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Introduction: Laryngeal high-speed video (HSV) is a widely used technique
for diagnosing laryngeal diseases. Among various analytical approaches,
segmentation of glottis regions has proven effective in evaluating vocal fold
vibration patterns and detecting related disorders. However, the specific task of
vocal fold segmentation remains underexplored in the literature.

Methods: In this study, we propose a novel automatic vocal fold segmentation
system that relies solely on glottis information. The system leverages prompt
engineering techniques tailored for the Segment Anything Model (SAM).
Specifically, vocal fold-related features are extracted from U-Net-generated
glottis masks, which are enhanced via brightness contrast adjustment and
morphological closing. A coarse bounding box of the laryngeal region is also
produced using the YOLO-v5 model. These components are integrated to form
a bounding box prompt. Furthermore, a point prompt is derived by identifying
local extrema in the first derivative of grayscale intensity along lines intersecting
the glottis, offering additional guidance on vocal fold locations.

Results: Experimental evaluation demonstrates that our method, which does
not require labeled vocal fold training data, achieves competitive segmentation
performance. The proposed approach reaches a Dice Coefficient of 0.91, which
is comparable to fully supervised methods.

Discussion: Our results suggest that it is feasible to achieve accurate vocal
fold segmentation using only glottis-based prompts and without supervised
vocal fold annotations. Extracted features on the resultingmasks further validate
the effectiveness of the proposed system. To encourage further research,
we release our code at: https://github.com/yucongzh/Laryngoscopic-Image-
Segmentation-Toolkit.
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medical image analysis, laryngoscope, prompt engineering, segment anything model,
vocal fold segmentation
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1 Introduction

In today’s society, communication is an important part of
people’s life and work (Rodero, 2018; Vieira et al., 2020). Correctly
producing voice signals is critical to transmitting information
effectively and accurately in verbal communication (Diehl and
McDonald, 1956). The voice production process has several main
steps, but phonation is the most important step among all
(Cataldo et al., 2013). Phonation happens when the vocal folds
in the larynx vibrate as air from the lungs passes through them
(Gordon andLadefoged, 2001), so the observation and study of vocal
folds vibration patterns are substantially helpful for the diagnosis
of phonation-related diseases. Healthy vocal folds are symmetrical
and vibrate periodically when producing sound. In contrast, the
abnormality in the periodic vibration and the asymmetrical shape
results in vocal disorders (Herzel et al., 1994).

In clinical diagnosis, laryngeal imaging techniques are used
for quantitative measurement and interpretation of the vocal
fold vibration (Hirose, 1988; Sung et al., 1999). State-of-the-art
technology is the laryngeal high-speed video endoscopy (HSV)
that enables a real-time recording of the vocal fold vibration
(Lohscheller et al., 2007). In common practice, the diagnosis of vocal
disorders is based on doctors’ subjective analysis of HSV recordings
(Verikas et al., 2009). However, this subjective observation and
evaluation of vibration period, vocal fold symmetry, the degree of
vocal fold closure time, and many other features are often time-
consuming, experience-based, and error-prone (Ghasemzadeh and
Deliyski, 2022). To alleviate the limitations brought by subjective
diagnosis, objective features are important for a quantitative analysis
of HSV recordings.

Therefore, many studies have focused on methods that can
automatically extract features to assist clinicians. Glottal area
waveform (GAW) (Noordzij and Woo, 2000) is the most widely
used one, which shows the changes of the glottal area through time.
This feature is able to provide useful information for analyzing the
periodic patterns of vocal fold oscillation and the condition of glottis
closure. To obtain a betterGAW, it requires an accurate segmentation
of the glottal area. Traditional methods, like thresholding (Yan et al.,
2006), watershed algorithms (Osma-Ruiz et al., 2008), and active
contour models (Karakozoglou et al., 2012), utilize physical features
to segment the glottal area. Nevertheless, if the recording condition
changes, those methods that depend on physical features might
not work well.

In recent years, deep supervised learning models, particularly
those based on U-Net architectures (Ronneberger et al.,
2015; Huang et al., 2020; Xu et al., 2023; Li et al., 2024;
Huang L. et al., 2024), have achieved notable success in medical
image segmentation. While these models have been extensively
applied in areas such as lung CT image segmentation, there has
been comparatively less research on the segmentation of the
human larynx. Most studies in this domain have focused on glottis
segmentation for quantitative analysis, with Derdiman and Koc
(2021), Zhang et al. (2024) validating the effectiveness of U-Net on
glottis images, and Lee et al. (2023) enhancing U-Net with a dual-
attention mechanism to improve segmentation accuracy. However,
vocal fold segmentation remains an underexplored area due to the
variability in vocal fold shape, color, and size, and the indistinct
boundaries that challenge both manual annotation and automated

segmentation. Although several open-source laryngoscopic datasets
exist for glottis annotation, almost none of them provide vocal fold
annotations, with the exception of Fehling et al. (2020).

The scarcity of annotated data is a common challenge in
medical image segmentation, exacerbated by patient privacy
concerns. Recent studies have turned toexplored the Segment
Anything Model (SAM) (Kirillov et al., 2023) for zero-shot image
segmentation, as it does not require target annotations during
inference. due to its ability to generalize across diverse tasks
using only generic prompts, eliminating the need for task-specific
annotations during inference. SAM accepts various prompts as
inputs and generates corresponding segmentation masks. In this
work, we aim to design prompts that leverage glottis annotations
as prior knowledge for SAM, exploring its potential for vocal fold
segmentation. The main contributions of our work are outlined
as follows.

1. The proposed system utilizes only glottis information to
segment vocal folds in an unsupervisedmanner.This approach
addresses the scarcity of open-source vocal fold annotation
data and reduces the labor costs associated with manual vocal
fold annotation.

2. We introduce a prompt engineering method to extract both
bounding box and point prompts for SAM to segment vocal
folds. To our knowledge, this is the first exploration of SAM’s
segmentation capabilities on human larynx.

3. On the open-sourced public dataset (Fehling et al., 2020),
our proposed system, trained solely on glottis annotation
data, achieves performance comparable to supervisedmethods
trained directly on vocal fold annotation data.

4. We extract potential useful metrics from the vocal fold masks
using our prompting method, which show abnormal signs
of patients.

The following article is formed as follows. In Section 2, we
introduce related works on both vocal folds segmentation and
SAM. In Section 3, we provide a comprehensive introduction of our
system, including laryngeal prompt engineering for SAM and vocal
folds mask inference with SAM. Section 4 shows our experimental
settings and results. To further demonstrate the effectiveness of our
system, parameter tuning and ablation studies are also discussed in
Section 4. In Section 5, we discuss the limitation of our prompting
methods and include our future works. In the end, we summarize
our paper in Section 6.

2 Related works

2.1 Vocal fold segmentation

In addition to glottis segmentation, the segmentation of vocal
folds plays a crucial role in the clinical diagnosis of laryngeal
diseases. However, vocal fold segmentation is inherently more
challenging than glottis segmentation. While the glottis typically
features well-defined and easily discernible boundaries, vocal folds
exhibit significant variability in shape, size, and color across
individuals, along with complex and less distinct boundaries.
Despite its importance and difficulty, there are only a few existing
works focusing on vocal fold segmentation. Fehling et al. (2020)
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introduced a modified U-Net model called Convolutional Long
Short-Term Memory Network (CLSTM), which incorporates Long
Short-TermMemory Networks (LSTM) and Gated Recurrent Units
(GRU) as inter-layers to propagate temporal information across
the network (Fehling et al., 2020). The authors also provided an
open-source dataset containing annotations for the glottis as well as
the left and right vocal folds, which, to the best of our knowledge,
is one of the few publicly available datasets that include vocal fold
labels.Theirmodel achievedmeanDice coefficients of 0.85, 0.91, and
0.90 for the glottis, right vocal fold, and left vocal fold, respectively,
on their test set, demonstrating the efficacy of supervised methods.
However, several limitations still persist. First, the annotation of
masks for both the vocal folds and glottis requires manual input
for each image. While glottis labels can be generated with relative
ease, the annotation of vocal fold masks is labor-intensive and
time-consuming. Furthermore, the robustness of themodel remains
unverified due to the limited quantity of labeled data (13,000
images derived from 130 high-speed video recordings using similar
laryngoscopes) and the lack of additional public datasets. To address
these challenges, this work seeks to develop methods for vocal fold
segmentation that do not rely on fully supervised learning models.

2.2 Segment anything model on medical
images

The Segment Anything Model (SAM) is a recently introduced
deep learning-based segmentation model renowned for its strong
generalization capabilities (Kirillov et al., 2023). SAM exhibits
remarkable potential in zero-shot segmentation tasks, requiring
only minimal input prompts such as bounding boxes, points,
text, or even no prompts at all. Given the increasing demand for
medical image segmentation, several studies have evaluated SAM’s
performance across various types of medical images, including
Computed Tomography (CT), Magnetic Resonance Imaging (MRI),
and endoscopy.Themost straightforward approach involves directly
applying the pre-trained SAM to different segmentation tasks,
which has demonstrated robust annotation capabilities in certain
domains (Hu et al., 2023; Mohapatra et al., 2023). However,
SAM’s performance has been found to be suboptimal compared to
traditional segmentation models in specific contexts (Deng et al.,
2023). Comparative analyses of differentmedical imagingmodalities
suggest that SAM’s effectiveness is influenced by factors such
as task complexity, image dimensionality, target region size, and
the contrast between the target and background (Deng et al.,
2023; He et al., 2023). Consequently, numerous researchers have
focused on fine-tuning SAM for particular segmentation tasks. For
example, MedSAM is a SAM-based model fine-tuned using over
1 million image-mask pairs spanning 10 modalities (Ma et al.,
2024), resulting in significant improvements in universal medical
image segmentation. However, the substantial data requirements for
effective fine-tuning, coupled with the limited availability of open-
sourcemedical images, have ledmany researchers to explore prompt
engineering for the pre-trained SAM (Yu et al., 2023; Huang J. et al.,
2024). This approach has also yielded promising results in zero-
shot image segmentation. Nevertheless, limited research has focused
on the human larynx, which motivates the application of a similar
strategy for vocal fold segmentation. In this work, we aim to design

effective prompts derived from glottis information to enable SAM to
segment vocal folds.

3 Materials and methods

3.1 Overview

As illustrated in Figure 1, the system architecture comprises four
stages. In Stage 1 (described in Section 3.2), a glottis mask and a
preliminary bounding box of the vocal folds are obtained through
the inference of two pre-trained models: U-Net (Ronneberger et al.,
2015) and YOLO-v5 (Jocher et al., 2022). In Stage 2 (described
in Section 3.3), a more accurate bounding box is derived by
applying multiple computer vision techniques, utilizing the glottis
masks and the estimated bounding boxes generated in the previous
stage. Stage 3 (described in Section 3.4) involves the extraction of
points corresponding to the outer boundaries of the vocal folds.
Finally, in Stage 4 (described in Section 3.5), the refined bounding
box and the edge points obtained in the preceding stages are
provided as box and point prompts to the Segment Anything
Model (SAM) (Kirillov et al., 2023), along with the mask generated
in the previous iteration.The core objective of the proposed method
is to extract bounding boxes and points that effectively prompt SAM,
thereby facilitating high-quality segmentation of the vocal folds.

3.2 Glottis mask extraction

Previous works on glottis segmentation have predominantly
employed supervised learning methods, where a segmentation
model is trained on manually labeled datasets. Researchers in
Gómez et al. (2020) demonstrated that, with a basic U-Net model
and sufficient glottis mask annotations, successful segmentation of
the glottal area can be achieved. In this work, we use a pre-trained
U-Net model (Zhang et al., 2024) using the same methodology
described in Gómez et al. (2020). The pre-trained model accepts
a laryngoscopic image as input and produces raw output values
(logits) for each pixel. These logits are subsequently converted into
probabilities ranging from 0 to 1 through the application of the
sigmoid activation function. A threshold of 0.5 is then applied to
generate a binarized mask image, labeling the glottis region.

While the glottal area is relatively easier to annotate compared
to the vocal folds, which has resulted in fewer studies on vocal
fold segmentation, we make a surprising discovery. By lowering the
threshold from 0.5 to a very small value, the glottis segmentation
mask generated by the U-Net model includes a rough segmentation
mask of the vocal folds. As illustrated in Figure 2, despite the
presence of numerous noisy points, the mask image contains a large
white region near the glottis that corresponds to part of the vocal
fold area.This observation enables us to locate the region of the vocal
folds more accurately.

3.3 Bounding box prompt extraction

As Figure 3 illustrates, we first train a YOLO-v5 model on HSV
images with a bounding box extracted a few dozen pixels away from
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FIGURE 1
Flowchart illustrating the main components of the proposed system.

FIGURE 2
An example of two output masks generated by the pre-trained U-Net model. The image in the middle is a glottis mask. The one on the right is a mask
obtained by setting the threshold to be lower than 1e-17. (a) Input image. (b) thres.>0.5. (c) thres.<1e-17.

the glottis mask predicted by the U-Net model (Zhang et al., 2024).
Therefore, it is a rough estimation of the vocal fold area, which takes
advantage of the physical structure of the human larynx. However,
since the training data provides only a rough estimation of the
target region, the object detection capability of the trained model
is insufficient, leading to bad cases. Figure 4 shows some of the bad
cases, including no bounding box, wrong bounding box, bounding
box that is too small for the target area, etc. In order to provide
a more accurate bounding box, we also take advantage of the U-
Net mask and apply some traditional computer vision methods to
process the mask and extract the information of vocal folds in it.

By observing the U-Net mask, we find that the white points in
the mask image often correspond to the areas with high contrast

between light and dark in the original image. Therefore, we apply
the Contrast-Limited Adaptive Histogram Equalization (CLAHE)
method to the image (Pizer et al., 1987). As Figure 5 shows, after
processing the input image, the outputmask containsmore complete
information of vocal folds, though along with more noisy points.
Thus, in the mask image obtained by the original image, we only
replace the part in the bounding box region obtained by the YOLO
model with the mask image obtained by the CLAHE processed
image. In this way, we can avoid adding noise in non-target areas.

Then we find the middle point of the glottis mask and the
connection line between its upper and lower points. By moving and
rotating, we make the connection line vertical and the middle point
of the glottis in the middle of the image. This processing can reduce
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FIGURE 3
The workflow of the box prompt extraction stage.

the error caused by different shooting angles of the camera, as the
bounding box extracted on the rotated andmoved image has a more
precise estimation, narrowing the non-target area in the image.

In order to extract the mask that represents the vocal fold area
in the mask image, we use the following methods. First, we apply
the morphological closing method to the mask image to connect
separate but close contours (Salembier et al., 1998). To identify the
contour most relevant to the vocal fold region, we incorporate the
previously generated glottis mask into the mask image. The contour
that encompasses the integrated glottis mask is then selected as the
extracted mask (Suzuki et al., 1985). Figure 5c is an example of the
mask extracted after applying the methods.

Finally, we rotate and move the extracted mask using the same
rotation andmovingmatrix and extract a bounding box accordingly.
The bounding box is then averaged with the one predicted by the
YOLO-v5 model. This final bounding box serves as the box prompt
provided to the SAM.

3.4 Point prompt extraction

To extract the point prompts, we first connect the top, middle,
and bottom points of the glottis with a vertical line, lglottis, as shown
in Figure 6a. Next, we define three horizontal lines, l25, l50, and l75,
which are orthogonal to the vertical line. Specifically, these three
lines pass through the three quadrisection points of the vertical
line respectively. For each of these lines, we calculate the first
derivative of the gray values of the pixels along the line, and we
apply a smoothing function tominimize the impact of local extrema.

Figure 6b illustrates an example of the smoothed values along l50.
To identify the left and right boundary points of the vocal folds
from the plot, we select the first local maximum to the left of the
glottis region (corresponding to the left boundary) and the first local
minimum to the right of the glottis region (corresponding to the
right boundary), as indicated by the two red points in the example
plot. This approach works because the gray values increase rapidly
from shadow to vocal fold surface on the left boundary, and decrease
sharply from surface to shadow on the right boundary. Figure 6c
shows the six extracted points along the three horizontal lines in
blue, as well as the three glottis points in red. Together, these nine
points represent the extracted point prompts.

3.5 Inference with SAM

SAM is a prompt-based model that takes an image and
prompts including boxes, points, texts, and even rough masks
as inputs (Kirillov et al., 2023). As for the architecture, it is a
transformer-based model consisting of three main components: an
MAE pre-trained Vision Transformer (ViT) based image encoder
that encodes the input image into features, a prompt encoder
integrating prompts provided by users, and a mask decoder that
generates a segmentation result by mapping the image embedding,
prompt embeddings, and an output token to a mask.

In this research, we utilize the original pre-trained SAM
proposed by Kirillov et al. (2023) and provide the box and points
prompts extracted in previous stages. In addition, inspired by studies
on the prompt engineering of the SAM and utilizing the feature of

Frontiers in Molecular Biosciences 05 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1616271
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Zhang et al. 10.3389/fmolb.2025.1616271

FIGURE 4
Illustration of some bad cases of the bounding box generated by the pre-trained YOLO-v5 model. For each image, the blue mask is the ground truth
mask and the green bounding box is the output of the pre-trained YOLO-v5 model. The below four figures show that the pre-trained YOLO-v5 model
fails to detect the glottal area.

FIGURE 5
A group of images illustrating the outputs of different intermediate steps and the final bounding box obtained: (a) the original input image, (d) the
U-Net mask generated using the original image, (b) the CLAHE processed image, (e) the combination of two mask images generated by the original
image and the processed image respectively, (c) the selected mask with rotation and moving, and (f) the final bounding box.
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FIGURE 6
Figures illustrating the main steps in the point prompt extraction. (a) Critical lines. (b) First derivative of l50. (c) Point prompts.

the model that receives a rough mask as input, we try one or more
iterations of SAM inference.Themethod can be explained as follows.
In the first iteration, we input a point prompt and obtain a rough
mask (logits). In the following iterations, the inputs are the point
prompt and the logits. In the final iteration, we add a box prompt as
the third input and obtain the mask as the final output.

4 Experimental results

4.1 Datasets

We use two open-source laryngoscopic image datasets for
different purposes in the evaluation. This study (usage of existing
databases) is approved by theDukeKunshanUniversity Institutional
Review Board (IRB No. 2024ML023).

4.1.1 Benchmark for automatic glottis
segmentation

The first is the Benchmark for Automatic Glottis Segmentation
(BAGLS), a large dataset of endoscopic high-speed videowith 59,250
frame-wise glottis annotations (Gómez et al., 2020). The frames
are extracted from 640 healthy and disordered larynx recordings
that were recorded under varying conditions (illumination, image
resolution, endoscopy types, etc.). The ground truth glottis masks
were annotated by clinical experts. We use the same recipe as is
described in Gómez et al. (2020) to train the U-Net model for glottis
segmentation, and we train the YOLO-v5 model for rough vocal
folds bounding box extraction.

4.1.2 Fehling’s dataset
The second dataset is provided by Fehling et al. (2020), which

contains 13,000 frames extracted from 130 HSV recordings, 100
images each. The recordings cover both healthy and disordered
cases, such as polyps, carcinomas, and dysphonia. The ground truth
masks are manually annotated and contain left and right vocal
folds and glottis labels. In our work, we adjust the parameters
of our system on the training set and test our performance on

the test set, using the same dataset split setting described by
Fehling et al. (2020).

4.2 Model efficiency analysis

Table 1 summarizes the computational complexity, parameter
count, and inference time of the main components in our method.
Notably, YOLO and U-Net demonstrate relatively low inference
times (9.95 ms and 15.33 ms, respectively), making them efficient
for feature extraction. While SAM involves higher computational
demands due to its extensive pre-trained capabilities, its integration
with lightweight modules ensures that the overall pipeline remains
practical for real-time applications.

4.3 Segmentation metric

To compare with the work of Fehling et al. (2020), we use the
same metric called Dice Coefficient (DC) (Dice, 1945) to measure
the similarity between the ground truth and the segmentation result.
DC metric is calculated by Equation 1.

DC (x) =
2|GT (x) ∩ Seg (x) | + ϵ
|GT (x) | + |Seg (x) | + ϵ

, (1)

where GT(x) and Seg(x) represents the Ground Truth and the
segmentation result respectively.The ϵ = 2.2204 ⋅ 10−16 is set to avoid
the denominator being zero when there is no intersection due to the
possible false segmentation and the complete glottal closure.

4.4 Hyper-parameter tuning

We use the following ordered selection strategy to demonstrate
the rationality of some methods in the proposed system, and
identify the best-performing parameters accordingly, using the
training set. As Table 2 illustrates, different thresholds of U-Net
outputs for mask generation, the impact of CLAHE processing,
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TABLE 1 Model complexity, number of parameters, and inference time for different modules.

Model FLOPs (G) Parameters (M) Average inference time (ms)

YOLO (Object Detection) 2.52 7.01 9.95

U-Net (Image Segmentation) 109.32 31.04 15.33

SAM 2,730 631.58 636.16

TABLE 2 Our proposed segmentation performance on the training set of the Fehling’s Dataset using different hyper-parameters. VF stands for vocal
fold. CLAHE stands for the image processing method by Pizer et al. (1987).

Conditions DC

YOLO-v5 U-Net (thresholds) CLAHE SAM (iterations) VF Left VF Right VF Glottis

✓

1e-15

✓

1

0.6447 0.6179 0.6139

0.7537

1e-16 0.7340 0.7000 0.6993

1e-17 0.7742 0.7374 0.7367

1e-18 0.7981 0.7621 0.7594

1e-19 0.8033 0.7693 0.7651

1e-20 0.8033 0.7697 0.7662

1e-21 0.7996 0.7668 0.7622

1e-19
×

0.7752 0.7380 0.7382
0.7439

1e-18 0.7791 0.7423 0.7420

1e-19

✓

2
0.8205 0.7870 0.7743

0.7537
1e-20

0.8227 0.7883 0.7776

3 0.8223 0.7900 0.7753

4 0.8211 0.7901 0.7734

Bold values represents the highest values.

and various inference iterations for SAM are evaluated in the
experiments. We first choose the best-performing thresholds of the
pre-trained U-Net model. The thresholds 1e-19 and 1e-20 reach
the best performance among all the thresholds with the powers of
10 ranging from −15 to −21. This indicates the masks obtained
under these thresholds contain the most proper information on
vocal fold area for box prompt extraction in the SAM inference
stage. Next, a comparative experiment is conducted to prove the
effectiveness of the image pre-processing method, CLAHE. The
result is consistent with our observation that by applying the
brightness contrast enhancement method to the input images, the
U-Net model can generate masks containing more information on
the vocal fold region.Thenwe identify the best-performing iteration
number for SAM inference and the best threshold using the selected
number. According to the previous analysis, the best-performing
parameters and methods of the system are YOLO-v5 + U-Net (1e-
20) +CLAHE+ SAM(2 iterations), and the bestDice score is 0.8227,
0.7883, 0.7776 and 0.7537 for the entire vocal folds, left and right one,
and the glottis respectively.

After identifying the best-performing parameters of the system
on the training set, using these parameters, we compare the
proposed model’s performance of the glottal area, vocal folds
area, and left and right vocal fold segmentation with the CLSTM
model on the test set. As Table 3 shows, our system has a Dice
score of 0.9181 on the vocal fold region, which is very close
to the supervised CLSTM model’s performance, 0.9218. For the
glottis segmentation, our supervised U-Net model reaches a higher
Dice score of 0.8548 than the CLSTM model. However, since
we simply separate the entire vocal fold mask into two-halves
based on the midline, the Dice score of each side of the vocal
fold is relatively lower than the supervised model. Overall, by
comparing the Dice score of the completely supervised vocal folds
and glottis segmentation model, the result shows the effectiveness
and potential of the proposed system based on supervised learning
of glottis segmentation, using a series of processing methods
and applying the powerful SAM to achieve unsupervised vocal
fold segmentation. Figure 7 clearly illustrates some examples of
our approach, displaying input laryngoscopic images with their
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TABLE 3 Segmentation performance on the test set of the Fehling’s Dataset. VF stands for vocal fold.

Models VF Left VF Right VF Glottis

Our proposed unsupervised system with the best-performing parameters 0.9181 0.8930 0.8919 0.8548

Supervised CLSTM system (Fehling et al., 2020) 0.9218 0.9087 0.8988 0.8502

FIGURE 7
Examples that display the input image, ground truth mask, and predicted mask showing the effectiveness and good performance of the system’s
segmentation on laryngoscopic images.

corresponding ground truth and predicted masks. In each mask,
dark grey, light grey, and white regions represent the glottis, left and
right vocal fold masks respectively.

4.5 Ablation study on various prompting
methods

To prove the effectiveness of the SAM prompt engineering
methodproposed in thiswork,we conducted an ablation study using
different SAMprompt conditions. Table 4 displays the segmentation
performance under these conditions. When only the extracted box
prompts or the point prompts are provided, the average Dice score
of the vocal fold masks significantly drops to 0.5730 and 0.1862,
respectively. For segmentation without any prompt, we utilize the
“segment anything” mode of SAM, which performs zero-shot mask

generation by taking only the input image. For each generatedmask,
the model also outputs an IOU score. Accordingly, we select the
mask with the highest IOU score as the final segmentation result
in the condition without any prompt, yielding an even lower Dice
score. This comparison demonstrates that our prompt engineering
method, which combines both box and point prompts, leads to a
significant performance improvement.

4.6 Performance on Segment Anything
Model 2

In the course of our research, the involved version of SAM was
released (Ravi et al., 2024), which is called SAM2. It introduces
a unique memory bank and memory attention design, which
together enable robust video analysis. The SAM2 can propagate
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TABLE 4 Segmentation performance under different SAM prompt conditions on the test set of the Fehling’s Dataset. VF stands for vocal fold.

SAM prompt conditions VF Left VF Right VF

Our prompt engineering method (Points prompt + Box prompt+2 iterations) 0.9181 0.8930 0.8919

Box prompt only 0.5730 0.5346 0.5607

Point prompt only 0.1862 0.1760 0.1856

Without any prompt 0.1104 0.1069 0.1023

Bold values represents the highest values.

TABLE 5 Segmentation performance under different SAM2 prompt conditions on the test Set of the Fehling’s Dataset (Fehling et al., 2020). VF stands for
vocal folds.

SAM2 prompt conditions VF Left VF Right VF

Prompt each frame with the proposed method 0.9092 0.8826 0.8823

Prompt thefirst frame only

The proposed method 0.9071 0.8813 0.8787

Box prompt only 0.7560 0.7329 0.7095

Point prompt only 0.8570 0.8385 0.8199

“Segment anything” mode 0.0941 0.0678 0.0951

Bold values represents the highest values.

through sequential frames by using only one prompt for the initial
frame, subsequently tracking and segmenting the target object. Due
to the structural and prompting similarities between SAM and
SAM2, we also evaluate the effectiveness of our proposed prompt
engineering method on SAM2. Similar with the experiment on
SAM, multiple experimental conditions are conducted on the test
set from Fehling et al. As shown in Table 5, we first leveraged
SAM2’s video propagation capability by prompting only the first
frame. Under this condition, when prompted with the proposed
engineeringmethod—first by providing the extracted points prompt
and subsequently applying the same points prompt alongside the
obtained box prompt in the second iteration—the model achieved
an average Dice score of 0.9071 for the vocal fold mask. In
comparison, using only bounding boxes or the points prompt
resulted in lower scores of 0.7560 and 0.8570, respectively. We then
applied SAM2’s “segment anything” mode without any prompts,
and we obtain a substantially lower score. Since SAM2 keeps its
original functionality for users to provide prompts for each frame
of the video, we use our proposed prompts on every frame to
test the performance. It turns out that, in conjunction with the
propagation function, the Dice score for the vocal fold mask further
improved to 0.9092.

Comparison of the four prompting conditions for a single-
frame prompt shows the efficacy of our prompt engineeringmethod.
The table shows the performance gains of 15%, 5%, and 81% over
box-prompt-only, points-prompt-only, and no-prompt conditions,
respectively.Though lower dice scores are achieved by just using one
of the proposed prompts on SAM2, the segmentation performance
has been significantly improved comparing to using prompts on the
original SAM. From Tables 4, 5, when using box prompt only, the

dice score forVF segmentation rises from0.57 to 0.76.Thedice score
of using points prompt increases dramatically from 0.19 to 0.86.The
results suggest that SAM2has a stronger learning ability on the target
than the original SAM, and our proposed promptingmethods works
well with SAM2’s video propagation function.

When comparing the dice scores obtained by prompting each
frame to those by prompting only the first frame, the former yields
a higher score. This result shows that our prompting methods
can provide additional information on the target that SAM2 does
not capture using its propagation function, further showing the
advantages of our proposed prompting methods. Moreover, we
observed that the optimal performance of SAM2 on the test data
is slightly lower than SAM. This may be attributable to error
propagation within the segmentation of some intermediate frames.

Overall, our prompt engineering methods shows great potential
on the open-sourced dataset, which can effectively prompt SAM and
SAM2 to achieve accurate vocal cord segmentation, outperforming
SAM2’s novel function that considers temporal features. We
acknowledge SAM2’s impressive video analysis capabilities, future
works will further explore SAM2’s potential of only prompting a
few or even the initial frame for this task through fine-tuning and
adjustments to the pre-trained model.

4.7 Application potentials

The use of vocal fold masks facilitates the extraction of more
detailed metrics from laryngoscopic videos, which is a significant
advancement over the use of glottis masks alone. This section
discusses newmetrics that could be integrated as additional features,
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FIGURE 8
The pipeline of metric computing on image #1149 from the Fehling’s dataset. (a) Step 1. (b) Step 2. (c) Step 3. (d) Step 4.

assisting clinicians in a more comprehensive evaluation of vocal
fold function.

A well-documented correlation exists between the maximal
separation of vocal folds and vocal fold paralysis (Inagi et al., 1997).
To further this research, scholars have investigated laryngeal features
that measure vocal fold separation, both in direct and indirect
manners.TheGAWandAnterior Glottic AngleWaveform (AGAW)
are notable examples (Adamian et al., 2021; Wang et al., 2021;
DeVore et al., 2023; DeChance et al., 2024). They are derived from
measurements of the glottal area and anterior laryngeal angle in
successive video frames. Whilst these provide a general assessment
of vocal fold status, they lack the capability to inform on the
functionality of individual vocal folds. The primary limitation is
their dependence on glottis masks, which are simpler to acquire
than vocal fold masks due to variable outlines and colors of the
latter. Our methodology seeks to bridge the gap between the widely
available glottis masks and the challenging-to-detect vocal fold
masks. Following a streamlined labeling procedure adopted by
Zhang et al. (2024), our complete labeling process is illustrated in
Figure 8. Initially, pointD at the bottom and point C, the centroid of
the glottis mask, are identified and connected (refer to Figures 8a,b).
This lineCD hypothesizes the glottis midline, intersecting the glottis
mask at pointT. AlongCD, we locate n equidistant points betweenD
and T (e.g., points C1,C2,C3). Lastly, we compute perpendiculars to
CD through these equidistant points, which intersect the vocal fold
mask at coordinates Li,j,Ri,j for i = 1,2,…,n and j = 1,2.

4.7.1 Vocal fold movement waveform
Once the vocal folds are segmented and labeled, we can ascertain

the distance of points on each vocal fold from the estimated glottic
midline. By averaging the lengths of segments Li,1Ci and Li,2Ci,
we assess the vocal folds’ deviation over time, thereby creating
the vocal fold movement waveform. As depicted on the left-
hand side of Figure 9, the vocal fold movements of the left and
right folds are extracted for both normative and atypical cases.These
visualizations vividly demonstrate the phonation cycles of the vocal
folds, offering clinicians novel diagnostic perspectives.

4.7.2 Vocal fold width waveform
The width of the vocal folds in each frame is determined by

the gap between points Li,1 and Li,2 for the left vocal fold, with

an analogous process for the right vocal fold. This data synthesis
results in the vocal fold width waveform (presented on the right-
hand side of Figure 9). In this waveform analysis, frames devoid of a
glottal area, which complicates accurate vocal fold mask prediction,
are excluded, given our method’s substantial reliance on the glottis
mask. A waveform comparison reveals greater width stability in
patients with functional dysphonia or paralysis, in contrast to
the fluctuations captured by the vocal fold movement waveform.
These findings may be indicative of vocal fold conditions, providing
clinicians with valuable diagnostic information. Additionally, for the
carcinoma case shown in Figures 9k,l, the non-periodic nature of the
vocal fold width waveform might reveal insights into its vocal fold
irregularities.

5 Discussion

Our system has achieved a high Dice coefficient on the test
dataset of Fehling’s dataset, demonstrating the potential of the
SAM prompt engineering method. Nonetheless, it is important to
recognize the system’s limitations. Chiefly, the absence of publicly
accessible annotated laryngoscopic image datasets has prevented
extensive testing under variable conditions, such as different
laryngoscope types or lighting environments. Further, within the
Fehling dataset, there are cases exhibiting low Dice scores. Upon
review, it is evident that our method’s dependence on segmented
glottis masks presents challenges in the event of glottis closure.
Additionally, the segmentation performance of SAM deteriorates
with poor lighting and low-contrast images.

Future research will pursue the integration of our framework
with SAM2 for vocal fold segmentation in laryngeal videos. We
argue that for video-based inference, SAM2 is better suited than
the original SAM, a detail expounded upon in Section 4.6. The
incorporation of a memory bank and propagation function in
tandem with our initial prompts has yielded superior segmentation
outcomes. Current methodology involves straightforward frame-
by-frame prompting while maintaining SAM2’s underlying
functionality. Prospective enhancements to SAM2’s performance
could be achieved through a novel teacher-student model, entailing
the fine-tuning of the pre-trained SAM2 with our specialized
prompts on a more diversified vocal fold dataset.
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FIGURE 9
Examples of the vocal fold’s movement and width waveform analysis on the normal cases of the Fehling’s Dataset. VFM and VFW stand for Vocal Fold
Movement and Vocal Fold Width respectively. We only show the waveforms for the first equidistance points (feature 1), which are derived from the
metrics across C1. For all the waveforms, we collect the points from a total number of 100 consecutive frames from the dataset, forming a video with a
length of 4 s for each case. (a) VFM on the normal case (video#1). (b) VFW on the normal case (video#1). (c) VFM on the normal case (video#2). (d)
VFW on the normal case (video#2). (e) VFM on the normal case (video#3). (f) VFW on the normal case (video#3). (g) VFM on the functional dysphonia
case (video#5). (h) VFW on the functional dysphonia case (video#5). (i) VFM on the paralysis case (video#8). (j) VFW on the paralysis case (video#8). (k)
VFM on the carcinoma case (video#15). (l) VFW on the carcinoma case (video#15).

6 Conclusion

In this work, we developed an automatic laryngoscopic image
segmentation system that leverages glottis data for vocal fold
segmentation using prompt engineering techniques tailored for
the Segment Anything Model (SAM). We initially discover an
unexpected utility of low-threshold U-Net outputs in capturing vocal
fold information. Then, by using this information, we obtain the
bounding box prompt through brightness contrast enhancement and
morphological closing with the coarse bounding box of the larynx

region generated by the YOLO-v5 model. In addition, we extract
vocal fold boundary points as the point prompt by identifying the
local extrema of the first derivative of the gray-scale intensity along
lines intersectingtheglottis.Experimental resultsdemonstrate thatour
system achieves superior segmentation performance on the vocal fold
segmentation task, with results comparable to those of the supervised
model. In the end, we show the potential application of our proposed
method. We introduce metrics extracted from the vocal folds’ masks
that are potentially useful to diagnosis, which cannot be derived from
the glottis masks alone.
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