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Background:Heatstroke (HS) is becomingmore concerning, with coagulopathy
contributing to higher mortality. The aim of this study was to analyze
the metabolomic and proteomic profiles associated with heatstroke-induced
coagulopathy (HSIC) and to develop a molecular diagnostic model based on
proteomic and metabolomic patterns.

Methods: This study included 41 HS patients from the Department of Critical
Care Medicine at a comprehensive teaching hospital. Plasma proteins and
metabolites from HSIC and non-heatstroke-induced coagulopathy (NHSIC)
patients were compared using LC-MS/MS. Multivariate and univariate statistical
analyses identified differentially expressed proteins (DEPs) and metabolites
(DEMs). Functional annotation and pathway enrichment analyses were
performed using the GO and KEGG databases, and machine learning models
were developed using candidate proteins selected by LASSO and Boruta
algorithms to diagnose HSIC. Finally, bioinformatic analysis was used to
integrate the results of proteomics and metabolomics to find the potential
mechanisms of HSIC.

Results: A total of 41 patients participated in the study, with 11 cases in
the HSIC group and 30 cases in the NHSIC group. Significant differences
were observed between the groups in temperature, heart rate, white blood
cell count, platelet count, liver function, coagulation markers, APACHE II
score, and GCS score. Survival analysis revealed that the heatstroke group
had a higher mortality risk. A total of 125 DEPs and 110 DEMs were
identified, primarily enriched in energy regulation-related pathways and
lipid and carbohydrate metabolism. Additionally, three optimal predictive
models (AUC >0.9) were developed and validated for classifying HSIC from
HS individuals based on proteomic patterns and machine learning, with
the logistic regression model showing the best diagnostic performance
(AUC = 0.979, sensitivity = 81.8%, specificity = 96.7%), highlighting
lactate dehydrogenase A chain (LDHA), neutrophil gelatinase-associated
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lipocalin (NGAL), prothrombin and glucan-branching enzyme (GBE) as key
predictors of HSIC.

Conclusion: The study uncovered critical metabolic and protein changes
linked to heatstroke, highlighting the involvement of energy regulation, lipid
metabolism, and carbohydrate metabolism. Building on these findings, an
optimal machine learning diagnostic model was developed to boost the
accuracy of HSIC diagnosis, integrating LDHA, NGAL, prothrombin, and GBE as
key biomarkers.
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1 Introduction

HS is a severe condition marked by a rapid increase in body
temperature above 40°C and central nervous system dysfunction,
leading to inflammation, organ failure, and potentially death
(Bouchama and Knochel, 2002; Liu et al., 2020a). It can be
exertional, due to intense activity, or classic, affecting vulnerable
populations like the elderly (Bouchama et al., 2022). The overall
incidence of heatstroke in 2020 was 0.36 per 1,000 United States
military soldiers/years (Author Anonymous, 2021), while in Japan,
it ranged from 37.5 per 100,000 (95% CI, 36.8–38.2) between
2015 and 2017 to 74.4 (95% CI, 72.7–76.1) in 2018 (Ogata et al.,
2021). HS is frequently accompanied by coagulation disorders
and coagulopathy (Iba et al., 2022; Huisse et al., 2008). In this
case, both coagulation abnormalities and HS act as contributing
factors. This will worsen the patient’s condition, increase the risk of
disseminated intravascular coagulation (DIC), and make treatment
both challenging and less effective. Therefore, there is an urgent
need to explore the risk factors and elucidating the mechanisms
associated with the early diagnosis, classification of risks, and
prediction of outcomes between HS and HSIC underlying their
clinical development. Early identification is crucial as it facilitates
prompt therapeutic intervention, potentially preventing disease
progression to life-threatening complications.

Currently, we lack precise indicators and recognized diagnostic
criteria to identify high-risk HSIC populations, hindering early
interventions. This is mainly due to an incomplete understanding
of HS’s pathogenesis and the specificity of HSIC. Researchers
have analyzed the link between HS and coagulopathy, focusing
on blood cells’ role in inflammation and coagulation, especially
platelet dysfunction (Iba et al., 2025). Additionally, researchers
found severe endothelial damage and abnormal coagulation
activation duringHS, and identified key coagulation and endothelial
risk factors related to DIC to establish diagnostic models
(Liu et al., 2025; Zeng et al., 2023). The advancement of omics
technologies, such as metabolomics and proteomics, provide a
novel approach for diagnosing HSIC and deepen our understanding
of its occurrence and progression from an immune-metabolism
perspective.

In this study, we applied metabolomics and quantitative
proteomics to quantitatively analyze the plasma of patients
with HSIC and NHSIC (Figure 1). We identified differentially
expressed metabolites (DEMs), DEPs, and key signaling pathways.

Additionally, we developed diagnostic models based on proteomic
patterns and machine learning. The performance of these models
was evaluated using metrics such as accuracy, sensitivity, specificity,
and area under the curve (AUC) to determine their potential for
early detection of HSIC in clinical settings.

2 Materials and methods

2.1 Study population

This study included 41 HS patients enrolled from the
Department of critical care medicine of the 908th Hospital of PLA
joint logistic support force, from June 2022 to February 2024. The
patients were divided into two groups: 11 cases in the HSIC group
and 30 cases in the NHSIC group. The study was conducted in
accordance with the ethical guidelines outlined in the Declaration of
Helsinki, and informed consent was obtained from all participants
or their family members. The study was approved by the ethics
committee of our hospital.

Patients were diagnosed with HS or HSIC based on the
Bouchama’s HS criteria (Bouchama and Knochel, 2002) and a
newly proposed HSIC score (Lin et al., 2024). HS was defined by
meeting the following criteria: (1) medical history of exposure to
high temperature, high humidity or high-intensity exercise; (2) core
temperature over 40°C; (3) CNS-related changes, including coma,
convulsions, delirium, or abnormal behavior. HSIC scores were
calculated according to as follows: Core temperature <40°C was
scored as 0 points, ≥40°C but <42°C as 1 point, ≥42°C as 2 points;
D-dimer of 2-fold increase over baseline was scored as 0 point, ≥ 2-
fold but < 5-fold increase over baseline as 1 points, ≥ 5-fold increase
over baseline as 2 points; prothrombin time (PT) prolongation of
<2 s was scored as 0 point, ≥2 s but <4 s as 1 point, ≥4 s as 2 points.
HSICwas diagnosed as a total score at least 3. Patients were excluded
from our study if they were younger than 18 years old, they had a
congenital coagulation disorder or chronic disease of the liver, or
they were using anticoagulant drugs at the time of enrollment.

2.2 Sample collection process

Venous blood samples were drawn in the early morning after a
minimum of 8 h of fasting and placed into a dry blood collection
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FIGURE 1
The flowchart.
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tube.The samples were then centrifuged at 4244 g for 10 min at 4°C.
The serum obtained was separated and stored at −80°C.

2.3 Proteomics

In our study, we analyzed serum samples from 41 participants
using DIA quantitative proteomics. The total protein from each
sample was extracted, with a portion used for protein concentration
determination and SDS-PAGE, while the remainder underwent
trypsin digestion. After desalting, LC-MS/MS was employed to
identify the peptides present. LC-MS/MS analysis was conducted
on a timsTOF Pro 2 system (Bruker) coupled with Evosep
One LC, employing both DDA (scan range m/z 100–1,700, ion
mobility 0.75–1.35 Vs/cm2, 8 PASEF MS/MS cycles) for spectral
library generation and 4-window DIA for quantitative profiling.
Spectronaut pulsar software was used to comprehensively search
the raw data and compare it against the known UniProtKB human
proteome database. The false discovery rate (FDR) for both DDA
andDIAdata was set at 0.01. DEPswere definedwith a p-value <0.05
and |log2(FC)| >1.

GO and KEGG pathway analyses were used to assess protein
functions. In the GO annotation process, the protein sequences
of the differentially expressed proteins were first searched locally
using the NCBI BLAST + client software (ncbi-blast-2.2.28+-
win32.exe) and InterProScan to identify homologous sequences.
Gene ontology (GO) terms were then mapped, and the sequences
were annotated using Blast2GO software, with the results visualized
using R scripts. For KEGG annotation, the annotated proteins were
blasted against the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (http://geneontology.org/) to obtain their KEGG
orthology identifications, which were subsequently mapped to
relevant pathways in KEGG. A p-value less than 0.05 in the pathway
enrichment test, alongwith a protein count greater than 5, were used
as criteria for determining significance.

2.4 Metabolomics

Serum samples from 41 subjects were analyzed using
metabolomics. Plasma samples were thawed at 4°C, and
100 µL of each sample was mixed with 400 µL of pre-cooled
methanol/acetonitrile (1:1, v/v) to precipitate proteins. The mixture
was centrifuged at 14,000 g and 4°C for 20 min. The supernatant
was dried under vacuum centrifugation and re-dissolved in 100 µL
of acetonitrile/water (1:1, v/v). After centrifugation at 14,000 g
and 4°C for 15 min, the supernatant was injected for analysis. An
UHPLC system (1,290 Infinity LC, Agilent Technologies) coupled to
a quadrupole time-of-flightmass spectrometer (AB Sciex TripleTOF
6600) was used. Hydrophilic interaction chromatography (HILIC)
was performed using a 2.1 mm × 100 mm ACQUIY UPLC BEH
Amide 1.7 µm column (Waters, Ireland). In both ESI positive
and negative modes, mobile phases consisted of A = 25 mM
ammonium acetate and 25 mM ammonium hydroxide in water,
and B = acetonitrile. The gradient started at 95% B for 0.5 min,
decreased to 65% in 6.5 min, to 40% in 1 min (held for 1 min), then
returned to 95% in 0.1 min with a 3 min re-equilibration. Source
parameters: Gas1 = 60, Gas2 = 60, CUR = 30, temperature = 600°C,

ISVF = ±5500 V. MS range: 60–1,000 Da (0.20 s/spectra); MS/MS:
25–1,000 Da (0.05 s/spectra), CE = 35 V (±15 eV), DP = ±60 V,
IDA with 10 candidate ions per cycle. An UHPLC (Vanquish,
Thermo) coupled to an Orbitrap (Q Exactive HF-X/Q Exactive
HF) was also employed. The same HILIC column and mobile
phases were used. Gradient: 98% B for 1.5 min, decreased to 2%
in 10.5 min, held for 2 min, then returned to 98% in 0.1 min with
a 3 min re-equilibration. MS range: 80–1,200 Da, resolution 60,000
(100 ms); MS/MS: 70–1,200 Da, resolution 30,000 (50 ms), exclude
time: 4 s. Raw MS data were converted to MzXML files using
ProteoWizard MSConvert, imported into XCMS for peak picking
(centWave m/z = 10 ppm, peakwidth = c (10, 60)), and annotated
with CAMERA. Compound identification was based on m/z and
MS/MS comparison with an in-house database. The positive and
negative data were merged to create a combined dataset, which was
then imported into R software. After sum-normalization, the data
were analyzed using the R package (ropls), performing multivariate
analysis including PCA and OPLS-DA with Pareto scaling. 7-fold
cross-validation and 200 response permutation testing assessed
model robustness. VIP values were calculated to determine each
variable’s contribution to classification. Student’s t-test was used to
evaluate differences between two groups, with VIP >1 and p < 0.05
for screening significant metabolites.

2.5 Statistical analyses

All statistical analyses were performed using R software (version
4.1.2). Continuous variables were presented as means ± SD or
medians with IQR, depending on distribution. Differences between
groups were assessed using t-tests for data following a normal
distribution or Mann-Whitney U tests for data following a non-
normal distribution. Categorical variables were compared using
chi-square or Fisher’s exact tests. A p-value <0.05 was considered
significant. Feature selectionwas conductedwith LASSO andBoruta
algorithms. Predictive models were developed using LR, XGBoost,
and SVM. Model performance was evaluated with metrics such as
accuracy, sensitivity, specificity, AUC, kappa, and F1 score. ROC
and PR curves were used to assess discriminative power, while DCA
validated clinical utility. DALEXwas used formodel interpretability.

3 Results

3.1 Participant characteristics

A total of 41 patients with HS were enrolled in this study after
screened for eligibility. All of patients with HS were divided into
HSIC group (n = 11, 9 males and 2 females), and NHSIC group (n
= 30, 25 males and 5 females). Inter-group comparisons revealed
statistically significant differences in temperature, heart rate, white
blood cells (WBC), platelets (PLT), aspartate transaminase (AST),
ALT (alanine transaminase), total bilirubin (TBIL), creatinine
(Cr), lactate (Lac), creatine kinase (CK), MB(myoglobin), PT,
INR (international normalized ratio), APTT (activated partial
thrombin time), TT (thrombin time), d-dimer, APACHE II(Acute
Physiology and Chronic Health Evaluation II) score, GCS(Glasgow
Coma Scale) score and MODS (multiple organ dysfunction
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syndrome).While age, gender, risk of coronary disease and diabetes,
probability of hypertension, Hemoglobin, HCT (hematocrit), and
FIB (fibrinogen) showed no statistical differences between the two
groups. The comparisons between HSIC group and NHSIC group
are depicted in Table 1.

3.2 APACHE II score and survival analysis in
the study groups

Compared with NHSIC group, the APACHE II score in HSIC
group is significantly increased (Table 1; Figure 2A).The cumulative
risk curve of adverse outcome according to the study groups
is shown in Figure 2B. The result demonstrated that individuals
in NHSIC group were at the higher risk of death compared with
HSIC group.

3.3 Proteins identification and differential
proteins analysis

We identified a total of 1907 proteins. For differential expression
analysis, p value <0.05 were considered statistically significant and
|log2(FC)| >1 was considered up- or downregulated, respectively. A
total of 125DEPswere screened in theNHSIC group vs.HSIC group.
A comparison of NHSIC and HSIC patients found that there were
6 and 119 upregulated and downregulated proteins, respectively
(Figure 3A). Hierarchical clustering algorithm was used to perform
cluster analysis on the DEPs of NHSIC and HSIC groups, and the
data was displayed in the form of heat map (Figure 3B).

3.4 Functional analysis of differentially
expressed proteins

We performed GO functional annotation on the differentially
expressed proteins (DEPs) (Figure 4A). In the NHSIC vs. HSIC
group, the difference in protein expression was greatest in
Biological Process (BP), Molecular Function (MF), and Cellular
Component (CC). Concentrated results were in negative regulation
of coagulation, lipoprotein particle receptor binding, and lipoprotein
particle. We used KEGG to analyze the signaling pathways of 125
DEPs in the NHSIC vs. HSIC group that were mainly concentrated
in complement and coagulation cascades, cholesterol metabolism,
and neuroactive ligand−receptor interaction (Figure 4B). From the
125DEPs in theNHSIC vs.HSIC group, 36 proteinswere involved in
protein interactions. Furthermore, PPIs analysis showed that APOH
and PLG had the highest degree scores in the network (Figure 4C),
suggesting that they play a role in the pathological process of HS.

3.5 Identification and further analysis of
candidate DEPs involved in HSIC

LASSO regression introduces a penalty function to continuously
compress the coefficients, streamline the model, and avoid
multicollinearity and overfitting, thereby achieving the effect of
variable selection. When a standard error of the minimum distance

λ was 0.012, 27 feature coefficients were nonzero (Figures 5A–C).
The process and results of feature selection using Random Forest are
shown in Figures 5D,E, which identified 16 important variables
predisposing to HSIC in heatstroke patients. The two methods
identified overlapping proteins, two upregulated (LDHA and
NGAL), two downregulated (Prothrombin and GBE) (Figure 5F).
Then, these four most vital variables were selected for further
analysis. As the principal component analysis result in Figure 5G,
the four DEPs aforementioned can clearly distinguished NHSIC and
HSIC, which indicated that they may play key roles in the diagnosis
of HSIC. The correlations of the proteins were also analyzed
as shown in Figure 5H. The absence of significant correlations
among these proteins indicates they do not exhibit functional
similarities.

3.6 Construction and assessment of
XGBoost, LR and SVM model for HSIC
diagnosis

XGBoost, LR and SVM algorithms were used to construct
models based on selected proteins. We used AUC, accuracy, no
information rate, balanced accuracy, kappa, sensitivity, specifcity,
precision, and F1 scores to comprehensively evaluate the model’s
performance. XGBoost had the largest AUC (0.991) and precision
(1.0), followed by LR (AUC: 0.979; precision: 0.90) and SVM
(AUC: 0.976; precision: 0.750) (Table 2). Figure 6A described the
ROC curves for the three models. The accuracy, kappa, sensitivity,
Balanced accuracy and F1 scores of LR were higher than those of
XGBoost and SVM, as shown in Table 2. Therefore, The LR had
better clinical utility compared to XGBoost and SVM.

The ROC curves and PR curves for the three models indicated
that the LR was better than XGBoost and SVM in discrimination
(Figures 6A,B). The calibration curve fit was good (Figure 6C),
indicating that the model had good diagnostic performance.
Furthermore, we found the net benefits (NB) of LRmodelwas higher
than 0, with the greater NB in DCA clinical evaluation (Figure 6D),
indicating the importance of the LR model for HSIC diagnosis.
The DALEX package was used for logistic regression analysis to
further demonstrate the importance of the four proteins in the
model and the descending order of importance of these features in
the model was LDHA, NGAL, Prothrombin and GBE (Figure 6E).
Based on the confusion matrix, the assay had a sensitivity,
specificity, PPV, and NPV of 81.8%, 96.7%, 90.0%, and 93.6%
respectively (Figure 6F).

3.7 Model explainability and visualization

We present one instances in which interpretability analyses of
the model predictions. The ML model predicted a 45.7% risk of
HSIC based on four critical predictors. We found prothrombin
and GBE being the two contributors to the increased risk of
HSIC, whereas LDHA and NGAL reduced the model’s diagnosis
of HSIC (Figure 6G). We developed the interface to facilitate the
use of the model to explore the relative contribution of HSIC
probability factors in ICU patients. In the diagnosis view, the
system invokes a diagnosis model, and the LR model diagnoses the
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TABLE 1 Baseline demographic.

Item NHSIC (N = 30) HSIC (N = 11) p-value q-value

Male, n (%) 25 (83) 9 (82) >0.990 >0.990

age, yr 31 (27–36) 49 (40–58) 0.059 0.084

Temperature, °C 36.8 (36.5–37.0) 38.4 (37.7–39.2) 0.001 0.003

Heart rate, min-1 70 (57–80) 110 (90–124) <0.001 <0.001

Hypertension, n (%) 0 (0) 2 (18) 0.067 0.091

Diabetes, n (%) 1 (3.3) 0 (0) >0.990 >0.990

Coronary disease, n (%) 0 (0) 1 (9.1) 0.270 0.320

WBC, ×1012/L 9.0 (6.7–11.4) 14.9 (12.0–20.8) 0.009 0.015

HGB, g/L 129 (119–142) 132 (115–140) 0.660 0.710

HCT, % 39.9 (37.7–43.7) 40.5 (35.9–44.4) 0.630 0.700

PLT, × 109/L 231 (178–284) 54 (30–103) <0.001 0.001

ALT, U/L 27.1 (16.7–38.1) 110.3 (34.1–955.1) 0.001 0.003

AST, U/L 28.8 (21.7–51.4) 204.7 (65.7–476.1) <0.001 <0.001

TBIL, μmol/L 14.3 (10.0–18.9) 22.5 (17.2–49.2) 0.003 0.005

Cr, μmol/mL 83.0 (74.8–103.2) 184.7 (104.6–299.3) 0.002 0.005

Lac, mmol/L 0.9 (0.7–1.9) 2.7 (1.800–9.8) 0.004 0.008

CK, U/L 331.7 (160.6–699.9) 1,521.0 (242.7–8,947.7) 0.009 0.014

MB, U/L 80.2 (52.1–317.3) 745.5 (580.8–852.1) <0.001 <0.001

PT, s 13.4 (12.3–14.4) 19.1 (17.6–30.9) <0.001 <0.001

INR 1.12 (1.05–1.20) 1.58 (1.45–2.52) <0.001 <0.001

APTT, s 29.4 (27.9–31.4) 53.4 (37.5–120.0) <0.001 <0.001

TT, s 16.4 (15.5–17.6) 18.9 (16.7–27.4) 0.005 0.010

FIB, g/L 2.13 (1.85–2.49) 1.93 (1.21–2.66) 0.490 0.560

D-dimer, μg/L 0.24 (0.19–0.870) 14.80 (3.75–29.97) <0.001 <0.001

APACHE II score 11 (7–15) 28 (21–39) <0.001 <0.001

GCS 13 (11–15) 4 (3–8) <0.001 <0.001

MODS, n (%) 4 (13) 8 (73) <0.001 0.002

Mortality, n (%) 1 (3.3%) 3 (27%) 0.052 0.077

Values are n (%), mean ± standard deviation or median (interquartile range), unless otherwise noted.
Abbreviations: WBC, white blood cells; HGB, hemoglobin; HCT, hematocrit; ALT, alanine transaminase; AST, aspartate transaminase; Cr, creatinine; TBIL, total bilirubin; Lac, lactate; CK,
creatine kinase; MB, myoglobin; PLT, platelets; PT, prothrombin time; INR, international normalized ratio; APTT, activated partial thrombin time; TT, thrombin time; FIB, fibrinogen;
APACHE II, score, Acute Physiology and Chronic Health Evaluation II; GCS, glasgow coma scale; MODS, multiple organ dysfunction syndrome.

Frontiers in Molecular Biosciences 06 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1616073
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Zeng et al. 10.3389/fmolb.2025.1616073

FIGURE 2
(A) A scatterplot of APACHE II score comparison in the NHSIC vs. HSIC group; (B) Kaplan–Meier curves for adverse outcome according to the
study groups.

FIGURE 3
(A) A total of 125 differentially expressed proteins were screened in the NHSIC vs. HSIC group (6 upregulated and 119 downregulated). (B) Cluster
analysis of DEPs in the group of NHSIC vs. HSIC.

patient’s HSIC. The analysis results are visualized in a graphic view,
which indicates the HIC probability of the patient input important
features values (Figure 6H).

In addition, we also described the effect (positive or negative)
of four proteins on the model. Figure 7 showed the relationship
between LDHA, Prothrombin, NGAL, GBE and predicted HSIC.
Higher LDHA and NGAL were associated with an increased risk
of HSIC. Lower Prothrombin and GBE were associated with an
increased risk of HSIC (Figure 7).

3.8 Metabolomic analysis

Figure 8A displays the results of principal component analysis
(PCA), which clearly separates the samples into distinct groups.
Figure 8B presents the OPLS-DA scores, highlighting a significant
difference between the two groups. The robustness of the OPLS-
DA model was validated through permutation analysis, yielding
an R2Y of 0.979 and a Q2 value of 0.545. In Figure 8C, the
negative Q2 value confirms the absence of over-fitting, further
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FIGURE 4
Functional enrichment analysis of NHSIC vs. HSIC differentially expressed protein. (A) The enriched GO functional classification, which is divided into
three major categories: Biological Process (BP), Molecular Function (MF), and Cellular Component (CC). The color of the bar graph indicates the
significance of the enriched GO functional classification, which is based on Fisher’s accuracy; Fisher’s Exact Test calculated the P value. The color
gradient represents the size of the P value, from red to blue; the closer to blue, the smaller the P value, and the higher the significance level of the
enrichment of the corresponding GO function category. (B) The DEPs mainly concentrated in complement and coagulation cascades, cholesterol
metabolism, and neuroactive ligand−receptor interaction. (C) DEP interaction networks in group of NHSIC vs. HSIC.

validating the model’s reliability and effectiveness. Differential
expression analysis, based on a Benjamini–Hochberg adjusted
filter of <0.05 and a log2 fold change (FC) > 1.0, revealed 110
significantly DEMs, including 30 upregulated and 80 downregulated

metabolites. These 110 DEMs are shown in the volcano plot
in Figure 8D. Finally, Figure 8E illustrates the top 25 enriched
metabolic pathways for these DEMs, as identified using the
KEGG database.
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FIGURE 5
Diagnostic indicators for HSIC screening. (A) Fine-tuning the least absolute shrinkage and selection operator (LASSO) model’s feature selection. The
ordinate represents the value of the coefficient, the lower abscissa represents log (l), and the upper abscissa represents the current number of non-zero
coefficients in the model. (B) LASSO coefficient profiles. (C) The important indicators in Lasso. (D) History of decisions of rejecting or accepting
features by Random Forest in 100 Boruta function runs. (E) Boxplot of all features from random forest analysis, with green indicating important
variables, while red, blue, and yellow represent rejected variables. (F) Venn diagram showing overlapping markers. (G) Principal component analysis
shows that the four proteins aforementioned can clearly distinguished NHSIC and HSIC. (H) The correlation among LDHA, Prothrombin, NGAL, GBE.

3.9 Bioinformatic analysis-integrated
analysis of proteomics and metabolomics

Through DIABLO algorithm, we identified distinct clustering
patterns differentiating NHSIC and HSIC samples (Figure 9A).
Subsequent integrative modeling of multi-omics features

revealed strong cross-correlations between proteomic and
metabolomic profiles, highlighting their coordinated biological
regulation (Figure 9B). To identify significant protein-metabolite
interactions, we extracted the top 20 differentially expressed
proteins (DEPs) and metabolites (DEMs) ranked by p-values
and performed Pearson correlation analysis to evaluate their
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TABLE 2 Performance of three machine learning models for predicting HSIC in critically ill patients.

Models AUC Accuracy No
information

rate

Balanced
accuracy

Kappa Precision F1 score Sensitivity Specificity

XGBoost 0.991 0.877 0.731 0.773 0.637 1.000 0.706 0.545 1.000

SVM 0.976 0.878 0.730 0.859 0.698 0.750 0.783 0.818 0.900

LR 0.979 0.927 0.732 0.892 0.808 0.900 0.857 0.818 0.967

AUC, area under curve; LR, logistic regression; XGBoost, eXtreme gradient boosting; SVM, support vector machine.

FIGURE 6
(A) The AUC of the three models. (B) Learning curve. (C) Calibration curves for the LR model for predicting HSIC probability. (D) Decision curve analysis
evaluating the clinical benefit of the predictive model. (E) Feature importance derived from LR model. (F) Confusion matrix showing the classification
accuracy. (G) Explaining of patient prediction results. (H) User-friendly interface of the LR model facilitating HSIC probability prediction.
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FIGURE 7
Relationship between (A) LDHA, (B) NGAL, (C) Prothrombin, (D) GBE and predicted HSIC.

associations, followed by the generation of a correlation heatmap
(Figure 9D). Multi-omics clustering analysis revealed strong
inter-dataset associations between features derived from the
proteomic and metabolomic profiles (Figure 9D). Additionally,
the differentially expressed proteins and metabolites were mapped
to the KEGG database to assess the potential relationship.
It was found that the AMPK signaling pathway, cholesterol
metabolism, glycolysis/gluconeogenesis, neuroactive ligand-
receptor interaction, propanoate metabolism, glucagon signaling
pathway, glycerophospholipid metabolism, and pantothenate and
CoA biosynthesis were significantly enriched (Figure 9E).

4 Discussion

This study explored the clinical characteristics, biomarkers,
and the performance of predictive models for HSIC. It revealed
significant differences in clinical markers such as APACHE II scores,
liver function, and coagulation markers between the NHSIC and
HSIC groups. There were 125 DEPs and 110 DEMs identified in the

comparison between the NHSIC and HSIC groups and Significant
protein and metabolite alterations were found primarily in energy
regulation and lipid metabolism pathways. Specific proteins, such as
LDHA, NGAL, GBE, and prothrombin, were identified as potential
biomarkers for HSIC diagnosis. Additionally, Machine learning
models, including XGBoost, LR, and SVM, were developed for
HSIC diagnosis, with the LR model showing the best diagnostic
performance.

The clinical markers, including temperature, heart rate, AST,
ALT, PT, and INR, observed in both the NHSIC and HSIC groups,
provide valuable insights into the pathophysiology of HS and
its complications. These variations align with previous studies
showing that heatstroke causes organ dysfunction and coagulation
abnormalities (He et al., 2022; Zhong et al., 2021). The higher
APACHE II scores in the HSIC group further highlight the
connection between the severity of heatstroke and poor prognosis,
as high APACHE II scores are known to predict adverse outcomes
(Shimazaki et al., 2020). The identification of 125 DEPs, reflecting
changes in coagulation and lipoproteinmetabolism, supports earlier
studies (Li et al., 2023; Caputa et al., 2000). The functional analysis

Frontiers in Molecular Biosciences 11 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1616073
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Zeng et al. 10.3389/fmolb.2025.1616073

FIGURE 8
(A) Score chart of PCA analysis. (B) Score chart of OPLS-DA analysis. (C) PLS-DA model validation diagram. (D) A volcano plot of the differential
metabolites. (E) A bubble diagram of top-25 metabolic pathways.

of these proteins emphasized the role of key signaling pathways,
including complement and coagulation cascades. Heatstroke, a
septic-like condition, involves these pathways, which are crucial

in both sepsis and HSIC (Jiang et al., 2024; Liu et al., 2020b).
Subsequently, a metabolomic analysis was performed and 103
DEMs were identified. Consistent with the proteomics results,
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FIGURE 9
(A) The proteomics (left) and metabolomics (right) features can clearly distinguish the samples. (B) The multi-omics correlation plot shows the Pearson
correlation between proteomics and metabolomics, supporting their integration and the presentation of a joint signature. (C) Correlation analysis of
the differential proteins and metabolites. (D) The multi-omics clustering heatmap is structured such that samples are displayed in rows and molecular
features (e.g., proteins, metabolites) are arranged in columns. (E) KEGG pathway annotation of differential proteins and metabolites.

we observed significant regulation of energy metabolism-related
biological pathways. Multiomics analysis of metabolomics and
proteomics datasets based on the same biological samples was
applied in this study. It was found that HS is closely associated with
energy regulation-related pathways as well as lipid and carbohydrate

metabolism. Machine learning models showed better performance
in diagnose HSIC, further supporting previous research in this area
(Umemura et al., 2024; Zeng et al., 2023).

The main academic contribution of this study lies in providing
new insights into the diagnosis of HSIC through the analysis
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of clinical data and proteomics data, combined with machine
learning methods. First, our study identified and analyzed 125
DEPs and 100DEMs, revealing significant differences in protein and
metabolite expression between NHSIC and HSIC, particularly in
pathways related to lipid and carbohydrate metabolism. Secondly,
through LASSO regression and random forest analysis of these
differentially expressed proteins, four key proteins -LDHA, NGAL,
GBE, and Prothrombin -were identified. LASSO is a widely
used regression method for high-dimensional data analysis that
automatically selects variables through L1 regularization. It is
particularly suitable when the number of features far exceeds
the sample size, improving model predictive performance and
enhancing interpretability. Boruta, a random forest-based feature
selection algorithm, systematically evaluates feature importance
to ensure optimal predictivity and interpretability. Combining
LASSO with Boruta results in a more stable model with stronger
interpretability. LDHA activation under hypoxia/inflammation
drives lactate accumulation, which signals through endothelial
GPR81 to increase vascular permeability and amplify systemic
inflammation (Huau et al., 2024; Chen et al., 2023; Khatib-
Massalha et al., 2020). Additionally, themetabolic product of LDHA,
lactate, can affect endothelial cell permeability and coagulation
function (Yang et al., 2022). NGAL, an acute-phase protein,
is upregulated in inflammatory responses (Chakraborty et al.,
2012). NGAL is not only involved in the activation of neutrophils
but also promotes the vicious cycle of thrombus formation
and inflammatory responses through its interaction with the
coagulation system (Xue et al., 2025).Heatstroke can also cause renal
damage, so its levels are correlated with the severity of heatstroke
(Chen et al., 2024). GBE is closely related to lipid metabolism,
and abnormalities in lipid metabolism during heatstroke may
lead to changes in its levels. Prothrombin is a pivotal protein
within the coagulation system. Its accelerated activation under
inflammatory conditions can precipitate coagulation dysfunction,
elevate the risk of thrombosis, and further intensify inflammatory
responses (Teodoro et al., 2023). Moreover, growing evidence
suggests that heparanase may contribute to heatstroke-induced
coagulopathy by causing endothelial damage and glycocalyx
degradation, which enhances tissue factor (TF) exposure, promotes
prothrombin activation, and leads to excessive coagulation
activation (Capozzi et al., 2021). Since heatstroke is frequently
associated with coagulation abnormalities, changes in prothrombin
are associated with HSIC (Degen and Sun, 1998; Wright et al.,
1946). Based on these four important proteins, several machine
learning models (XGBoost, LR, and SVM) were developed for
the diagnosis of HIC. Comprehensive performance evaluations
showed that the logistic regression (LR) model demonstrated the
best diagnostic ability in clinical applications, with high sensitivity,
specificity, and clinical utility, enabling early diagnosis and risk
assessment of HSIC. However, this study has limitations that should
be addressed in future research. The sample size of 41 patients is
relatively small, which may limit the generalizability of the findings.
Additionally, the study focused on a limited set of clinical and
proteomic markers; further studies could explore a broader range
of biomarkers and clinical variables. Longitudinal data is needed
to validate the prognostic value of the identified biomarkers and
the performance of the machine learning models in predicting
long-term outcomes. Lastly, the interpretability of machine learning

models, while explored in this study, could benefit from further
refinement to enhance clinical utility, ensuring that these models
are both accurate and explainable for healthcare providers.

In summary, this study provides valuable insights into the
clinical and molecular mechanisms of HSIC and demonstrates the
utility of machine learning models in improving the diagnosis and
diagnosis of HSIC. Future research should aim to validate these
findings in larger cohorts and explore additional biomarkers that
could further enhance the understanding andmanagement ofHSIC.
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