, I. M., Andersson, K. M., and Bokarewa,
M. I. (2016). Impaired signaling through the Fms-like tyrosine kinase 3 receptor
increases osteoclast formation andbone damage in arthritis. J. Leukoc. Biol. 99, 413–423.
doi:10.1189/jlb.3HI1114-572RR

Szpakowicz, A., Szum-Jakubowska, A., Lisowska, A., DubatóWKA, M., Raczkowski,
A., Czajkowski, M., et al. (2023). The FCGR2A is associated with the presence of
atherosclerotic plaques in the carotid Arteries-A case-control study. J. Clin. Med. 12,
6480. doi:10.3390/jcm12206480

Tian, Y., and Ming, J. (2022). The role of circadian rhythm in osteoporosis; a review.
Front. Cell Dev. Biol. 10, 960456. doi:10.3389/fcell.2022.960456

Wang, R., Lu, A., Liu,W., Yue, J., Sun, Q., Chen, J., et al. (2020). Searching for valuable
differentially expressed miRNAs in postmenopausal osteoporosis by RNA sequencing.
J. Obstet. Gynaecol. Res. 46, 1183–1192. doi:10.1111/jog.14307

Wang, X., Cheng, J., Shen, L., Chen, M., Sun, K., Li, J., et al. (2024). Rab5c promotes
RSV and ADV replication by autophagy in respiratory epithelial cells. Virus Res. 341,
199324. doi:10.1016/j.virusres.2024.199324

Weintraub, W. S., Fahed, A. C., and Rumsfeld, J. S. (2018). Translational
medicine in the era of big data and machine learning. Circ. Res. 123, 1202–1204.
doi:10.1161/circresaha.118.313944

Wen, Z., Tang, Z., Li, M., Zhang, Y., Li, J., Cao, Y., et al. (2020). APPL1
knockdown blocks adipogenic differentiation and promotes adipocyte lipolysis. Mol.
Cell Endocrinol. 506, 110755. doi:10.1016/j.mce.2020.110755

Xia, B., Li, Y., Zhou, J., Tian, B., and Feng, L. (2017). Identification of
potential pathogenic genes associated with osteoporosis. Bone Jt. Res. 6, 640–648.
doi:10.1302/2046-3758.612.Bjr-2017-0102.R1

Xuan, A., Chen, H., Chen, T., Li, J., Lu, S., Fan, T., et al. (2023). The application
of machine learning in early diagnosis of osteoarthritis: a narrative review. Ther. Adv.
Musculoskelet. Dis. 15, 1759720x231158198. doi:10.1177/1759720x231158198

Xu, D., Emoto, N., Giaid, A., Slaughter, C., Kaw, S., Dewit, D., et al. (1994). ECE-
1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big
endothelin-1. Cell 78, 473–485. doi:10.1016/0092-8674(94)90425-1

Yaacobi, E., Sanchez, D., Maniar, H., and Horwitz, D. S. (2017). Surgical treatment
of osteoporotic fractures: an update on the principles of management. Injury 48 (Suppl.
7), S34–s40. doi:10.1016/j.injury.2017.08.036

Frontiers in Molecular Biosciences 13 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1614221
https://doi.org/10.1002/ptr.8397
https://doi.org/10.7326/aitc201708010
https://doi.org/10.7326/aitc202401160
https://doi.org/10.1016/j.semcdb.2021.05.014
https://doi.org/10.1016/j.cell.2010.06.002
https://doi.org/10.1210/js.2019-00057
https://doi.org/10.1016/j.archger.2024.105718
https://doi.org/10.1016/j.isci.2021.102464
https://doi.org/10.3389/fendo.2024.1466775
https://doi.org/10.3109/03008207.2014.923866
https://doi.org/10.3390/ijms25094717
https://doi.org/10.1359/jbmr.070705
https://doi.org/10.1093/hmg/ddad130
https://doi.org/10.1016/j.febslet.2012.06.020
https://doi.org/10.1016/j.ygeno.2018.05.001
https://doi.org/10.2183/pjab.96.027
https://doi.org/10.3724/abbs.2024112
https://doi.org/10.2147/dddt.S470684
https://doi.org/10.1007/s11033-018-4312-7
https://doi.org/10.1007/s00198-015-3391-8
https://doi.org/10.1186/s12920-024-01872-0
https://doi.org/10.1186/s12967-021-03068-x
https://doi.org/10.1113/jp285871
https://doi.org/10.3390/jpm11060573
https://doi.org/10.3390/jpm11060573
https://doi.org/10.1096/fj.202302582RR
https://doi.org/10.3390/jcm12206429
https://doi.org/10.1186/s12967-024-04971-9
https://doi.org/10.3389/fcimb.2017.00435
https://doi.org/10.1021/acs.analchem.4c04293
https://doi.org/10.1210/jc.2016-1183
https://doi.org/10.3389/fimmu.2021.687037
https://doi.org/10.1155/2022/5902293
https://doi.org/10.1096/fj.201600825RRR
https://doi.org/10.3389/fimmu.2018.00657
https://doi.org/10.3390/nu12030756
https://doi.org/10.3390/ph17121697
https://doi.org/10.1189/jlb.3HI1114-572RR
https://doi.org/10.3390/jcm12206480
https://doi.org/10.3389/fcell.2022.960456
https://doi.org/10.1111/jog.14307
https://doi.org/10.1016/j.virusres.2024.199324
https://doi.org/10.1161/circresaha.118.313944
https://doi.org/10.1016/j.mce.2020.110755
https://doi.org/10.1302/2046-3758.612.Bjr-2017-0102.R1
https://doi.org/10.1177/1759720x231158198
https://doi.org/10.1016/0092-8674(94)90425-1
https://doi.org/10.1016/j.injury.2017.08.036
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Du et al. 10.3389/fmolb.2025.1614221

Yuan, W., Liu, W., Zhang, Y., Wang, X., Xu, C., Li, Q., et al. (2023). Reduced APPL1
impairs osteogenic differentiation of mesenchymal stem cells by facilitating MGP
expression to disrupt the BMP2 pathway in osteoporosis. J. Biol. Chem. 299, 104823.
doi:10.1016/j.jbc.2023.104823

Yu, F., and Xia, W. (2019). The epidemiology of osteoporosis, associated fragility
fractures, and management gap in China.Arch. Osteoporos. 14, 32. doi:10.1007/s11657-
018-0549-y

Zhang, D., Li, B., Guo, R.,Wu, J., Yang, C., Jiang, X., et al. (2021). RAB5C, SYNJ1, and
RNF19B promote Male ankylosing spondylitis by regulating immune cell infiltration.
Ann. Transl. Med. 9, 1011. doi:10.21037/atm-21-2721

Zhang, D., Min, X., Wang, J., and Jiang, Y. (2016). Analysis of single nucleotide
polymorphisms and haplotypes of FCGR2A gene among patients with ulcerative colitis.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi 33, 811–815. doi:10.3760/cma.j.issn.1003-
9406.2016.06.014

Zhang, Y., Liu, W., Yuan, W., Cai, Z., Ye, G., Zheng, G., et al. (2022). Impairment of
APPL1/Myoferlin facilitates adipogenic differentiation of mesenchymal stem cells by
blocking autophagy flux in osteoporosis. Cell Mol. Life Sci. 79, 488. doi:10.1007/s00018-
022-04511-y

Zhao, H., Ettala, O., and VääNäNEN, H. K. (2002). Intracellular
membrane trafficking pathways in bone-resorbing osteoclasts revealed by
cloning and subcellular localization studies of small GTP-Binding rab
proteins. Biochem. Biophys. Res. Commun. 293, 1060–1065. doi:10.1016/
s0006-291x(02)00326-1

Zhu, X., Chen, Y., Lu, D., Zhao, G., Liu, Y., Wang, A., et al.
(2025). The DHH-DHHA1 domain phosphodiesterase of Mycoplasma
bovis employs multiple strategies to modulate macrophage cellular
processes. Int. J. Biol. Macromol. 306, 141585. doi:10.1016/j.ijbiomac.2025.
141585

Frontiers in Molecular Biosciences 14 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1614221
https://doi.org/10.1016/j.jbc.2023.104823
https://doi.org/10.1007/s11657-018-0549-y
https://doi.org/10.1007/s11657-018-0549-y
https://doi.org/10.21037/atm-21-2721
https://doi.org/10.3760/cma.j.issn.1003-9406.2016.06.014
https://doi.org/10.3760/cma.j.issn.1003-9406.2016.06.014
https://doi.org/10.1007/s00018-022-04511-y
https://doi.org/10.1007/s00018-022-04511-y
https://doi.org/10.1016/s0006-291x(02)00326-1
https://doi.org/10.1016/s0006-291x(02)00326-1
https://doi.org/10.1016/j.ijbiomac.2025.141585
https://doi.org/10.1016/j.ijbiomac.2025.141585
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Data collection
	2.2 Circadian rhythm-related differentially expressed genes
	2.3 Functional enrichment analysis
	2.4 Machine Learning for Key Gene Selection
	2.5 Construction and validation of the diagnostic model
	2.6 Gene set enrichment analysis of the key genes
	2.7 Immune cell infiltration analysis
	2.8 Construction of the drug regulation network and ceRNA network

	3 Results
	3.1 Identification of CRDEGs
	3.2 Functional enrichment analysis
	3.3 Machine Learning for Key Gene Selection
	3.4 Construction and validation of the diagnostic model
	3.5 GSEA analysis
	3.6 Immune cell infiltration analysis
	3.7 Construction of the drug regulation network and ceRNA network

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

