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Dr. Bruce Ames illustrious career spanned many decades with far-reaching
impacts both on our knowledge of DNA and in public health. In the 1990s
he explored the connection between inadequate intake of micronutrients and
single- and double-strand DNA breaks, genome instability due to oxidative
damage, and increased susceptibility to cancer and other age-related diseases.
In particular, zinc is an essential micronutrient required for many biological
processes and is a key component of numerous proteins and enzymes involved
in the defense against oxidative stress and DNA damage repair. Reduced
zinc status due to inadequate dietary intake, reduced zinc absorption and
increased excretion can lead to increased risks for infectious diseases, diabetes,
cancer, and neurological disorders. Changes in zinc status can also positively or
negatively modulate the outcome of exposure to toxic heavy metals including
arsenic, cadmium, and lead. This mini review highlights the role of zinc in
maintaining DNA integrity and antioxidant defense, the health consequences
of inadequate zinc intake, and the impact of zinc status on the response to
environmental exposure to toxic metals. Collectively, the work by Dr. Ames
and others advances our understanding of how zinc status plays an integral
role in health, and reaffirms the idea originally put forth by Dr. Ames that
optimizing micronutrient intake to ensure adequate nutrition, including zinc
intake, is essential in promoting health, longevity, and disease prevention.
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Introduction

Dr. Bruce Ames illustrious scientific contributions ranged from understanding the
relationship between mutagenesis and carcinogenesis, to the role of oxidative stress and
DNA damage plays in mitochondrial decay and aging (Ames, 2022). Early in his career,
his research focused on the study of the genetic, enzymological, and regulatory aspects of
the large and complicated histidine biosynthetic pathway in Salmonella typhimurium in the
1960s and ultimately led to the development of the Ames Test for mutagens. This test is
widely used as a sensitive and cost-effective tool for identifying compounds with mutagenic
potential from both synthetic and natural sources. In the 1990s he became interested in the
connection between DNA damage and cancer, inflammation, and oxidative damage, which
led to further ideas about poor quality diets and micronutrient deficiency being a major
contributor to DNA damage and cancer.

Work by Dr. Ames and colleagues in the early 2000s indicated inadequate intake
of micronutrients (including vitamins B12, B6, C, E, folate, niacin, iron and zinc) can
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cause single- and double-strandDNAbreaks, genome instability due
to oxidative damage, and accelerate mitochondrial oxidative decay
associated with aging (Ames, 1999; 2001; Ames et al., 2005). Dr.
Ames published the Triage Theory in 2006 that postulates “DNA
damage and late onset disease are consequences of a triage allocation
response to micronutrient scarcity” and when micronutrients are
limiting, processes that favor short-term and immediate survival are
favored at the expense of systems that maintain long term health like
antioxidant function and DNA repair mechanisms (Ames, 2006).
The Triage Theory provides a causal link by which inadequate
micronutrient intakes lead to DNA damage, loss of mitochondrial
function, accelerated aging and age-associated chronic diseases.
Moreover, ensuring adequate micronutrient intake through diet and
supplementation may mitigate the triage process. Micronutrient
inadequacies, defined as nutrient intake less than the Estimated
Average Requirement (EAR), is pervasive worldwide and is a
global public health concern (Passarelli et al., 2024). Dr. Ames’
research brought attention to the importance of consuming optimal
nutrients for achieving health, longevity, and disease prevention. He
was a strong proponent in remedying micronutrient inadequacies
via optimizing micronutrient intake (through diet and dietary
supplements) to reduce the risks of age-related chronic diseases and
promote healthy aging.

Among the various nutrients Dr. Ames studied, zinc
is an essential micronutrient required for many biological
functions including growth and development, cognitive function,
reproduction, bone health, and immunity (Maywald and Rink,
2022). Zinc homeostasis is tightly regulated by zinc transporter
familymembers, with zincmetabolism and signaling playing critical
roles in many cellular processes (Hara et al., 2017; Chen et al.,
2024). In particular, zinc is a key component of numerous
proteins and enzymes involved in the defense against oxidative
stress and DNA damage repair. In humans, decrease in zinc
status can result from low dietary intake of zinc, inadequate
zinc absorption, increased zinc excretion, or an increased need
for zinc. While severe zinc deficiency caused by low dietary
zinc intake is uncommon in high income countries, mild zinc
deficiency is potentially prevalent worldwide (Lowe et al., 2024).
In the United States, it is estimated that 15% of US adults have
zinc intakes below the EAR, with select groups of individuals
particularly at risk for zinc deficiency (e.g., children, pregnant or
lactating women, adults ≥65 years of age, and individuals with
certain chronic diseases) (Reider et al., 2020; NIH-ODS, 2022).
Alteration in zinc status biomarkers (serum zinc concentrations)
or zinc intake (dietary zinc intake or zinc supplementation) are
associated with a variety of health outcomes (Li J. et al., 2022). For
example, reduced zinc status is associated with increased risks for
infectious diseases (Maywald and Rink, 2022), diabetes (Tamura,
2021), cancer (Sugimoto et al., 2024), and neurological disorders
(Li Z. et al., 2022). At the same time, increased dietary zinc intake
is associated with decreased risk for certain cancers, depression,
and diabetes; while zinc supplementation improved depression
symptoms, increased pregnancy rate, and decreased concentration
of inflammatory markers (Li J. et al., 2022).

The work from Dr. Ames advanced our understanding of how
maintaining adequate zinc status plays an integral role in health. In
this mini review, we highlight and update the work by Dr Ames
and colleagues since the proposal of the Triage Theory, with focus

on the role of zinc in maintaining cellular antioxidant defense and
DNA integrity. In the presence of low cellular zinc, due to the Triage
Theory, the ability to adequately respond to stressors is impaired
due to loss of antioxidant and DNA repair functions. We connect
the impact of zinc status on environmental toxic metals exposure,
as this highlights the interaction between micronutrient status and
environmental factors that together influence health outcomes.

The Role of Zinc in Maintaining DNA
Integrity and Antioxidant Defense

As proposed by Dr. Ames, the triage response to inadequate
micronutrient intakes, including zinc, results in impaired
antioxidant defense and oxidative DNA damage. Work by Dr.
Ames and others has demonstrated the role of zinc in protecting
cellular components from oxidative damage in a variety of cell
lines and animal studies. Zinc has a well-established role in
antioxidant defense andmediates its protective role against oxidative
damage via multiple mechanisms. Zinc 1) serves as a cofactor for
enzymes involved in the functioning of the antioxidant defense
system; 2) affects cellular redox balance by inducing the synthesis
of metallothionein and glutathione; 3) protects against protein
sulfhydryl groups oxidation; and 4) inhibits the pro-oxidant enzyme
NADPH-oxidase that generates reactive oxygen species (ROS)
(Lee, 2018). Zinc also plays an important role in maintaining DNA
integrity. It is required in the regulation of DNA replication via zinc
finger proteins, affects chromatin accessibility and transcription
factor binding to DNA, and is involved in DNA damage response
and repair (Yan et al., 2008; Ocampo et al., 2024). Low intracellular
zinc induces DNA damage in cells via a combination of increased
oxidative DNA damage and disruption of zinc-dependent proteins
involved in DNA-repair pathways, leading to impaired DNA repair
and altered expression of DNA damage response genes, resulting
in DNA strand breaks and genome instability (Ho and Ames, 2002;
Ho et al., 2003; Yan et al., 2008; Sharif et al., 2012). In particular, zinc-
dependent transcription factors such as p53, a critical gatekeeping
factor in coordinating the response to DNA damage, was impacted
with cellular zinc deficiency where loss of zinc in the DNA binding
domain impairedDNAbinding capacity and compromised function
(Ho and Ames, 2002; Yan et al., 2008). Observations from cell
culture models were supported by animal models, where severe
zinc deficiency induced by dietary zinc restriction similarly caused
oxidative stress, DNA damage, and impaired DNA repair and
antioxidant defense responses (Oteiza et al., 1995; Bruno et al.,
2007; Song et al., 2009b). In more recent animal studies zinc
deficiency exacerbated age-related DNA damage by impairing the
catalytic activity of 8-oxoguanine DNA glycosylase, an enzyme
involved in the base excision repair pathway (Sharma et al., 2024).
In other recent studies, zinc deficiency-mediated oxidative stress
led to increased inflammation and fibrosis in the lung, induced
inflammation and apoptosis in the kidney in zinc deficient animals,
and exacerbated age-related chronic inflammation in old mice
(Wong et al., 2021; Zhang et al., 2022; Xu et al., 2023).

To model inadequate zinc intake prevalent in human
populations, both severe and marginal zinc deficient diets have
been used in animal studies to examine various health outcomes,
including the effects on DNA damage and integrity. While severe
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zinc deficiency caused more damage, animals with marginal zinc
deficiency similarly had increased oxidative stress, impaired DNA
integrity and DNA repair functions, and increased DNA damage
compared to animals in the zinc adequate group (Song et al.,
2009b).Marginal zinc deficiency also sensitized animals to increased
oxidative DNA damage after chronic exercise (Song et al., 2010a),
altered zinc transporter expression and zinc homeostasis in
the prostate (Song et al., 2010b), increased age-related chronic
inflammation (Wong et al., 2021) and enhanced toxicity associated
with exposure to heavy metals (see next section). Importantly, zinc
repletion studies showed the deleterious effects of zinc deficiency
on DNA integrity can be reversed via dietary intervention. The
effects of dietary zinc depletion and repletion in rats showed
the increase in DNA damage induced with low zinc intake can
be normalized with zinc repletion that restored DNA integrity
(Song et al., 2009b). Notably, similar observations were reported in
human studies. In one human study, increased DNA strand breaks
in peripheral blood cells associated with dietary zinc depletion were
ameliorated by zinc repletion (Song et al., 2009a). In other human
studies, a moderate increase in dietary zinc (Zyba et al., 2017) or
daily oral zinc supplementation (Joray et al., 2015) resulted in a
reduction in DNA strand breaks in leukocytes of individuals with
improved zinc status. Collectively, these studies reaffirm Dr. Ames’
Triage Theory, and showed dietary zinc deficiencies contribute to
oxidative stress and DNA damage that can be reversed via dietary
interventions.This underscores the role of zinc inmaintaining DNA
integrity and health, and the potential for disease prevention via
increased zinc intake.

Zinc status and toxic metals exposure
in the environment

Zinc deficiencies often occur in human populations in
regions of the world that are also co-exposed to toxic heavy
metal contaminants (Wong et al., 2019). In addition to direct
health consequences (Triage response) attributed to inadequate
micronutrient intake, an extension to the Triage Theory is that
micronutrient deficiencies such as inadequate zinc can impair
the cellular responses to environmental stresses, such as toxic
metals exposure to exacerbate negative health outcomes. In this
section, we discuss how zinc deficiency and zinc supplementation
alter response to toxic metals exposure in cell culture, animals,
and human studies.

Chronic environmental and occupational exposure to some
heavy metals and metalloids cause diverse toxic effects in the
body (Balali-Mood et al., 2021). According to the World Health
Organization, lead, cadmium, mercury and arsenic are among the
top 10 chemicals of major health concern (WHO, 2020). Data
from 2007 to 2012 NHANES survey indicated that approximately
50% of the US population was exposed to a combination of
three or more of these toxic metals (Shim et al., 2017). This has
significant impact on public health as exposure to cadmium, lead,
and arsenic can cause liver damage, injury to the central nervous
system and lungs, and has been associated with gastrointestinal
disorders, immune dysfunction, kidney dysfunction, cardiovascular
dysfunction, degenerative bone disease, birth defects, cancer, and an
increase in all-cause mortality (Balali-Mood et al., 2021; Guo et al.,

2022). The toxic effects of exposure to heavy metals are complicated
and dependent on the exposure route, form of the metal, and the
dose and duration of exposure (Tchounwou et al., 2012). It is also
notable that the effects of toxic metal exposure are dependent on
the characteristics of the person exposed, with factors like age,
gender, and nutritional status (e.g., zinc status) as determining
factors if toxicity is observed (Tchounwou et al., 2012). Further,
tissue accumulation of heavy metals and associated organ-specific
toxicity can be modulated by the expression and activity of metal
transporters, including zinc transporters (Dashner-Titus et al., 2023;
Ferdigg et al., 2025).

The mechanisms by which metals cause damage and
genotoxicity at the cellular level include: 1) Increasing ROS
production and decreasing antioxidant defense, causing DNA,
protein, and lipid damage; 2) displacing zinc from zinc finger
proteins and disrupting DNA repair, cell division, and other
zinc-dependent processes; 3) induction of endoplasmic reticulum
stress and mitochondrial dysfunction; and 4) induction of
inflammation and apoptosis (Banerjee et al., 2020; Balali-
Mood et al., 2021; Koyama et al., 2024). Notably many of the
cellular processes negatively affected by toxic metal exposure
overlap significantly with zinc deficiency (Figure 1). This suggests
potential interaction between zinc and toxic metal exposure,
whereby changes in zinc status can positively or negativelymodulate
the outcome of metal toxicity (Hudson et al., 2025). In general,
increased toxicity is observed from toxic metal exposure under
the conditions of zinc deficiency, while zinc supplementation
has been shown in some models to protect from heavy metal
exposure (Wani et al., 2021; Hudson et al., 2025). The toxic metals
that have been studied the most in the context of nutritional
zinc status are cadmium, arsenic, and lead and are the focus
of this review.

Zinc deficiency increases toxicity from
cadmium, arsenic and lead exposures

The strongest evidence that zinc deficiency exacerbates metal-
induced toxicities are from in vitro and animal studies. For
example, in cell culture models zinc deficiency and arsenic co-
exposure increased levels of ROS, DNA strands break, apoptosis,
and inflammation, beyond what was observed with either condition
alone (Cao et al., 2019; Wong et al., 2019). Further, zinc deficiency
exacerbated lead-induced suppression of interleukin-2 production
in immune cells (Trojan et al., 2024). Cellular zinc loss also
enhanced the cytotoxicity of lead in neuronal cells by further
reducing cell viability and increased the intracellular oxidant levels
that led to activation of oxidant-responsive transcription factors,
such as AP-1 that contributed to neuronal cell death (Aimo and
Oteiza, 2006). In rats, dietary zinc deficiency increased lead and
cadmium accumulations in various organs, resulting in impaired
skeletal growth, increased neoplastic progression of testicular lesions
and enhanced chronic progressive nephropathy (Bushnell and
Levin, 1983; Waalkes, 1986; Waalkes et al., 1991; Jamieson et al.,
2006). In mice, co-exposure of arsenic and zinc deficiency resulted
in increased oxidative stress, DNA damage, and inflammation
(Gaulke et al., 2018; Wong et al., 2019). Further, arsenic-induced
perturbations in the gut microbiome was amplified with zinc
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FIGURE 1
Interactions between zinc status and toxic metals exposure. Populations at risk for zinc deficiency and toxic metals exposure are susceptible to cellular
and organ damage via common mechanisms. Zinc deficiency and toxic metals exposure both lead to increased oxidative stress and impaired
antioxidant defense, resulting in impaired DNA repair, DNA strands breaks, inflammation and apoptosis. This is in part mediated via displacement of zinc
and disruption of zinc finger protein structure and function, and dysregulated expression of metal transporters that alter zinc homeostasis and toxic
metal uptake and accumulation. These common interactions between zinc deficiency and toxic metals exposure can exacerbate metal-induced
toxicity when both conditions are present, resulting in further cellular damage, increased genotoxicity and carcinogenicity, disruption of cellular and
organ functions, and increased risk for various chronic diseases. Improving zinc status via increased dietary zinc intake and/or zinc supplementation
can ameliorate cellular damage and confer protection against toxic metals exposure. Created in BioRender. Wong, C. (2025) https://BioRender.
com/mdjt9mx.

deficiency, likely increasing the microbiome’s sensitivity to arsenic
exposure and by altering the response of themicrobiome to chemical
exposure (Gaulke et al., 2018). In zebrafish, arsenic exposure
significantly reduced the amount of zinc in the developing embryo,
and zinc deficiency and arsenic co-exposure caused changes in
the expression of genes that regulate zinc homeostasis, response
to oxidative stress and insulin production, and decreased larval
photomotor response, an assay used to assess neurotoxicological
behavioral responses.Thedecline in larval behaviorwas significantly
greater than what was observed with zinc deficiency or arsenic
exposure alone (Beaver et al., 2017). Together these data suggest that
zinc deficiency may sensitize cells and individuals to various toxic
metal exposures.

Zinc supplementation protects against
cadmium, arsenic and lead exposures

In vivo zinc supplementation studies demonstrated increasing
zinc status protected against various metals toxicities (Wani et al.,
2021; Yu et al., 2021; Banerjee et al., 2022; Hudson et al., 2025). One

mechanism by which zinc mitigates metal toxicity is by reducing
toxic metal accumulation. In mice chronically exposed to arsenic,
zinc supplementation reduced the amount of arsenic detected in
all tissues tested, in part by modulating the expression of metal
transporters (Dashner-Titus et al., 2023). Similar reductions in
heavy metal accumulation and toxicity was observed in animals
exposed to cadmium (Pabis et al., 2018) and lead (Hietanen et al.,
1982; Ugwuja et al., 2020; Butt et al., 2023). Reduced toxic metal
tissue burden can be mediated by zinc’s competition for metal
cellular uptake, and its effect on the expression of metal transporters
that affect metal absorption, accumulation, and excretion (Dashner-
Titus et al., 2023; Ozoani et al., 2024). Another mechanism by which
zinc reduces metal toxicity is via the induction of metallothionein
expression and reduction of oxidative damage by upregulating
and/or restoring antioxidant pathways. Metallothioneins are small
proteins that function as antioxidants, scavengers of ROS, sequester
toxic metals, and restore antioxidant capacity (Yang et al., 2024).
In animal models, zinc supplementation reduced arsenic and
lead toxicity by restoring antioxidant activity and increasing
metallothionein expression (Ganger et al., 2016; Prastiya et al.,
2023). Zinc supplementation also increased the activities of
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antioxidant enzymes including superoxide dismutase, glutathione
peroxidase, glutathione reductase, and catalase (Kumar et al.,
2010), and restored function of other zinc-dependent proteins
that were disrupted with arsenic exposure (Cooper et al., 2013;
Banerjee et al., 2022; Bastick et al., 2022). Zinc supplementation
also prevented cadmium and lead-mediated oxidative damage to
the brain (Prasanthi et al., 2010; Brzoska et al., 2021). Among
animal models of DNA damage, zinc supplementation reduced
cadmium-induced DNA damage in zebrafish (Devarapogu
and Asupatri, 2023), and reduced arsenite-enhanced DNA
damage in response to ultraviolet radiation exposure in mice
(Cooper et al., 2013).

Associations of zinc status, toxic
metals exposure, and health in human
studies

There are several lines of evidence in human population studies
indicating zinc status and dietary zinc intake are inversely associated
with metal toxicity (Talpur et al., 2018). For cadmium exposures,
zinc intake is associated with lower cadmium burden in U.S.
adults (Vance and Chun, 2015). In this study, increased levels of
dietary and serum zinc were associated with a decrease in blood
cadmium and an increase in urinary cadmium, suggesting zinc
status influenced the absorption, accumulation, and excretion of
cadmium. In other studies, dietary zinc intake/status modulated
mortality risks associatedwith cadmium exposure (Kim et al., 2019),
cadmium-induced risk of prostate cancer (Bede-Ojimadu et al.,
2023), and renal damage (Chen et al., 2018). In children with autistic
disorders, over 30% of the study population had zinc deficiency
that correlated with high toxic metal burden including lead,
cadmium, and arsenic (Yasuda andTsutsui, 2022).High zinc levels in
peripheral blood was associated with protection of workers against
occupational exposure to lead, where zinc status inversely correlated
with lead concentrations, DNA damage, oxidative stress and lead-
induced blood cell membrane aberrations (Wani et al., 2017;
Wani et al., 2019).

While human population studies demonstrated the association
between zinc status and metal toxicities, to date there is only
one intervention study that directly assesses individual toxic metal
exposures and responses to zinc supplementation in individuals
with chronic toxic metal exposures (NCT03908736, ClinicalTrials.
gov). While some zinc supplementation intervention studies have
been conducted in regions with populations at risk for toxic
metal exposures, the relationship between zinc status and toxic
metals exposure has not been examined. More intervention trials
are needed to examine the efficacy of zinc supplementation in
mitigating metal toxicity in at risk communities. Another ongoing
challenge in human studies is the lack of reliable, specific and
sensitive biomarkers to accurately identify and evaluate zinc status,
particularly in individuals at risk for marginal zinc deficiency
(Lowe et al., 2009).

The overall health consequence of toxic metal exposures
can include dysfunction to multiple organ systems, resulting in
persistent infections (Zheng et al., 2023; Zhang et al., 2024),
increased risk for chronic and metabolic diseases (Planchart et al.,
2018; Javaid et al., 2021; Pan et al., 2024), neurological disorders

(Pamphlett and Bishop, 2023), and cancers (Khoshakhlagh et al.,
2024). It is notable that zinc deficiency impacts similar organ
systems and is associated with many of the same chronic
diseases as toxic metals exposure. Many zinc supplementation
studies have demonstrated the protective effects of zinc in similar
diseases that are affected by metals toxicity (Li J. et al., 2022). In
humans, zinc supplementation lowered the incidence, duration,
symptoms, mortality and recovery times in infectious diseases
encompassing viral, bacterial, and parasitic pathogens (Maywald
and Rink, 2022; Ben Abdallah et al., 2023). In pre-diabetic and
diabetic individuals, zinc supplementation improved glycemic
control, insulin sensitivity, and reduced inflammatory biomarkers
(Wang et al., 2019) and improved risk factors for cardiovascular
diseases (Pompano and Boy, 2021). Other clinical studies showed
zinc supplementation decreased clinical depression (da Silva et al.,
2021; Yosaee et al., 2022), improved neurologic recovery in patients
with traumatic brain injury (Young et al., 1996), and improved
cognitive function in school children and overweight or obese
women (de Moura et al., 2013; de Vargas et al., 2023). While
these studies do not address toxic metals exposure, nevertheless
accumulating evidence indicates improving zinc status via increased
dietary intake or supplementation should confer protection to
susceptible individuals, including populations at risk for toxic
metal exposures.

Overall impact of zinc status on health

Work from Dr. Ames and others collectively establish zinc as
one of the micronutrients essential for health, in particular via its
role in cellular oxidant defense and maintaining DNA integrity. The
consequence of zinc inadequacies has a significant impact on human
health. Together this work highlights the importance of maintaining
adequate micronutrient levels, like zinc in the body to preserve key
biological functions and improve many aspects of human health.
Large bodies of work from the past several decades underscores
the idea originally put forth by Dr. Ames that adequate nutrition,
including zinc intake, is essential for optimal health and promoting
healthy aging.
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