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Recent advances in spatial transcriptomics (ST) and spatial proteomics
(SP) technologies have enabled high-dimensional molecular profiling at
single-cell resolution, providing deeper insights into the tumour-immune
microenvironment. However, these modalities are typically applied to separate
tissue sections, limiting direct comparisons across molecular layers. We
developed a wet-lab and computational framework to perform and integrate
ST and SP from the same tissue section, as demonstrated on human lung
cancer samples. Applying ST, SP, and hematoxylin and eosin (H&E) staining
from the same section ensured consistency in tissue morphology and spatial
context. Computational registration using Weave software allowed accurate
alignment and annotation transfer across modalities. This co-registered dataset
enabled single-cell level comparisons of RNA and protein expression, revealed
segmentation accuracy and transcript-protein correlation analyses within
individual cells. Notably, we observed systematic low correlations between
transcript and protein levels—consistent with prior findings—now resolved
at cellular resolution. Our approach highlights the feasibility and utility of
performing spatially-resolved multi-omics analysis on the same section without
compromising data quality, facilitating concordance studies and region-specific
analysis of immune and tumour markers, and ultimately advancing our
understanding of disease heterogeneity at the molecular level.

KEYWORDS

spatial multi-omics, image registration, single cell analysis, spatial transcriptomics,
spatial proteomics, histology, data integration

1 Introduction

Single-omics spatial technologies have transformed our understanding of disease by
enabling spatially resolved insights across genomic, transcriptomic, metabolomic, and
proteomic layers, offering an unprecedented view into cellular organization and interactions
within tissue contexts (Rivest et al., 2023; Goltsev et al., 2018; Janesick et al., 2023; He et al.,
2022).However, each omicsmodality captures only a partial aspect of the complex biological
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landscape. Many of their discoveries remain isolated (Baysoy et al.,
2023; Lim et al., 2024), limiting our ability to fully grasp
cancer heterogeneity and cell-to-cell interactions that drive disease
progression (Chen et al., 2020; Chakraborty et al., 2024).

To overcome this limitation, spatially resolved multi-omics
has emerged as a powerful approach to integrate multiple spatial
technologies to uncover deeper biological insights through
cross-modal correlation. Recent studies have demonstrated that
multimodal spatial analyses can reveal novel signalling pathways,
refine therapeutic biomarkers, and offer insights beyond what
single-modality approaches can achieve (Senosain et al., 2023;
Asada et al., 2024). Yet, despite its potential, the practical application
of multi-omics remains constrained by the technical challenges of
data generation, integration, and analysis. A major bottleneck is that
spatial multi-omics data is typically collected from adjacent tissue
sections due to differences in sample preparation protocols, which
introduces spatial misalignment and complicates direct cell-to-cell
comparisons. Additionally, integrating multi-omics data involves
challenges for preprocessing (Zhang Y. et al., 2024), normalization,
and integration across platforms (Mohr et al., 2024), amongst others.

A key missing component in spatial multi-omics research
is the ability to simultaneously profile mRNA and protein
expression at high spatial resolution within the same tissue
section. While a few recent studies have explored this direction
(Liao et al., 2023; Rademacher et al., 2024), there is still a lack
of systematic approaches demonstrating how transcriptomic and
proteomic data can be jointly leveraged at the single-cell level for
biological discovery.

In this study, we introduce a pipeline that integrates spatial
transcriptomics (ST), spatial proteomics (SP) and histology within
the same lung cancer tissue section (Chong et al., 2024). Besides the
innovative wet-lab approach, an integration of the data generated
is made possible through an analysis pipeline in Weave software
(Zhang W. et al., 2024) which allows us to register, visualize
and align different spatial omics readouts, now demonstrated at
the single-cell level. By co-registering these data modalities, we
open a new way for studying cell segmentation, assessing the
correlation between gene expression and protein abundance within
the same cell, performing cell clustering and cell type classification,
and gaining a more holistic understanding of tissue organization.
Through this integrated approach illustrated in Figure 1, we aim
to address current gaps in spatial multi-omics, demonstrating
its potential to enhance multimodal analysis. Furthermore, we
apply this framework to compare two lung cancer samples with
distinct immunotherapy outcomes. By examining immune cell
populationwithin tumour regions, we explore how combined spatial
transcriptomic and proteomic signatures may reveal key differences
in the tumour-immune microenvironment.

2 Materials and methods

2.1 Sample collection and preparation

This study used formalin-fixed paraffin-embedded tissue
sections from two lung carcinoma samples, obtained with patient
consent (Agency for Science, Technology andResearch; IRBnumber
2021-188). Both samples were from patients who had undergone

immunotherapy. Sample A exhibited progressive disease, while
sample B showed partial response.

2.2 Spatial transcriptomics

Tissue sections (5 µm) underwent Xenium In Situ Gene
Expression following manufacturer’s instructions (10x Genomics,
Pleasanton, CA, United States, Document CG000582 Rev E). A
289 gene human lung cancer panel was used. Sections were placed
on Xenium slides within a 12 mm × 24 mm reaction region, then
mounted with a cassette. After deparaffinization and decrosslinking,
DNA probes were added for hybridization to target RNA sequences,
followed by ligation and amplification of gene-specific barcodes.
Finally, slides were loaded into the Xenium Analyzer with Xenium
In Situ Gene Expression Reagents v1, where cycles of probe
hybridization, imaging, and removal generated optical signatures for
each barcode.

2.3 Spatial proteomics

Following Xenium, the slides underwent hyperplex
immunohistochemistry (hIHC) using the COMET (Lunaphore
Technologies, Switzerland). The slides underwent heat-induced
epitope retrieval (HIER) with the PT module (Epredia,
United States) before being mounted with microfluidic chips
with an acquisition region of 9 mm × 9 mm. Sequential
immunofluorescence staining was performed using off-the-shelf
primary antibodies for 40 markers (Supplementary Table S1),
fluorophore-conjugated secondary antibodies, and DAPI
counterstain (Thermo Fisher Scientific, United States)
(Rivest et al., 2023; Migliozzi et al., 2019). The COMET conducted
cyclical staining, imaging, and elution, generating a final stacked
fluorescence image with 41 channels, including DAPI. Background
subtraction was performed (Horizon, v2.2.0.1, Lunaphore
Technologies), before exporting the image for analysis. Only one
ROI per sample was captured.

In parallel, serial tissue sections underwent hIHC, following the
same HIER and COMET staining protocol for control (Figure 1A).
The same exposure values and imaging channels (FITC and Cy5)
were applied for fair comparison.

2.4 Hematoxylin and eosin staining

Manual hematoxylin and eosin (H&E) staining was conducted
on the post-Xenium post-COMET sections, and the serial post-
COMET tissue sections. The slides were imaged (Zeiss Axioscan 7,
Zeiss, Germany). Manual pathology annotation was conducted on
the digitized H&E images in QuPath before integration to Weave.

2.5 Cell segmentation

Cell segmentation was performed separately for the Xenium
and COMET datasets. For Xenium, cell segmentation was based
on DAPI nuclear expansion (Cook et al., 2023; Salas et al.,
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FIGURE 1
Spatial multi-omics workflow for integrating spatial proteomics (SP) and spatial transcriptomics (ST) on the same tissue section. (A) Two consecutive
lung carcinoma tissue sections were analyzed under different experimental conditions: Experiment 1 —processed sequentially with Xenium, COMET,
and H&E staining and Experiment 2— without Xenium, processed sequentially with COMET and then H&E staining. The Xenium and COMET data were
co-registered to the H&E image (post-Xenium, post-COMET) using an automated non-rigid registration. (B) After alignment, cell segmentation masks
(here segmentation mask from protein markers is used for demonstration) are applied to associate captured transcript spots with individual cells and to
calculate the mean intensity of protein markers per cell. This integration produces a unified dataset that includes both transcript counts and protein
marker intensities within the same cells. (C) An interactive web-based visualization was created in Weave, integrating all modalities—including tumour
annotations (gray mask) from the H&E-stained section, cell segmentation, and transcript spots. This enables users to explore and examine downstream
analysis results across modalities, such as correlation analyses within tumour and non-tumour regions, clustering and cell type identification.
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2025) provided by the 10x Genomics pipeline. For COMET
data, CellSAM (Israel et al., 2023), a deep learning-based method
integrating both nuclear (DAPI) and membrane (pan cytokeratin
(PanCK)) markers, was used for segmentation. Afterwards, cells
from the two segmentationmethods were matched to compare their
morphological and molecular features.

2.6 Spatially-resolved multi-omics data
integration

Proteomic and transcriptomic dataset integration was
conducted using Weave (version 1.0, Aspect Analytics,
Genk, Belgium): DAPI images from corresponding Xenium
and COMET acquisitions were co-registered to the H&E
image using an automatic, non-rigid spline-based algorithm
(Supplementary Figure S2A). By applying a cell segmentation
mask, we calculated the mean intensity of each COMET marker
and transcript count per gene per cell, generating an integrated
dataset of gene and protein expression within the same cells
(Figure 1B). An interactive web-based visualization was created in
Weave, incorporating full resolution H&E microscopy images with
pathology annotations, COMET images, Xenium gene transcripts,
and respective cell segmentation results (Figure 1C).

2.7 Correlation of gene and protein
expression

AsXenium, COMET, andAxioscan acquisition regions varied in
size, unmatched pixels across the three datasets were excluded from
downstream multimodal analysis. Spearman correlation between
transcript count and mean immunofluorescence intensity was
assessed using SciPy (Virtanen et al., 2020) for both of the
aforementioned cell segmentation approaches. Among all molecular
markers, 27 genes have corresponding protein markers, enabling
correlation analysis.

2.8 Dimension reduction and clustering

Louvain clustering was employed. Cells with a total count <20
were excluded, followed by normalization of the gene expression
data (e.g., total count normalization and log transformation).
Dimensionality reduction (via UMAP) and neighbour graph
construction (using 15 nearest neighbours and cosine similarity)
was applied to create a graph where nodes (cells) are connected
based on gene expression similarity (Salas et al., 2025).

2.9 Proteomics cell annotation

Threshold selection for each marker was visually determined
using HALO v3.6 (Indica Labs, Albuquerque, NM, United States)
software using raw intensity. Cells with DAPI intensity lower than
the determined threshold were removed. The identified gates for
each marker were subsequently used to rescale the single-cell data
between 0 and 1, such that values above 0.5 identify cells that

express the marker and vice versa. Cell types were determined using
a hierarchical gating strategy (Supplementary Table S2), beginning
with broad markers to categorize cells into major groups, e.g.,
tumour based on PanCK expression, and immune cells via CD45
expression. This was then refined into specific subpopulations
(e.g., CD4+ T cells, CD20+ B cells), following the methodology
described by Nirmal et al. (2022).

2.10 Transcriptomics cell annotation

To annotate cell types from the Xenium transcriptomic data, we
used scArches—a transfer learning framework that maps single-cell
profiles onto theHuman LungCell Atlas (HLCA), which includes 61
annotated lung cell types from over 107 individuals (Sikkema et al.,
2023). scArches has been applied for Xenium-based cell type
annotation in several recent studies (Chen et al., 2024; Ergen
and Yosef, 2023). Using the pre-trained HLCA scArches model,
we performed label transfer by jointly embedding the reference
and query datasets and assigning cell type labels with a k-nearest
neighbours (kNN) classifier based on proximity in the latent space.
We selected Level 3 annotations from HLCA’s five-tier hierarchy
and compared immune cell assignments with proteomics-based
cell typing.

3 Results

3.1 Cell segmentation on spatial
transcriptomics and spatial proteomics

Before the evaluation of segmentation masks, the fluorescence
signals of the post-Xenium COMET section were first visually
compared to the fluorescence signals of the serial section
that directly underwent COMET staining. Visual comparison
of fluorescence signals between the two sections indicated
that no aberrant staining occurred on the post-Xenium
COMET slide (Supplementary Figure S1). Gross morphology also
remained consistent across the two sections.

After dataset registration, two segmentation masks were
evaluated - nuclear boundary expansion provided by onboard
Xenium data analysis, while the second leverages dedicated protein
marker channels in the COMET data (Figure 2A). A comparison
of key metrics is presented in Supplementary Table S3. Nuclear
expansion identifiedmore cells and yielded a highermedian number
of detected genes per cell (Figure 2B; Supplementary Figure S2B).
Segmentation based on proteomics resulted in a higher proportion
of cells with no captured transcripts (dropouts). This may be
attributed to consistently smaller cell sizes from COMET-based
segmentation compared to nuclear expansion. All cells without
detected transcript spots were excluded from further analyses.

Since both cell segmentation results originated from the same
tissue section, we quantitatively compared cell morphology, gene
expression, and protein intensity across aligned segmentation results
to assess discrepancies and identify potential outliers. Sample B is
shown for illustration. The total number of transcripts detected per
cell differed between the two methods, particularly in tumour areas
(Figure 2C). Looking at a specific gene, CDH1 is highly expressed
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FIGURE 2
Comparison of cell segmentation on spatial transcriptomics and spatial proteomics on Sample B. (A) Acquisition of two modalities in the same section
allows the comparison between two segmentation masks, one based on nuclear expansion and the other based on membrane protein markers. Visual
assessment shows that both segmentation methods accurately capture cells with clear nuclear signals (DAPI), but with distinct morphological
differences. Xenium segmentation, which uses nuclear extension, often over-expands in peripheral tissue regions, whereas COMET segmentation
results in smaller cell areas and hence having more gap space between cells. (B) The distribution of genes per cell is higher in Xenium segmentation
compared to COMET segmentation, with the latter producing more cells with low transcript counts. (C) Matching pairs of cells from two segmentation
methods—based on nearest centroid distance—helps identify regions with the greatest discrepancies between the approaches (red area). For Sample
B, cells with the largest differences in transcript spot counts are located within tumour regions. Closer inspection using CDH1 transcripts (one of the
genes highly expressed in this area) reveals that these discrepancies occur in the surrounding fibrous tissue, where COMET segmentation consistently
captures fewer transcript spots compared to Xenium. This comparative approach offers valuable insights into segmentation performance by leveraging
both spatial transcriptomics and protein marker data from the same tissue section. (D) Due to the differing methods of estimating the cell boundary,
differences in cell size can also be detected, especially at the edges of the tissue section or in regions with sparse cellular density.

in tumour, but many transcripts were also detected in connective
tissue, whereas the COMET segmentation identified fewer cells
compared to Xenium. In fibrous tissue, the Xenium segmentation
consistently produced larger cells, leading to detection of more
transcripts than COMET segmentation. Conversely, cells showing
pronouncedmorphological differences aremostly observed at tissue
section edges or regions with sparse cellular density (Figure 2D).
In these areas, Xenium segmentation often overestimated cell
size relative to the morphology seen in the corresponding H&E
while COMET segmentation produced smaller cells due to the

weak or absent membrane marker signal in these regions. Similar
observations were made for sample A (Supplementary Figure S2C).

Significant discrepancies between the two segmentation
methods can also be assessed at the gene level, as different cell
delineation impacts transcript distribution. Gene-wise analysis
showed that all genes had a correlation above 0.3 between the
two segmentation approaches (Supplementary Figure S3). Notably,
genes with the lowest correlation (e.g., CD70, TCL1A, ASCL1) tend
to have fewer total transcripts and higher dropout rates (this effect
is more pronounced in COMET segmentation).
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FIGURE 3
Correlation between gene expression (transcript count) and protein expression (fluorescence intensity) in the same tissue space. (A) The
transcript–protein marker pairs CDH1–E-Cadherin, FCGR3A–CD16 and CD14–CD14 show correlation scores above 0.3 (the highest) in both Sample A
and Sample B, with Sample B shown here as a representative. (B) The KRT15–Cytokeratin pair exhibited a high correlation in Sample B, but a very low
correlation in Sample A. One possible reason could be that the pan cytokeratin protein encompasses more than the two keratin genes in the Xenium
panel, thus the gene expression level had low correspondence to the protein. (C) Genes with higher dropout rates generally displayed lower
transcript–protein correlations. Both cell segmentation methods suggest that the dropout rate negatively impacts the correlation.

3.2 Correlation between transcriptomics
and proteomics expression

After assigning a cell segmentation mask, we measured
the correlation between ST and SP expression. Spearman
correlation was calculated for 27 gene-protein pairs, with results
summarized in Supplementary Table S4. Four transcript–protein
pairs had correlation scores above 0.3 in both Sample A and B
(Figure 3A): CDH1–E-Cadherin, FCGR3A–CD16, CD14–CD14,
and CD68–CD68. The KRT15–Cytokeratin pair showed high
correlation in Sample B (0.475) but low in Sample A (0.024),
likely due to the anti-pan-cytokeratin antibody detecting more
than the products of the two keratin genes in the Xenium panel
(Figure 3B). Members of the S100 protein family, known prognostic
markers associated with immune infiltration in some cancers
(Liang et al., 2024; Chen et al., 2021), were found to exhibit
consistently low correlation with their RNA transcripts.

The overall ST-SP correlation ranged from 0.0 to 0.5, indicating
that some protein expressions do not correspond with their gene
expression. This low ST-SP correlation is consistent with previous
studies (Payne, 2015; Vogel and Marcotte, 2012) and aligns with
the reported quantitative proteome map of the human body
(Jiang et al., 2020). Additionally, we observed that genes with
higher dropout rates—the proportion of cells in which a gene was
undetected—tended to exhibit lower transcript-protein correlation,

highlighting the impact of transcript detection efficiency on multi-
omics integration. Both cell segmentations suggest that the dropout
rate negatively affects the correlation, meaning that when fewer
transcripts are detected (higher dropout), the agreement between
transcript-protein marker expression becomes weaker (Figure 3C).

To investigate regional differences in ST and SP correlation
across tissue types, we performed correlation analysis within
pathologist-annotated tumour and non-tumour regions for both
segmentations. Differential correlation analysis was applied,
and Fisher’s Z-test was used to compare correlation patterns
(p < 0.05). CDH1-E-Cad, KRT7/15-CK, MKI67-Ki67 are
ST-SP pairs with stronger correlation in tumour regions of
both samples (Supplementary Table S5). These findings are not
unexpected given that cytokeratins are highly expressed in many
carcinomas and Ki-67 is a marker of proliferation.

3.3 Dimensionality reduction and cell
typing

Dimensionality reduction (DR) and cell clustering were
performed on three sets: (1): ST expression, (2), SP expression, and
(3) combined ST-SP data. Due to the limited number of SP markers,
the reduced dimensional representation is biased toward the ST
components (Supplementary Figure S4). This is expected, as the SP
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data contributes minimally to the overall variance structure, thereby
exerting limited influence on the principal components or manifold
learned duringDR. Effective integration still requires computational
methods that can appropriately weight and harmonize the ST and
SP data, ensuring that both contribute meaningfully to downstream
analyses like clustering.

Here, we take a different approach by independently annotating
each modality and comparing results, with a focus on immune
populations. Manual cell classification was performed using protein
expression gating and visually validated using co-registered H&E-
stained sections. These annotations served as high-confidence
references for comparison with transcriptome-based cell typing.
For Xenium, we mapped cell embeddings onto the HLCA which
contains 584,944 annotated single-cell embeddings. This was used
for several reasons: 1) reference and query datasets are derived from
the same tissue type, 2) annotated single-cell embeddings having
high percentage of immune population, and 3) in our dataset, 201
out of the 289 assayed genes overlap with the 2,000 genes used in the
scArches pre-trained HLCA model.

Several technical considerations were addressed when
comparing cell type annotations across modalities. A key advantage
of using the HLCA is its integration with the Human Cell Ontology
(CL IDs), providing a standardized framework for cross-platform
comparisons.However, this ontology does not include a “cancer cell”
category, which appears in proteomics-based annotations. Instead,
HLCA defines granular lung subtypes (e.g., Basal cells, Fibroblasts),
many of which cannot be reliably distinguished using our limited
COMET marker panel (Supplementary Figure S5A,B). To reconcile
this, we used level 3 HLCA annotations, which group cells into
broader categories with higher certainty (Lotfollahi et al., 2022).
These broader categories were then mapped to the proteomics-
derived classifications (Figure 4A; Supplementary Figure S5C).
Secondly, we focused comparisons on immune populations,
which are the primary targets of the COMET protein panel. This
map enabled comparison at a higher-level resolution, which,
while less granular, is appropriate for the purposes of this
proof-of-concept analysis.

B cell lineage showed the highest overlap across modalities
(Jaccard index: Sample B – 0.336, Sample A – 0.176), followed by T
cells andmacrophages; NK cells had the lowest agreement (Sample B
– 0.013, Sample A – 0.006) (Figure 4B; Supplementary Figure S6A).
Despite lower absolute counts, B cell lineage showed the greatest
agreement across modalities in both samples. In contrast, ST-
based annotation appeared to overestimate T cell numbers, as
noted in a recent study where Xenium showed concentrated
lymphocyte marker regions; this overrepresentation may partly
result from lymphocytes’ small size and low RNA content,
which affect detection sensitivity (Cook et al., 2023). Overall,
the alignment between proteomics- and transcriptomics-based cell
typing remains modest, suggesting that identities inferred from one
modality may not fully correspond. Nevertheless, when visualized
using UMAP dimensionality reduction incorporating both gene
and protein expression, cells with concordant annotations from
both approaches showed strong alignment with their molecular
markers (Figure 4C).

4 Discussion

This study demonstrated an integrated experimental pipeline
and analysis of spatial transcriptomics, spatial proteomics and
histology at the single cell level. While previous studies have
measured gene and protein expressions in the same tissue
section, these were achieved with traditional methods that allow
detection of few targets at a time (Hirschmann et al., 2012;
Nehme et al., 2011). Newer spatial omics technologies detect targets
at subcellular resolutions and integrate high-plex, automated and
highly quantitative spatial profiling, granting deeper investigations
into complex relationships between cells and their neighbourhoods
(Rivest et al., 2023; Zhang Y. et al., 2024; Salas et al., 2025). As
spatial technologies are conventionally a single omics type, two or
more assays are required to obtain multi-omics data. Integration
of wet lab processes on a single tissue section necessitated trials
for compatibility. We have shown that tissue sections could
undergo consecutive processes in two separate spatial technology
machines followed by histological staining without compromising
data quality or cellularmorphology.One limitation is that changes in
fluorescence signal in the post-Xenium COMET data could only be
benchmarked against a serial section, preventing direct fluorescence
intensity comparison.

As the generated data is collected separately in different
formats, harmonization between the modalities is required for
co-visualization and analysis. Although using the same tissue
section across the pipelines reduces variations compared to serial
sections, challenges are still encountered when conducting image
registration (Wang et al., 2014), such as different acquisition
region sizes and image resolutions between the three technologies.
Given that the image acquisition window of COMET was smaller
than that of Xenium and Axioscan, there was comparatively
less protein data utilised in the analysis. Another complexity is
non-rigid tissue deformations due to the tissues being subjected
to several processes and temperatures. Nonetheless, accurate co-
registration and alignment were achieved in the tissue areas
captured across the transcriptomic, proteomic and the H&E
images. These steps facilitated the downstream pipeline of analysing
protein and transcript at single cell resolution, with tissue region-
specific context.

Cell segmentation is critical, as inaccuracies in identifying
cells and their boundaries can directly impact gene and protein
quantification. There is no universally accepted “best” segmentation
method as results often vary depending on the tissue type and
segmentation algorithm used. Ultimately, the goal is to achieve
segmentations that accurately reflect true cell boundaries and cell
type annotation. We compared two approaches to showcase the
added value of integrating proteomics. The results indicated that,
for this dataset, the choice of segmentation method has minimal
impact on the correlation between ST and SP across both samples.
This may be due to spatial proteomics being calculated as the
mean intensity per cell pixel, reducing sensitivity to variations in
cell size that could arise from different segmentation methods,
and the limited number of COMET markers available for direct
comparison. Of the evaluatedmethods, nucleus expansion performs
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FIGURE 4
Cell type annotation from spatial transcriptomics (ST) and spatial proteomics (SP). (A) Concordance of immune cell annotations between ST and SP in
sample A: The comparison between transcriptomics- and proteomics-based cell typing shows modest overall alignment, indicating that cell identities
inferred from each modality do not always match. ST-based annotation using scRNA reference overestimates T cell abundance, potentially due to the
small size and low RNA content of lymphocytes, which limits detection sensitivity. (B) The Jaccard index measures the similarity between immune cell
groups identified by the two methods by comparing the number of overlapping cells to the total number identified by either method (union). Among
immune populations, B cells show the highest agreement between methods, followed by T cells and macrophages, while NK cells display the least
concordance likely due to the limited number of NK cells detected in both modalities. (C) UMAP-based visualization of cell annotations demonstrated
that the matched B cell population (blue cluster) was characterized by high expression of both CD20 protein and the MS4A1 gene. Likewise, CD3, CD4,
and CD8 markers aligned with the T cell population identified by both annotation methods, while macrophage groups were also confirmed through
consistent expression of CD68 at both the transcriptomic and protein levels. This integrated view of gene and protein markers within the same cells
was made possible by our multi-omics integration pipeline.

well in dense tissues but can over-assign transcripts due to inflated
boundaries (Salas et al., 2025). Spatial proteomics, by contrast,
captures cell shape more accurately and allows post-experiment
selection of multiple segmentation markers to improve accuracy.
However, membrane-based segmentation is limited by its reliance
on strong, consistent expression of membrane proteins, which may
not be uniform across all cells (Dayao et al., 2022). Therefore,
combining transcriptomic and proteomic data in the same section
enables identification of segmentation artifacts for quality control.

Future workwill focus onmutually exclusive gene pairs (genes rarely
co-expressed in the same cell) (Hartman and Satija, 2024) to directly
assess cell detection accuracy in lung tissue.

We also demonstrated that protein-gene concordance could
be assessed in the same cells across different experiments. The
relatively low overall ST-SP correlation (0.0–0.5) suggests that
some protein expressions do not align with their respective genes,
consistent with previous findings where transcript and protein
enrichment diverge, possibly due to post-transcriptional and
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post-translational regulation (Payne, 2015; Vogel and Marcotte,
2012; Jiang et al., 2020; He et al., 2023). Our analysis further
showed that concordance may vary by tissue region. For example,
MS4A1–CD20 showed strong correlation in non-tumour areas
of Sample B, but was more pronounced in the tumour region
of Sample A (Supplementary Table S5). This observation merits
further investigation, as CD20+ B cells are known components
of the tumour microenvironment and may reflect inter-tumour
heterogeneity. Moreover, MS4A1 encodes four transcript variants
(V1–V4) expressed at different B-cell differentiation stages;
some isoforms are translation-deficient, potentially explaining
RNA–protein discordance (Nielsen et al., 2012; Zhang et al., 2023).
Furthermore, we observed that the RNA-protein correlation varies
across tissue regions and reflects underlying biology. For example,
the MKI67-Ki67 gene-protein pair shows higher correlation in
tumour areas, which is consistent with its role as a marker of cell
proliferation. However, both Ki-67 mRNA and protein levels are
tightly regulated by the cell cycle (Ki-67 is expressed during active
proliferation and is rapidly degraded during the G1 phase or upon
cell cycle exit) (Uxa et al., 2021). As a result, the asynchronous nature
of cell states within tissue and the snapshot nature of transcriptomic
and proteomic profiling can obscure the relationship between
RNA and protein levels. This helps explain the overall low linear
correlation despite the clear biological relevance of these markers.
Next, the S100 protein family exhibits low RNA-protein correlation,
likely due to technical and biological reasons. The Xenium panel
includes only two transcripts (S100A7 and S100A12), while the
antibody used can detect multiple S100 proteinmembers.Moreover,
the expression of S100 proteins is heterogeneous and cancer-type
specific. For instance, S100A12 generally shows low expression
in lung cancer, while S100A7 is more specific to squamous and
large cell carcinomas, but not adenocarcinomas or small cell
lung cancer (Liang et al., 2024). These discrepancies underscore
the complexity of interpreting correlation values without broader
cohort and sample size.

While same-cell transcript–protein correlations can now be
explored, downstream cell type annotation remains a significant
challenge due to the limited number of available gene and
protein markers, particularly in imaging-based spatial omics. Yet,
accurate cell identification is essential for downstream spatial
analysis (e.g., differential expression, cell-cell interaction). In spatial
proteomics, classification is typically done through semi-supervised
methods (Barbetta et al., 2025) or manual gating based on marker
intensity. However, analyzing tissue-based multiplexed imaging
data poses technical challenges often requiring expert annotations
and histological validation, usually resulting in broad cell type
categories (Barbetta et al., 2025). In contrast, transcriptomic data
benefits from numerous single-cell reference annotation tools,
widely used in sequencing-based spatial transcriptomics. Still, their
performance in imaging-based spatial transcriptomics has not been
comprehensively evaluated (Cheng et al., 2025). One potential
approach in this context is to use SP to define major cell lineages
and then apply the ST gene panel for further subdivision.

Since SP and ST data were acquired on the same tissue
section, a key question emerges: how do cell type annotations
differ across these two platforms? Most studies rely on a single
modality and do not compare transcriptomic- and proteomic-based
cell labels. In our preliminary analysis comparing proteomic-based

and transcriptomic-based cell labels, the CD8+ T cell population
identified by STwasmore numerous andwidely distributed,whereas
the same population gated in SP was much smaller and fragmented,
which we posit could be attributed to protein stability (Nicolet
and Wolkers, 2022). However, not all phenotypes showed such
discrepancies. Manually gated B cells in SP and computationally
typed B cells in ST overlapped in immune regions and aligned
with the histological tissue context, validating the findings across
all three modalities. Relating the ST and SP results back to H&E
is crucial as H&E remains the gold standard of histopathological
analysis and diagnosis (Lee et al., 2024). Although there were several
limitations to cell typing, including that the gene panel used few
genes overlapping with the dataset that scArches was trained on,
this preliminary result shows the invaluable insight three modalities
on the same section could provide. Concordant identification across
modalities presents valuable opportunities. In proteomics, these
cells serve as benchmarks to understand how protein combinations
contribute to accurate classification. In transcriptomics, they enable
gene expression imputation beyond the measured panel, enhancing
Xenium resolution. For instance, results suggest the current gene
panel favours B cell detection but is less effective for T cells. Follow-
up studies could refine cell typing by exploring why certain lineages
are better captured by one modality over another.

The limitations of this study include, but are not limited to,
the small sample size of the same cancer type. Despite using two
samples, this study serves as a pivot point for future studies to
test a larger cohort with samples of a variety of cancer types. Our
proposed wet lab methodology is applicable to all tissue types
provided that the samples are prepared in accordance to histological
standards and that the selected transcriptomic panel is applicable
to the test samples. Though we explored a few segmentation and
cell phenotyping methods, it serves as a foundation for exploration
of other pipelines to increase cell typing accuracy. Moreover,
the computational pipeline is modality-agnostic, assuming the
molecular readouts are derived from the same section using
the outlined wet lab approach, which enables robust alignment
and analysis of spatial multi-omics data at the single cell level
regardless of tissue or disease context. In future, the cohort could
be expanded in size and cancer types, along with the integration of
additional omics datasets. This study could also serve as a starting
point for deeper development and standardization of the analysis
pipeline, such as the preprocessing for the cell segmentation of
protein markers.
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