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Background: Type 2 diabetes mellitus (T2DM) and Hypertension (HTN)
frequently coexist and synergistically exacerbate vascular and immune
dysfunction. Despite their clinical interrelation, these diseases have traditionally
been studied in isolation, and the molecular mechanisms underlying their
comorbidity remain poorly understood. This study aimed to uncover shared
transcriptional programs and disease-specific regulatory networks contributing
to cardiometabolic dysfunction.

Methods: We systematically selected transcriptomic datasets and employed
an integrative systems biology approach that combined differential gene
expression analysis, co-expression network construction, protein-protein
interactionmapping, transcription factor activity inference, and network rewiring
analysis. Functional enrichment analyses were conducted to elucidate biological
processes associated with disease-specific modules.

Results: We identified distinct regulatory modules: ME3 in T2DM, enriched
in metabolic stress response, intracellular trafficking, and inflammation, and
ME7 in HTN, enriched in immune response and vascular remodeling. Protein
interaction networks revealed key hub genes such as GNB1, JAK1, and
RPS3 as T2DM-specific hubs, while MAPK1, BUB1B, and RPS6 were central
in HTN. Network rewiring analysis showed condition-specific changes in
gene connectivity, particularly in ST18 and SLBP gaining prominence in
T2DM, and SLC16A7 and SPX showing decreased connectivity in HTN.
Notably, transcription factor activity analysis revealed shared regulators
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HNF4A and STAT2 implicated in inflammation, oxidative stress, and vascular
remodeling, highlighting a transcriptional convergence between the two
conditions.

Conclusion: This study provides novel insights into the molecular crosstalk
between T2DM and HTN by identifying conserved transcriptional regulators and
rewired gene networks. Our findings support the existence of a shared regulatory
architecture underlying cardiometabolic comorbidity and suggest promising
diagnostic and therapeutic targets for precision medicine.

KEYWORDS

type 2 diabetes mellitus, hypertension, transcriptomics, Interactomics, coexpression
networks, inflammatory pathways, vascular remodeling

1 Introduction

Type 2 diabetes mellitus and hypertension are complex,
multifactorial conditions that frequently co-occur and
synergistically exacerbate vascular, renal, and metabolic
dysfunction, leading to accelerated cardiovascular disease
progression (Grundy, 2006; De Boer et al., 2017; Petrie et al.,
2018). Although traditionally investigated as distinct clinical
entities, emerging evidence points to a significant overlap in their
molecular pathogenesis, including shared transcriptional programs
and regulatory circuits (Hasin et al., 2017; Jeyananthan et al., 2025).
This convergence suggests that both diseases may be driven, at
least in part, by common gene expression networks that modulate
inflammation, endothelial remodeling, andmetabolic dysregulation
(Hotamisligil, 2006; Barabási et al., 2011; Hasin et al., 2017).
Despite this, the precise molecular mechanisms orchestrating
their interaction remain insufficiently characterized. Elucidating
these convergent and disease-specific transcriptional signatures
is essential for uncovering regulatory hubs with diagnostic
and therapeutic relevance and may provide a framework for
the development of precision medicine strategies targeting
cardiometabolic comorbidity.

T2DM, which accounts for over 90% of diabetes cases, is
characterized by progressive β-cell dysfunction, insulin resistance,
and systemic metabolic disturbances (ElSayed et al., 2023). The
global burden of T2DM is expected to surpass 783 million cases
by 2045, resulting in more than 6.7 million diabetes-related deaths
annually (Magliano and Boyko, 2021). HTN, now defined by the
ACC/AHA 2017 guidelines as systolic blood pressure ≥130 mmHg
or diastolic pressure ≥80 mmHg, arises from vascular remodeling,
neurohormonal imbalance, and renal dysfunction (Greenland and
Peterson, 2017; Oparil et al., 2018). Affecting more than one billion
people worldwide, HTN contributes to approximately 10.8 million
deaths each year (Jeemon et al., 2021).

Despite differences in clinical presentation, T2DM and HTN
share fundamental pathophysiological mechanisms, notably
insulin resistance and overactivation of the renin-angiotensin-
aldosterone system (RAAS). Insulin resistance, a hallmark of
T2DM, impairs endothelial function, promotes sodium retention,
and enhances sympathetic nervous system activity, collectively
contributing to elevated blood pressure and vascular dysfunction
(Zhou et al., 2010). In parallel, RAAS hyperactivity, present in
both conditions, exacerbates vascular remodeling, oxidative stress,

and chronic low-grade inflammation (Jandeleit-Dahm and Cooper,
2006). These interconnected mechanisms reinforce one another,
promoting cardiometabolic deterioration. Building upon these
shared physiological pathways, recent advances in genomics have
identified disease-relevant transcriptional regulators that may
underline the complex interplay between metabolic and vascular
dysfunction.

Genetic studies have identified key transcriptional regulators
implicated in the pathogenesis of both T2DM and HTN, offering
insights into their shared and disease-specific molecular networks.
In T2DM, genes involved in metabolic control, such as TCF7L2
and PPARG, play central roles in insulin secretion and glucose
homeostasis (Sarhangi et al., 2020; Del Bosque-Plata et al., 2021).
Additionally, variants in KCNJ11 and SLC30A8, which influence
pancreatic β-cell excitability and insulin storage, have increased
disease susceptibility (Proks et al., 2004; Sladek et al., 2007;
Lemaire et al., 2009). These findings underscore the contribution
of transcriptional dysregulation to metabolic imbalance and β-
cell failure (Voight et al., 2010).

Conversely, HTN is primarily driven by genes regulating
vascular tone, endothelial integrity, and blood pressure homeostasis.
Components of the RAAS pathway, such asAGT andACE, modulate
blood pressure through angiotensin-mediated vasoconstriction
and fluid balance (Purkait et al., 2017; Zambrano et al., 2023).
Moreover, ion channel–encoding genes such as SCN7A, KCNMA1,
and CACNA1C have been linked to abnormalities in vascular
contractility and autonomic regulation (Saleh et al., 2005; Wu and
Marx, 2010; Pereira da Silva et al., 2022). Additional regulators,
such as NOS3 and CYP11B2, further highlight the importance of
nitric oxide bioavailability and aldosterone synthesis in hypertensive
pathophysiology (Davies et al., 1999; Oliveira-Paula et al., 2016).

Although numerous molecular determinants of T2DM and
HTN have been individually characterized, the extent to which
these diseases share interconnected regulatory architectures
remains poorly understood. Previous systems biology studies in
other cardiometabolic disorders have demonstrated the value
of transcriptomic and network-based approaches in uncovering
hidden molecular interactions and shared regulatory pathways
(Barabási et al., 2011; Hasin et al., 2017). However, integrative
analyses that simultaneously address the transcriptional landscapes
of T2DM and HTN remain limited.

Multi-scale systems biology approaches have recently emerged
as essential frameworks for dissecting the complexity of chronic
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diseases by integrating multiple layers of molecular information.
In particular, transcriptomic analyses provide a high-resolution
view of gene expression changes and their functional implications,
enabling the identification of disease-relevant pathways and
regulatory programs (Khan and Kim, 2024). Complementarily,
interatomic analyses, such as protein-protein interaction (PPI)
networks, reveal the structural and functional organization
of cellular systems, exposing central regulatory hubs and
potential therapeutic targets (Sun and Hu, 2016). By leveraging
these complementary strategies, our study aims to dissect the
transcriptional convergence between T2DM and HTN and to
uncover molecular signatures that may serve as therapeutic targets.
Integrating transcriptomic and interactomic approaches enhances
our understanding of how metabolic and vascular reprogramming
contributes to disease pathology and lays the groundwork for
precision medicine strategies targeting shared and disease-specific
regulatory mechanisms in complex disorders.

2 Materials and methods

This study employed a multi-scale network approach to
analyze transcriptomic data and identify predictive hub genes
associated with complications in T2DM and HTN (Figure 1).
The analysis integrated differential gene expression profiling and
weighted gene co-expression network analysis (WGCNA) to identify
disease-associated modules. Functional enrichment analyses were
conducted on differentially expressed genes and co-expression
modules to elucidate relevant biological processes. Additionally,
to capture context-specific rewiring of gene interactions, we
quantified connectivity gains and losses between conditions and
retained significant rewiring events. Transcription factor (TF)
activity inference was used to uncover regulatory mechanisms,
and protein-protein interaction (PPI) networks were constructed
to identify central molecular hubs. Community detection within
the PPI networks enabled a second layer of functional enrichment,
focusing on the most interconnected gene clusters. In silico
validation of candidate genes was performed to assess their tissue-
specific expression profiles. Altogether, this multi-scale network
approach provided a comprehensive view of the shared regulatory
mechanisms underlying T2DM and HTN. All scripts used in this
analysis are available in this GitHub repository.

2.1 Systematic identification and selection
of transcriptomic DataSets for the study of
T2DM and HTN

A systematic search was conducted in the National Center
for Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) public repository to identify microarray-based
transcriptomic datasets suitable for comparative gene expression
analysis in T2DM and HTN. The search employed the terms
“type 2 diabetes mellitus” and “essential hypertension,” with filters
applied for Homo sapiens, expression profiling by array, CEL file
availability, case-control design, and relevant tissues (pancreatic
islets for T2DM and kidney tissue or peripheral blood for HTN).
Three of the eleven initially identified datasets for T2DM met all

selection criteria: GSE25724, GSE20966, and GSE38642. However,
GSE38642 was excluded due to its use of pancreatic islets obtained
from postmortem donors, which may compromise RNA quality
and biological interpretability. For HTN, three datasets (GSE24752,
GSE28345 and GSE28360) fulfilled the inclusion criteria. Based
on these selections, three integrative expression matrices were
constructed: one for T2DM, one for HTN, and a final combined
matrix integrating selected datasets from both conditions to allow
cross-disease comparative analyses.

2.2 Transcriptomic data collection,
preprocessing, and analysis strategies

Microarray datasets GSE25724 (T2DM; 13 samples: six cases
and seven controls), GSE20966 (T2DM; 20 samples: ten diabetic and
ten controls), GSE24752 (HTN; six samples: three normotensive and
three hypertensive), GSE28345 (HTN; 8 samples: five hypertensive
and three controls), and GSE28360 (HTN; 14 samples: nine
hypertensive and five controls) were retrieved from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/, accessed on 7 January
2025). Raw CEL files and associated metadata were downloaded,
extracted, and processed using R version 4.3.3 within the RStudio
environment. Expression values were normalized using the Robust
Multi-array Average (RMA) method. Quality control procedures,
including hierarchical clustering and multidimensional scaling
(MDS), were applied to detect outlier samples and assess potential
batch effects. Genes with low variance were filtered out to retain
biologically informative features. Two complementary analytical
strategies were applied: 1) Integrated analysis: the normalized
expression matrices from all selected datasets were merged based
on common genes across platforms. Prior to integration, data
were normalized using quantile normalization and corrected for
batch effects to ensure comparability across samples. Sample
and gene quality were assessed using the goodSamplesGenes
function from the WGCNA package, retaining genes above the
70th percentile of variance. A combined co-expression network
was constructed to detect modules associated with clinical traits
common to both conditions, and 2) Disease-specific analysis: each
dataset was processed independently to capture transcriptional
signatures unique to each condition. For both T2DM and HTN,
the optimal soft-thresholding power (β) was determined using
the pickSoftThreshold function from WGCNA. The β values were
chosen based on their corresponding scale-free topology model fit
(R2), selecting the lowest power for which R2 values were close to
or exceeded 0.80. Separate co-expression networks were constructed
for each disease to identify distinct modules associated with disease-
specific biological processes.

2.3 Differential gene expression and
network rewiring analysis

Differential expression analysis was conducted using the limma
package in RStudio following preprocessing and normalization of
the raw expression data. Microarray data were processed using
the affy package from Bioconductor (https://www.bioconductor.
org/, accessed on 10 December 2025), applying the RMA method
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FIGURE 1
Multi-Scale Network Analysis Workflow for T2DM and HTN. The workflow integrates distinct analytical stages; each color-coded as in the Figure:
Transcriptomic data preprocessing (purple), including normalization of GEO microarray data; Network rewiring analysis (green), with differential
expression (limma) and rewiring score calculation; WGCNA-based module detection (orange), identifying trait-associated gene modules; Functional
enrichment analysis (blue) using GO and KEGG with clusterProfiler; Transcription factor activity inference (red) via DoRothEA and VIPER; and PPI
network analysis (brown) using STRING. Potential genes were validated using GTEx DB.

for normalization. Quality control of the normalized data was
performed using the arrayQualityMetrics package, which generates
an interactive HTML report including outlier detection, MA
plots, boxplots, density distributions, and inter-array distance
analysis. Batch effects were evaluated and corrected using the
ComBat function from the sva package, and outlier detection
was performed with WGCNA-based hierarchical clustering. The
expression matrix was annotated with gene identifiers from the
Ensembl database (http://www.ensembl.org) using the biomaRt
package. Probes lacking valid gene annotations were excluded,
and multiple probes mapping to the same gene were collapsed
into a single representative expression value using the collapseRows
function. Sample groups were defined based on phenotypic data,
categorizing samples into control (CTL) and disease (DS) groups.
A linear model was fitted to the normalized expression data using
the lmFit function, and empirical Bayes moderation of the standard
errors was applied via eBayes. Differentially expressed genes (DEGs)
were identified based on an absolute log2 fold change (|log2FC|) > 1
and a false discovery rate (FDR) <0.05. Genes with positive log2FC
values were considered significantly upregulated, while those with
negative values were considered downregulated. Genes with FDR
values above 0.05 were considered not significantly differentially
expressed.

The top 100 genes exhibiting the highest absolute expression
differences between the T2DM and HTN datasets were selected
for network rewiring analysis. Pearson correlation coefficients

were calculated between all pairs of selected genes within each
condition to construct condition-specific co-expression networks.
In these networks, nodes represent genes, and edges represent
statistically significant co-expression relationships. Rewired genes
were identified by quantifying each gene’s connectivity as the sum
of its correlation coefficients with all other nodes in both networks.
A rewiring score was defined as the difference in connectivity
between conditions: Rewiring Score = Connectivity in T2DM -
Connectivity in HTN. Genes with the largest absolute rewiring
scoreswere considered to have undergone significant transcriptional
reorganization. A global rewiring network was then constructed,
wherein nodes represent genes and edges reflect significant changes
in gene-gene correlations between T2DM and HTN.

2.4 Co-expression network construction
and module detection

Aweighted gene co-expression network analysis (WGCNA)was
performed to identify gene modules associated with clinical traits
in T2DM and HTN. Three expression matrices were constructed:
one for T2DM (combining datasets GSE25724 and GSE20966), one
for HTN (including GSE24752, GSE28345 and GSE28360), and a
third integrated matrix for cross-disease analysis incorporating all
five datasets. Genes were filtered by variance, retaining those above
the 70th percentile, and quality control was performed using the
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goodSamplesGenes function to exclude incomplete or low-quality
data. Outlier samples were identified via hierarchical clustering.
Clinical traits were reviewed across all five datasets. While some
included information on age and body mass index (BMI), only
sex was consistently reported. As a result, sex was the only clinical
variable retained and was compiled into a unified metadata file for
downstream analyses. To approximate scale-free topology, the soft-
thresholding power (β) was determined using the pickSoftThreshold
function from the WGCNA package. The β value was chosen
as the lowest power for which the scale-free topology model fit
(R2) was close to or exceeded 0.80. Based on this threshold, an
adjacency matrix was constructed and subsequently transformed
into a topological overlap matrix (TOM) for network analysis.
Gene modules were identified using the blockwiseModules function,
applying the following parameters: unsigned TOM, minimum
module size of 200 genes, and a merge cut height of 0.20. Modules
comprising fewer than 200 genes were excluded from further
analysis. Module eigengenes (MEs) were computed and correlated
with clinical traits using Pearson correlation. Modules significantly
associated with clinical traits (p < 0.05) were prioritized for
downstream functional and network analyses.

2.5 Data collection and protein-protein
interaction network construction

Protein-protein interaction (PPI) networks were constructed
for the most representative co-expression modules associated with
T2DM andHTN using high-confidence interaction data (combined
score >0.9) obtained from the STRING database (version 11.5). Two
expression matrices were assembled, one for T2DM (combining
datasets GSE25724 and GSE20966), and one for HTN (including
GSE24752, GSE28345 and GSE28360). Selected modules consisted
exclusively of protein-coding genes. Filtered interaction data was
analyzed using custom Python scripts based on the NetworkX
package. Key hub genes were identified according to the degree and
betweenness centralities metrics. Genes ranking among the highest
in connectivity were designated as network hubs. Then, community
detection was performed using the greedy modularity optimization
algorithm to identifymajor subnetworks (communities) within each
PPI network. Final network visualizations were generated using
Matplotlib, applying the spring layout algorithm for optimal spatial
node distribution.

2.6 Multilayer network construction and
visualization

Amultilayer regulatory networkwas constructed to characterize
the shared and disease-specific molecular architectures underlying
T2DM and HTN.This network integrates five biological layers.

1. DEGs layer: DEGs shared in T2DM and HTN.
2. Co-expression modules layer: The most significant module

shared in T2DM and HTN.
3. Rewired layer: Genes exhibiting significant condition-specific

changes in network connectivity.
4. Transcription factor activity layer: TF activity in T2DM and

HTN, respectively.

The final multilayer network was exported as a GraphML
file and rendered in an interactive 3D view using Arena3Dweb
(https://pavlopoulos-lab-services.org/shiny/app/arena3d) and
Pyvis, enabling dynamic exploration and visualization of the
cross-layer connectivity.

2.7 Transcription factor activity analysis

Transcription factor (TF) activity was inferred using the
DoRothEA database (version 1.14.1) and the VIPER algorithm
(version 1.36.0). The expression matrix was preprocessed by
collapsing multiple probes per gene via mean expression values and
removing duplicate gene entries. Only TF–target interactions with
high-confidence scores (confidence levels A and B) were retained
and converted into VIPER regulons using the dorothea_hs object.
Normalized enrichment scores (NES) were computed using the
“scale” method within the viper () function. Differential TF activity
between case and control groupswas assessed by two-tailed Student’s
t-tests, with p-values <0.05 considered statistically significant.

2.8 In silico validation of predictive relevant
genes

To explore the tissue-specific expression profiles of the most
relevant genes identified in T2DM and HTN, an in silico validation
was performed using data from the GTEx Portal (https://www.
gtexportal.org/, accessed on 15 January 2025). Transcript abundance
was quantified in transcripts per million (TPM), providing
normalized gene expression estimates across multiple human
tissues. Disease-relevant tissues were selected based on the known
pathophysiology of each condition. For T2DM, the analysis included
the pancreas, liver, kidney cortex, skeletal muscle, subcutaneous
adipose tissue, and visceral adipose tissue. For HTN, tissues
included the left ventricle, atrial appendage, coronary artery, aorta,
kidney cortex, adrenal gland, and lung. Heatmaps were constructed
to visualize expression gradients and to identify tissue-specific
transcriptional patterns. Hierarchical clustering was applied to
both genes and tissues to reveal functional groupings and highlight
potential biological relevance to cardiometabolic dysfunction.

3 Results

3.1 Identification of differentially expressed
genes across type 2 diabetes and
hypertension

Gene expression data from three hypertension-related datasets
(GSE24752, GSE28345, and GSE28360) comprising 5, 7, and 13
samples respectively, and two type 2 diabetes datasets (GSE20966
with 20 samples and GSE25724 with 13 samples) were preprocessed
and batch-corrected, resulting in a unified expression matrix
containing 12,251 genes across 58 samples. Differential expression
analysis between T2DM and HTN samples identified eight
significantly differentially expressed genes (DEGs) with an
FDR <0.05 (Table 1). The upregulated genes distinguishing T2DM
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TABLE 1 Common differentially expressed genes identified across transcriptomic profiles in T2DM and HTN.

Gene symbol logFC AveExpr t P. Value FDR B

SPINK1 1.2275 7.9677 4.0546 0.0001 0.0193 0.8893

ANPEP 1.1296 8.4200 3.2907 0.0017 0.0398 −1.2752

MT1G 1.0515 10.1510 3.4681 0.0010 0.0326 −0.7976

NR4A1 1.0155 7.2615 4.0990 0.0001 0.0182 1.0232

PRSS2 1.0006 8.0206 3.2764 0.0017 0.0407 −1.3127

SCD5 −1.2022 8.0146 −3.2899 0.0017 0.0398 −1.2771

QPCT −1.3188 7.2413 −3.8272 0.0003 0.0221 0.2170

from HTN include SPINK1 (Log2FC = 1.23, FDR = 1.93 × 10−2),
which encodes a secreted serine protease inhibitor that prevents
trypsin-mediated tissue damage. Next is ANPEP (Log2FC =
1.13, FDR = 3.98 × 10−2), which encodes a membrane-bound
aminopeptidase involved in peptide metabolism and immune
function. MT1G (Log2FC = 1.05, FDR = 3.26 × 10−2) belongs to
the metallothionein family and is responsible for metal ion binding
and detoxification. NR4A1 (Log2FC = 1.02, FDR = 1.82 × 10−2)
follows, encoding a nuclear receptor involved in cell proliferation,
apoptosis, and metabolic regulation. Finally, PRSS2 (Log2FC =
1.00, FDR = 4.07 × 10−2) encodes an inactive precursor of trypsin,
expressed in secretory tissues such as the pancreas. Among the
downregulated genes, SCD5 (Log2FC = −1.20, FDR = 3.98 ×
10−2) encodes a desaturase that plays a role in the biosynthesis
of monounsaturated fatty acids. QPCT (Log2FC = −1.32, FDR
= 2.21 × 10−2) encodes an enzyme that catalyzes the formation
of pyroglutamate-modified peptides involved in neuropeptide
processing. The functional annotation of these genes was obtained
from the GeneCards®  database (https://www.genecards.org).

3.2 Co-expression analysis and module
identification

Weighted gene co-expression network analysis was applied
independently to the T2DM, HTN, and combined T2DM-HTN
datasets. After filtering out low-variance genes, appropriate soft-
thresholding powers were selected to achieve scale-free topology
(T2DM: β = 10; HTN: β = 3; T2DM-HTN: β = 10). Network
construction identified seven co-expression modules in T2DM,
eight in HTN, and ten in the integrated dataset.

3.2.1 Co-expression network analysis identifies a
disease-linked gene module marked by
metabolic and cellular transcriptional repression
in T2DM and HTN

We explored convergent transcriptional programs between type
2 diabetes mellitus and hypertension by performing an integrative
weighted gene co-expression network analysis (WGCNA) using
transcriptomic data from GSE20966 and GSE25724 (T2DM) and

GSE24752, GSE28345 and GSE28360 (HTN). This strategy enabled
a unified co-expression network to capture shared molecular
signatures across cardiometabolic conditions. The WGCNA
revealed ten distinct modules of co-expressed genes, labeled ME0
through ME9, each summarized by its module eigengene (ME).
These modules varied in size, with ME1 comprising 2,486 genes
(the largest) and ME9 including 280 genes (the smallest) (Table 2).
Significantly, the integrative analysis facilitated the identification of
modules associated with biological processes potentially influenced
by age, metabolic status, and vascular remodeling. ME7 showed the
strongest association with disease status, displaying a significant
negative correlation (r = −0.498, p = < 0.001). ME5 also exhibited a
negative correlation with disease (r = −0.463, p = < 0.001), followed
by ME4 (r = −0.264, p = < 0.05), though with a more modest effect.
Conversely, positive correlations were observed for ME1 (r = 0.355,
p = < 0.001), ME6 (r = 0.352, p = < 0.001) and ME8 (r = 0.321, p =
< 0.01). The Modules rest did not reach statistical significance.

These results suggest that specific co-expression modules,
particularly ME7 and ME1 capture disease-associated
transcriptional programs that may be shared between T2DM and
HTN.No significant associationswere detected between anymodule
and the variable Gender, indicating that the observed co-expression
patterns are primarily driven by disease status rather than sex
differences.

Functional enrichment analysis linked these modules to
key biological processes such as metabolic reprogramming,
vascular remodeling, and immune regulation pathways central
to the pathophysiology of T2DM and HTN. Given its strong
inverse association with disease status, ME7 was selected
for downstream analyses. This module exhibited significant
enrichment for genes involved in cellular and metabolic
regulation (Supplementary Figure S1). The most significantly
enriched Gene Ontology (GO) term was “cellular metabolic
process,” encompassing over 259 genes and indicating broad
transcriptional downregulation of essential cellular functions in the
disease context. This was closely followed by the “macromolecule
metabolic process” and “organic substance metabolic process,”
with approximately 220 and 260 genes, respectively, highlighting
widespread metabolic repression. Together, these findings suggest
that ME7 captures coordinated transcriptional repression of genes
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TABLE 2 Summary of co-expression modules identified by WGCNA and
their correlation with clinical traits of the merged T2DM2-HTN
transcriptome dataset.

Module Number of
Genes

Disease (r) Gender (r)

ME0 2,139 0.210 0.098

ME1 2,486 0.355 −0.209

ME2 1,607 0.020 −0.162

ME3 1,495 0.065 0.039

ME4 1,447 −0.264 0.132

ME5 1,128 −0.463 0.050

ME6 690 0.352 0.002

ME7 508 −0.498 0.032

ME8 471 0.321 0.030

ME9 280 0.023 0.110

essential for maintaining cellular and metabolic homeostasis in
T2DM and HTN.

3.2.2 Disease-specific co-expression network
analysis uncovers distinct transcriptional
programs in T2DM and HTN

The datasets were analyzed separately to investigate disease-
specific co-expression patterns. This stratified approach allowed for
the identification of distinct transcriptional modules unique to each
condition, disentangling shared molecular signatures from disease-
specific mechanisms.

Hierarchical clustering of HTN samples (Figure 2A) revealed
distinct segregation between hypertensive individuals and healthy
controls, with the Disease trait clearly delineating the major
branches of the dendrogram. This indicates that transcriptional
profiles cluster according to disease status, supporting the biological
relevance of the trait-based grouping and validating the quality of
the expression data.

Similarly, the T2DM dataset (Figure 2B) showed a clear
clustering of diabetic individuals and healthy controls. The
hierarchical sample dendrogram revealed distinct groupings
aligned with disease status, further supporting the robustness of
the transcriptional differences. As observed in the HTN dataset,
disease classification emerged as the primary driver of sample
separation, while gender did not contribute significantly to the
clustering pattern.

3.2.2.1 ME3 in T2DM: a disease-associated co-expression
module with key pathophysiological functions

The co-expression analysis of the T2DM dataset identified 13
distinctmodules (MEs), each comprising different numbers of genes
(Table 3). Notably, ME3 displayed a strong positive correlation with
disease status (r = 0.59, p < 0.001), underscoring its potential
central role inT2DMpathogenesis. Additionally,ME1was positively

correlated with disease (r = 0.52, p < 0.001). In contrast, ME6
was strongly negatively correlated with disease (r = −0.51, p <
0.001), indicating reduced expression of these genes in T2DM
patients. The statistical significance of ME3 and ME1 in relation
to disease reinforces their relevance to the underlying molecular
mechanisms of T2DM. These findings identify ME3, ME1, and
ME6 as key modules warranting further investigation as potential
regulatory hubs in T2DM. Functional enrichment analysis of
ME3, comprising 1,637 genes, revealed an overrepresentation of
biological processes linked to metabolic activity and intracellular
transport (Supplementary Figure S2). The most enriched pathways
included “nitrogen compoundmetabolic process” (FDR = 8.99e-07)
“cellular processes” (FDR = 5.65e–19), “organic substance metabolic
process” (FDR = 8.53e–11), “metabolic process” (FDR = 9.61e–11),
and “primary metabolic processes” (FDR = 3.62e–09).

These results emphasize the central role of metabolic
dysregulation in T2DM pathogenesis. Upregulation of genes
within ME3 may initially represent a compensatory response to
metabolic stress; however, sustained activation could impair insulin
signaling, glucose uptake, and secretion, particularly in skeletal
muscle, adipose tissue, and pancreatic β-cells. Furthermore, the
enrichment in nitrogen metabolism suggests a potential link to
oxidative stress and mitochondrial dysfunction. Collectively, these
findings position ME3 as a critical node mediating adaptive and
maladaptive responses in T2DM.

3.2.2.2 ME7 as a disease-linked co-expression module
underlying immune and vascular dysregulation in HTN

The co-expression analysis of the HTN dataset identified
10 distinct modules (Table 4). ME1 was the largest module
(7,604 genes), whereas ME8 contained the fewest genes (375).
These modules reflect distinct gene networks with coordinated
expression patterns across the samples. Among these, ME7
was the most strongly associated with the “Disease” trait,
displaying a robust positive correlation (r = 0.52, p = < 0.01),
indicating increased expression of ME7 genes in hypertensive
individuals compared to controls. Given the strong positive
correlation, the biological processes enriched in ME7 are likely
upregulated in HTN (Supplementary Figure S3). Functional
enrichment analysis of ME7, comprising 358 genes, revealed
significant processes, including “RNA processing” (FDR =
2.90e–03), “nitrogen compound metabolic process” (FDR =
2.90e–03), and “RNA metabolic process” (FDR = 2.90e–03), all
showing enhanced molecular activity in hypertension.

Specifically, the upregulation of “RNA metabolic process”
and “nitrogen compound metabolic process” suggests a elevated
cellular turnover and metabolic demand. The enrichment of these
processes underscores a state of heightened transcriptional and
metabolic activity, which may contribute to the vascular and
systemic alterations associated with hypertension. Overall, the
upregulation of ME7 in hypertensive individuals suggests activation
of transcriptional programs involved in RNA processing and
nitrogen metabolism, which may reflect increased biosynthetic
activity and metabolic remodeling in response to hypertensive
stress. These findings highlight ME7’s role in supporting
the elevated molecular and metabolic demands associated
with hypertension.
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FIGURE 2
Hierarchical clustering dendrograms and associated trait heatmaps for T2DM and HTN samples. (A) Sample dendrogram and trait heatmap for
individuals with type 2 diabetes mellitus (T2DM), displaying clustering based on gene expression profiles. Traits such as Disease (case/control) and
Gender (female/male) are annotated to facilitate visual assessment of group-specific patterns. (B) Corresponding dendrogram and heatmap for
hypertension (HTN) samples, illustrating separation between hypertensive and normotensive individuals. The hierarchical clustering reveals potential
associations between transcriptomic profiles and clinical traits, serving as a foundation for downstream co-expression network analysis. Disease status:
red indicates presence of disease (case), white indicates absence (control). Gender: red indicates female, white indicates male.

TABLE 3 Summary of co-expression modules identified and their
correlation with clinical Traits in the WGCNA of T2DM Dataset.

Module Number of
Genes

Disease (r) Gender (r)

ME0 732 0.111 −0.090

ME1 4,102 0.521 −0.130

ME2 3,146 −0.004 −0.082

ME3 1887 0.595 −0.229

ME4 1,284 −0.396 0.126

ME5 1,211 0.118 0.001

ME6 780 −0.516 0.083

3.3 GNB1 and JAK1 emerge as central hubs
in the PPI network, defining key functional
modules in T2DM

The PPI network constructed for the T2DM-specific
ME3 module comprised 1,637 proteins and 9,168 high-
confidence interactions (confidence score >0.9), forming
a highly interconnected structure with an average node
degree of 5.31 (Figure 3A). Hub genes were identified based on
degree centrality, with GNB1 emerging as the principal hub,
exhibiting 38 direct interactions. This finding underscores the
central role of GNB1 suggests it may serve as a central regulator
of protein–protein interactions within the cellular context of type 2
diabetes mellitus.

Additional highly connected genes included JAK1 (32
interactions), RPS3 (32 interactions), and MAPK3 (28), which are
associated with pathways related to cytokine signaling, protein

TABLE 4 Summary of co-expression modules identified and their
correlation with clinical traits in the WGCNA of HTN dataset.

Module Number of
Genes

Disease (r) Gender (r)

ME0 454 −0.396 −0.026

ME1 7,604 −0.333 −0.546

ME2 3,954 0.071 0.431

ME3 3,213 0.467 0.457

ME4 749 −0.078 −0.445

ME5 687 −0.105 −0.369

ME6 553 −0.430 −0.164

ME7 417 0.520 0.326

ME8 375 −0.113 0.144

synthesis and degradation, and cell cycle regulation, respectively.
Notably, the presence of other highly connected genes such as
PDCD11 (26 interactions), KRR1 (26), CYP2E1 (24), MRPL13
(24), PLCG2 (22 interactions), and RPS27 (22) further suggest
the involvement of ribosome biogenesis, mitochondrial function,
xenobiotic metabolism, and phosphoinositide signaling, as key
contributors to T2DM pathophysiology.

3.3.1 Functional enrichment of T2DM PPI
communities highlights oncogenic signaling and
viral response pathways

The modular organization of the T2DM-specific PPI network
was explored using a modularity-based clustering algorithm,
which identified 95 distinct communities. Among these, the
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FIGURE 3
Functional PPI network and enrichment analysis of major clusters in T2DM. (A) High-confidence protein-protein interaction (PPI) network (confidence
score >0.9) constructed using STRING. Nodes represent proteins, and edges denote experimentally validated interactions. Hub genes, identified by
degree centrality, are highlighted in yellow. The three most functionally coherent communities, defined by greedy modularity clustering, are
color-coded: MAPK signalling pathway (blue), Proteoglycans in cancer (red), and Hepatocellular carcinoma (pink). The remaining proteins are shown in
gray. The network layout was optimized using a spring-force algorithm. (B) KEGG pathway enrichment for each module. Dot plots display significantly
enriched terms, with dot size indicating the number of genes per term and color representing statistical significance (–log10 adjusted FDR).

most functionally relevant clusters were subjected to KEGG
enrichment analysis (Figure 3B). The top enriched pathways
included Pathways of neurodegeneration, multiple diseases (33
proteins, FDR <0.05), MAPK signaling pathway (27 proteins,
FDR <0.01), and Human T-cell leukemia virus 1 infection
(25 proteins, FDR <0.001). Additional enriched routes such as
Proteoglycans in cancer and Salmonella infection (21 proteins
each, both FDR <0.01) were also identified. Representative genes
involved in these pathways include GNB1, JAK1, RPS3, MAPK3,
and IL6, suggesting that transcriptional responses in T2DM
converge on inflammatory, oncogenic, and neurodegenerative
signaling axes.

3.4 Hypertension PPI network reveals
ribosomal and ubiquitin-mediated
regulation as key pathways

We further investigated the biological relevance of the ME7
and ME3 modules associated with HTN by constructing a high-
confidence PPI network (Figure 4A). To build this network, we
merged the ME7 (417 genes) with the ME3 module (3,213 genes)
and selected the top 1,000 genes for analysis. The resulting
network consisted of 1,000 nodes and 4,109 edges, with an average
node degree of 20.51 and 2 connected components. Hub genes
identified within ME7 and ME3 included JUN (degree = 172),

BRCA1 (degree = 132), MAPK1 (degree = 124), FOS (degree =
120), CREBBP (degree = 112), NOP56 (degree = 94), NDC80
(degree = 78), RAD51 (degree = 74), and DCTN1 (degree = 74).
To further characterize the functional structure of the network,
community detection was performed, identifying three principal
clusters based on KEGG pathway enrichment analyses (Figure 4B):
Amino acid and carbon metabolism cluster: This cluster exhibited
strong enrichment in metabolic pathways such as valine, leucine
and isoleucine degradation, carbon metabolism, and fatty acid
metabolism, with gene counts between 23 and 47 and –log10(FDR)
values exceeding 4.5.

Peroxisomal and cofactor biosynthesis cluster: This group
showed enrichment in pathways including peroxisome, biosynthesis
of cofactors, and one carbon pool by folate, indicating active redox
and coenzyme regulation mechanisms (gene counts between 18 and
52). Glycine, tryptophan and propanoate processing cluster: This
cluster was enriched for glycine, serine and threonine metabolism,
tryptophan metabolism, and propanoate metabolism, with modest
gene ratios but consistent statistical support (adjusted p-values
<0.001).

Together, these communities illustrate distinct but
interconnected molecular programs disrupted in HTN. The
combined dysregulation of amino acid metabolism, carbon and
lipid processing, and cofactor biosynthesis provides insights into the
complex transcriptional architecture underlying disease progression
in hypertensive patients.
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FIGURE 4
PPI network and functional enrichment analysis in HTN. (A) High-confidence protein-protein interaction (PPI) network (confidence score >0.9) based
on STRING database data. Nodes represent proteins, and edges indicate experimentally validated interactions. Hub genes, identified by degree
centrality, are highlighted in yellow. The top three functional communities, detected via greedy modularity clustering, are color-coded: Enriched in
energy and simple-substrate metabolism pathways (blue), Enriched in central cofactor and amino-acid metabolic pathways (red), and Enriched in
peroxisomal and short-chain fatty-acid pathways (pink). The remaining proteins are shown in gray. The network layout was optimized using a
spring-force algorithm to enhance interpretability. (B) KEGG pathway enrichment for each module. Dot plots display significantly enriched Gene
Ontology biological processes, KEGG pathways, and molecular functions for each cluster. Results highlight key mechanisms in HTN pathogenesis,
including protein degradation, immune signaling, and translational regulation. Dot size represents the number of genes per term, while color denotes
statistical significance (–log10 adjusted FDR).

3.5 Network rewiring and multi-scale
analysis reveal perturbations in molecular
interactions in T2DM and HTN

Network rewiring analysis was performed to investigate
structural remodeling of molecular interactions in
T2DM and HTN (Figure 5A). This approach quantified topological
changes within condition-specific co-expression networks. Each
gene was assigned a rewiring score based on the difference in
connectivity and correlation strength between the two conditions.
Positive scores reflected increased connectivity in T2DM relative
to HTN, whereas negative scores indicated reduced connectivity
in T2DM or disrupted co-expression relationships. The analysis
revealed a heterogeneous rewiring pattern, with a subset of hub
genes displaying significant gains or losses of interactions. In T2DM,
genes such as ST18, SNAP91, and RAP2C exhibited increased
connectivity (rewiring score >500; 95th percentile), suggesting a
role in adaptive responses to metabolic stress and vesicle trafficking.
Additionally, SLBP, RNF11, and NEUROD1 showed increased
connectivity, potentially reflecting alterations in RNA binding,
ubiquitin signaling, and neuronal regulation. Conversely, genes such
as SLC16A7, SPX, and PAX8 showed reduced connectivity (rewiring
score <215; 5th percentile), implicating disrupted monocarboxylate
transport, neuropeptide signaling, and transcriptional regulation

in T2DM pathophysiology. Meanwhile, in HTN, rewiring events
predominantly affected inflammatory and translational pathways.
Notably, hub genes such as S100A10, HSPB1, andWFDC2 exhibited
reduced connectivity (rewiring score < −15), suggesting disruptions
in immune regulation, stress response, and extracellular protease
inhibition. Additionally, genes such as C1QTNF1 and C1R, involved
in the complement cascade, also showed connectivity losses,
pointing toward altered inflammatory signaling.

These findings indicate that HTN pathophysiology involves
network remodeling affecting immune and translational regulation,
potentially contributing to vascular dysfunction through both
transcriptional and post-translational mechanisms.

To further integrate transcriptional, topological, and expression-
level alterations, we constructed a multilayer network connecting
transcription factors differentially active in T2DM or HTN,
shared co-expression modules, genes with high rewiring
scores, and differentially expressed genes (DEGs). The most
significant module identified by co-expression analysis was ME7,
enriched in genes involved in immune-metabolic regulation and
mitochondrial function (Figure 5B).

At the transcriptional level, CREB1 and BACH1 displayed
distinct and context-specific connectivity. CREB1, a transcription
factor implicated in glucose metabolism and immune regulation,
was exclusively active in the T2DM layer and connected to multiple
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FIGURE 5
Network rewiring and multi-scale analysis in T2DM and HTN. (A) Node color corresponds to the rewiring score, where positive values (red) indicate
network expansion and increased connectivity, while negative values (blue) reflect network contraction and loss of interactions. (B) Three-dimensional
multilayer network in T2DM and HTN. Panel B, depicts five colored planes, each corresponding to a distinct network layer: the dark-blue plane
corresponds to transcription factors in T2DM, the light-blue plane to transcription factors in HTN, the green plane to shared co-expression module,
the purple plane to genes with the strongest rewiring scores, and the orange plane to shared DEG. Nodes on each plane share its color, and inter-layer
edges connect identical genes across planes, allowing you to follow any given gene through its roles in transcription factor networks, co-expression
modules, rewiring analysis and differential expression.

genes within shared co-expression module and the rewiring layer,
suggesting a pivotal regulatory role in T2DM-driven network
remodeling. Conversely, BACH1, a known modulator of oxidative
stress and vascular tone, was prominent in the HTN-specific layer,
interfacing with the same module but through distinct targets,
indicating disease-specific regulatory programs.

The shared co-expression module, enriched in
immunometabolic genes, served as a convergence point for both
conditions, connecting upstream transcriptional regulators with
rewired genes. Within the rewiring layer, topological hubs such as
ST18, RNF11, SLC16A7, and PTMAP9 integrated transcriptional
signals with downstream expression alterations, indicating their
roles as dynamic mediators of structural network shifts across
both diseases.

Finally, in the DEG layer, metabolic and stress-response
regulators including SPINK1,ANPEP,MT1G,NR4A1,PRSS2, SCD5,
and QPCT emerged as shared downstream effectors. These genes
are involved in proteolysis, lipid metabolism, and oxidative stress,
suggesting that both T2DM and HTN converge on pathways related
to cellular stress adaptation and metabolic regulation, despite being
initiated by distinct upstream mechanisms.

3.6 Transcription factor activity reveals
shared and distinct regulators in T2DM and
HTN

The analysis of master transcription factor (TF) activity
profiles revealed distinct yet partially overlapping regulatory

signatures in T2DM and HTN (Figure 6). In T2DM (Figure 6A),
significant activation of metabolic and epigenetic regulators was
observed, including PRDM14, FOXP1, CEBPA, and SP1 (p <
0.01). These factors are involved in transcriptional control of
metabolic, developmental, and immune processes, suggesting their
coordinated upregulation in diabetic tissue. Conversely, E2F4,
FOXO3, E2F1, and ZNF263 all show significantly decreased
activity (p < 0.01). These transcription factors are associated
with cell cycle progression, DNA repair, and transcriptional
regulation. Their inhibition in T2DM may reflect a downregulation
of proliferative and repair pathways, potentially contributing
to the pathophysiology of metabolic dysfunction and insulin
resistance.

Our results show that in HTN (Figure 6B), transcription
factor activity analysis revealed significant activation of key
regulators including MYC, AR, HNF4A, and NFIC (p < 0.05).
These transcription factors are associated withmetabolic regulation,
hormone signaling, and vascular homeostasis, suggesting
their potential roles in the pathophysiology of hypertension.
Conversely, strong repression was observed for IRF1, STAT1,
STAT2, and GATA2, all displaying significantly decreased activity
in hypertensive individuals compared to controls (p < 0.05).
These factors are typically involved in immune surveillance
and inflammatory responses, and their suppression may reflect
impaired immunoregulatory mechanisms contributing to vascular
dysfunction. Together, these findings highlight the presence of
coordinated transcriptional activity changes in HTN, shared
regulators identified across both conditions included HNF4A,
MYC, FOXO1 and STAT2, all exhibiting significant dysregulation
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FIGURE 6
Transcription factor activity differences in T2DM (A) and HTN (B) were inferred using VIPER and high-confidence DoRothEA regulons. Red bars indicate
TFs with significantly altered activity (p < 0.05). Activity differences are represented as normalized enrichment scores (NES), where positive values
denote increased activity and negative values denote repression in disease compared to controls.

(p < 0.05). Specifically, HNF4A was significantly activated in
both T2DM and HTN, suggesting its consistent involvement in
metabolic regulation and transcriptional reprogramming associated
with cardiometabolic stress. FOXO1 displayed opposite activity
patterns, being repressed inT2DMand activated inHTN, suggesting
divergent responses to oxidative and metabolic stress in each
condition. MYC showed repression in T2DM but activation in
HTN, highlighting context-dependent regulation of proliferative
and metabolic control pathways.

STAT2 was activated in T2DM but strongly repressed in
HTN, suggesting opposing role in immune modulation and
inflammatory signaling. These findings reveal the presence of
shared yet differentially regulated transcriptional networks between
T2DM and HTN. The identification of HNF4A as a commonly
activated factor supports its potential as a therapeutic target
in the overlapping molecular landscape of metabolomic and
hypertension disorders.

3.7 Tissue-specific expression patterns of
hub genes in T2DM and HTN: implications
for metabolic and cardiovascular
dysfunction

Leveraging RNA-seq data from the GTEx database, we assessed
the tissue-specific expression patterns of hub genes identified
in T2DM and HTN, revealing distinct transcriptional signatures
that align with the metabolic and vascular pathophysiology of
each condition. Hierarchical clustering and heatmap visualization
facilitated the identification of organ-specific molecular programs
(Figure 7; Supplementary Table S1).

Analysis of GTEx baseline expression profiles in T2DM-related
tissues showed that PRSS2 (Z = 3.12) and SPINK1 (Z = 2.89) attain
their highest levels in pancreas, whereasQPCT (Z = 2.92) and SCD5
(Z = 2.43) are most strongly expressed in adrenal gland. Skeletal
muscle exhibits peak expression ofANKRD2 (Z = 2.25), and adipose
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FIGURE 7
Tissue-specific expression of hub genes in T2DM and HTN. The heat maps display the transcripts per million (TPM) values of key hub genes across
human tissues based on GTEx RNA-seq data. Hierarchical clustering was performed to identify tissue-specific expression patterns. The left panel
represents hub genes associated with T2DM, showing predominant expression in metabolic tissues such as the pancreas, liver, and adipose depots.
The right panel illustrates hub genes implicated in HTN, with enriched expression in vascular and cardiac tissues, including the aorta, coronary arteries,
and heart compartments.

depots are characterized by elevated RPS7 in subcutaneous fat (Z =
1.17) and NR4A1 in visceral omentum (Z = 1.44).

Among tissues linked to hypertension, PPP1R14D (Z = 3.12)
and AMN (Z = 2.12) show maximal expression in kidney cortex,
while PTMAP9 (Z = 1.16), RRAGA (Z = 1.37) and CREB1 (Z =
1.21) are most abundant in the aorta. Coronary artery demonstrates
moderate enrichment of ATRAID (Z = 1.11), and ANPEP exhibits a
primary peak in pancreas (Z = 1.58) alongside secondary vascular

expression. Finally, MT1G reaches its highest Z-score in liver (Z =
1.86), consistent with its role in systemic homeostasis.

Because GTEx data reflect healthy “baseline” expression, these
shifts upregulation of pancreas and kidney enriched genes (SPINK1,
PRSS2, ANPEP) and downregulation of adrenal or metabolic
tissue–enriched genes (QPCT, SCD5), highlight how T2DM and
HTN jointly perturb organ-specific pathways (exocrine stress,
oxidative balance, lipid processing and vascular remodeling).
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4 Discussion

Recent systems biology studies have employed integrative
omics approaches to explore the molecular complexity of type 2
diabetes mellitus, hypertension, and comorbidities (Kamali et al.,
2022; Lei et al., 2023; Rönn et al., 2024). This study developed
a comprehensive computational framework that integrates
transcriptomic data, co-expressionmodule analysis, protein-protein
interaction networks, network rewiring, and transcription factor
activity inference to uncover shared and disease-specific molecular
signatures.

In this study, age was the only clinical variable consistently
available across all transcriptomic datasets, justifying its inclusion
in the analysis. However, inconsistent reporting of key clinical
factors, such as BMI, HbA1c, blood pressure, and sex limited
their integration and introduced potential confounding variables
affecting transcriptomic patterns in T2DM and HTN. BMI
significantly influences the expression of inflammatory and
metabolic genes in adipose and vascular tissues (Wensveen et al.,
2015; Fang et al., 2015), while HbA1c and blood pressure
impact endothelial and immune-related transcriptional responses
(Bayaraa et al., 2022; Chen et al., 2021). Although sex was included
in some datasets, its inconsistent reporting led to its exclusion from
analysis, despite its known effects on gene expression and disease
risk (Shi et al., 2024). To enhance biological interpretability and the
translational impact of systems-level analyses in cardiometabolic
research, future studies should prioritize standardized clinical
metadata. Among the shared DEGs in T2DM and HTN, several
genes were significantly upregulated, including SPINK1, ANPEP,
MT1G, NR4A1, and PRSS2. These genes are involved in protease
inhibition, aminopeptidase activity, oxidative stress response, and
inflammatory signaling, suggesting activation of stress-adaptive
and immune pathways in both conditions. In particular, NR4A1, a
nuclear receptor sensitive to metabolic and inflammatory cues, may
represent a key transcriptional node linking metabolic stress with
vascular dysfunction (Martínez-González et al., 2021).

Conversely, SCD5 and QPCT were significantly downregulated.
SCD5, a lipogenic enzyme, plays a role in fatty acid desaturation,
and its reduced expression points to altered lipid homeostasis (Igal
and Sinner, 2021). QPCT, implicated in peptide processing and
neuroendocrine signaling, may contribute to impaired vascular tone
or hormonal regulation when suppressed (Zhu et al., 2022).

Together, these expression patterns suggest a transcriptional
convergence between T2DM and HTN, characterized by chronic
inflammation, oxidative stress, andmetabolic disruption, potentially
contributing to their frequent comorbidity and shared vascular
complications.

Our findings reveal a robust transcriptional convergence in
T2DM and HTN centered on vascular remodeling, immune
activation, and metabolic stress responses. This multi-layered
approach identified key co-expression modules associated with
T2DM (ME3) and HTN (ME7), each enriched for genes involved in
endothelial dysfunction, chronic inflammation, oxidative stress, and
remodeling of the extracellular matrix. Hub genes such as GNB1,
JAK1, JUN, and BRCA1, as well as key transcriptional regulators
including HNF4A, and STAT2, emerged as central nodes within
disrupted regulatory circuits (Figure 8).

Unlike previous transcriptomic studies that focused primarily
on differentially expressed genes, our approach integrated dynamic
regulatory features through network rewiring analysis and TF
activity profiling (Chiang et al., 2018; Ali et al., 2022; Farrim et al.,
2024). This strategy supports the notion that cardiometabolic
diseases share core regulatory networks and highlights novel
molecular targets for precision therapeutic strategies.

Our analysis revealed convergent inflammatory and vascular
remodeling pathways in both diseases. The T2DM-associated
module (ME3) was enriched in proinflammatory signaling,
particularly TNF and NF-κB pathways, alongside oxidative stress
and intracellular transport. These findings are consistent with
studies reporting that low-grade chronic inflammation within
pancreatic islets contributes to T2DM by impairing β-cell function
and insulin secretion (Dludla et al., 2023). In contrast, the
HTN-associated module (ME7) was primarily enriched in genes
involved in mitochondrial function, carbon metabolism, and
fatty acid oxidation, suggesting that metabolic stress and redox
imbalance are key transcriptional features in hypertensive pathology
(Krzemińska et al., 2022). While vascular remodeling and immune
activation are widely recognized contributors to hypertension,
our data highlights a prominent role for energy metabolism in
ME7. These findings complement previous work showing that
hypertension-associated loci influence vascular and immune
cell programs (Skovgaard et al., 2025). Notably, KMT2A has been
identified as an upstream epigenetic regulator of hypertension
onset, pointing to chromatin remodeling as a potential mediator
of vascular dysfunction.

Our results suggest that prolonged metabolic stress and
hemodynamic load may converge on commonmolecular pathways,
particularly NF-κB signaling and oxidative stress responses,
promoting β-cell failure and vascular injury. The oxidative stress-
related genes found in ME3 support this model, as hyperglycemia
and lipotoxicity are known to increase reactive oxygen species
(ROS) production, which activates NF-κB and upregulates
inflammatory cytokines (Keane et al., 2015; Li et al., 2016;
Vilas-Boas et al., 2021; Mukai et al., 2022).

This ROS-driven inflammatory cascade has been implicated
in β-cell dedifferentiation and dysfunction in transcriptomic and
experimental models (Trojanowski et al., 2020; Khin et al.,
2021). Similarly, vascular oxidative stress contributes to endothelial
dysfunction in hypertension through pathways involving EGFR
and proinflammatory kinases (Rodrigues-Diez et al., 2015; Higashi,
2022). While our analysis did not identify EGFR as a central
hub, the most significant co-expression module in HTN showed
enrichment in oxidative and mitochondrial pathways. Together,
these findings support the hypothesis that inflammation and
remodeling pathways act as mechanistic bridges linking T2DM
and HTN, corroborating epidemiological evidence of their frequent
co-occurrence (Motuma et al., 2023).

The PPI network analysis identified key hub genes associated
with T2DM and HTN, revealing regulatory signatures that
highlight disease-specific molecular alterations. In the T2DM-
specific network (ME3), GNB1 emerged as the most connected
hub, consistent with its established role in transducing G protein-
coupled receptor (GPCR) signals that regulate insulin secretion,
glucose metabolism, and inflammatory pathways (Saddala et al.,
2018; Murakami et al., 2019). Its centrality reinforces recent
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FIGURE 8
Integrative network model of shared mechanisms in T2DM and HTN. Multi-scale integrative network analysis reveals shared and disease-specific
mechanisms connecting type 2 diabetes mellitus (green) and hypertension (orange). Rewired genes, indicated with dashed-line rectangles, show
increased connectivity in red and decreased connectivity in blue. Hub genes are framed with densely dashed rectangles, while transcription factors are
highlighted with solid-line rectangles, with upregulated factors in red and repressed factors in blue. Co-expression module genes are framed with long
dashed rectangles and differentially expressed genes are framed with black, dotted line rectangles.

transcriptomic and functional data implicating GNB1 in pancreatic
stress responses and insulin resistance, two hallmarks of T2DM
pathogenesis. Additional hubs in the T2DM network included
JAK1, RPS3, MAPK3, these hubs underscore the convergence
of inflammatory signaling, translational control, and metabolic
dysregulation in the pathogenesis of T2DM. JAK1 mediates
cytokine-driven inflammation and contributes to insulin resistance
in adipose tissue (Huang et al., 2024), while RPS3 links translational
control with NF-κB activation, promoting oxidative stress in β-cells.
This suggests that in type 2 diabetes, proinflammatory and oxidative
stress mechanisms are activated, affecting key tissues involved in the
disease’s pathophysiology.

In the HTN-specific network (ME7), MAPK1 was identified
as the topological hub with the highest degree of connectivity,
followed by BUB1B, CDK1, and RPS6. The prominence of
MAPK1, a key effector of the MAPK/ERK pathway, highlights
its relevance in hypertensive pathophysiology, where it modulates
vascular smooth muscle cell proliferation, endothelial function,
and oxidative stress responses. Previous studies have shown
that MAPK1 activation contributes to vascular remodeling
and increased vascular tone, and its dysregulation has been

implicated in blood pressure elevation (Potthoff et al., 2016;
Liu and Lin, 2022).

BUB1B and CDK1, key regulators of mitosis and cell cycle
progression, likely reflect proliferative vascular responses and
endothelial turnover in hypertension (Bolanos-Garcia and Blundell,
2011). Meanwhile, RPS6, a translational regulator andmTOR target,
suggests increased protein synthesis and stress adaptation. Together,
these hubs point to coordinated cell cycle and biosynthetic activation
as key features of vascular remodeling in hypertensive states.

Transcriptional rewiring involves changes in gene interaction
patterns within co-expression or regulatory networks, irrespective
of their expression levels. A high rewiring score indicates significant
shifts in a gene’s connectivity, which may suggest changes in its
regulatory or functional role due to disease-related stimuli. This
analysis can reveal important changes that traditional methods
might miss (Zipeto et al., 2015; Shepherd et al., 2023; Yan and
Huangfu, 2022). Both increased and decreased connectivity can be
biologically significant. Genes losing centrality may be silenced or
disconnected from key regulatory programs, while those gaining
interactions might be integrating into stress response or disease-
specific pathways.
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In type 2 diabetes, genes like ST18, SNAP91, and SLBP
are more central in the network, showing their importance in
dealing with ongoing metabolic stress. ST18 is a transcription
factor linked to inflammation and may make pancreatic β-cells
more vulnerable under high blood sugar (Henry et al., 2014).
SNAP91 may affect how insulin is recycled (Naudi-Fabra et al.,
2024), while SLBP helps stabilize histone mRNA, supporting cell
growth and changes in the cell’s structure. These changes suggest
that the body tries to adjust metabolic and cellular processes to
protect β-cell function. The involvement of exocrine-associated
genes in endocrine dysfunction supports the hypothesis of crosstalk
between pancreatic compartments, a concept gaining recognition in
diabetes research (Hu et al., 2025).

In contrast, hypertension shows that genes like SLC16A7, SPX,
and PAX8 are less central, indicating they play a reduced role
in the vascular and kidney networks. SLC16A7 reduced role may
impact how energy is used in blood vessels (Kirat and Kato, 2015).
SPX decreased connectivity suggests problems in communication
between nerves and blood vessels (Kumar et al., 2021). PAX8
reflects changes in controlling sodium and fluid levels, which
are important for managing blood pressure (Zivotic et al., 2022).
These trends highlight a loss of coordination among metabolic,
vascular, and kidney systems in hypertension.This supports growing
evidence that vascular dysfunction in HTN arises from the interplay
between impaired energy metabolism, peptide signaling, and renal-
endothelial crosstalk (Cicalese et al., 2021).

Importantly, these rewiring patterns were not evident in the
differential expression analysis alone, highlighting the added value
of topology-based methods in capturing dynamic regulatory events.
Genes that maintain stable expression levels can still undergo
significant changes in their network positioning, acquiring or losing
interactions that alter their functional context.This network-centric
perspective provides a deeper understanding of diseasemechanisms
beyond static transcript abundance (Vignoli et al., 2020).

The construction of a multilayer network integrating
differentially expressed genes, rewired genes, and transcription
factor activity revealed a modular architecture that connects
T2DM and HTN through shared and distinct regulatory hubs
(De Domenico, 2023; Chen and Padi, 2024). Hub genes such
as GNB1, JAK1, and RPS3 dominated the T2DM network
layer, suggesting critical roles in inflammatory signaling, insulin
resistance, and translational control under metabolic stress.
In contrast, MAPK1, BUB1B, and CDK1 were central hubs
in HTN, implicating them in vascular signaling, cell cycle
regulation, and stress-responsive remodeling. Moreover, integrating
regulatory activity scores from master transcriptional analysis
(VIPER) revealed key TFs, including CREB1 and BACH1, as
potential upstream regulators orchestrating the observed network
remodeling. These TFs may mediate both diseases’ convergent
transcriptional responses to inflammation, oxidative stress, and
metabolic imbalance. This multilayer network model advances the
current understanding of the molecular interplay between T2DM
andHTNby distinguishing static interaction patterns fromdynamic
connectivity shifts.

TF activity analysis revealed both disease-specific and shared
regulatory programs. In T2DM, FOXP1, PRDM14, SPI1, SP1,
SMAD4, STAT2, ESR1, CEBPB, USF1, SP3, EGR1 and HNF4A were
significantly activated, in line with their roles in inflammatory

signaling, metabolic regulation, and transcriptional reprogramming
in insulin-responsive tissues (Bočkor et al., 2024; Matsui et al.,
2024). Conversely, ZNF263, E2F4, FOXO3, E2F1, and FOXO1
were repressed, suggesting key pathways controlling cell cycle
arrest, oxidative stress response, and apoptosis may be suppressed
in insulin-resistant tissues, potentially reflecting a compensatory
adaptation to chronic metabolic overload or a shift toward survival
mechanisms under cellular stress. In HTN, a distinct TF activity
profile emerged, with prominent activation of HNF4A, MYC, AR,
and NFIC factors implicated in vascular remodeling, endothelial
proliferation, and transcriptional reprogramming of metabolic and
inflammatory genes (Gao et al., 2017; Norambuena-Soto et al., 2020;
Wan et al., 2022). STAT2, STAT1, IRF1, GATA2 and BACH1 were
also repressed in HTN, reinforcing their possible involvement in
immune regulation, interferon signaling, and antioxidant defense
mechanisms that may be suppressed during chronic vascular stress.
Two TFs,HNF4A, and STAT2, exhibited significant and contrasting
activity profiles across T2DM and HTN. HNF4A was strongly
activated in T2DM and moderately activated in HTN, consistent
with its role in hepatic glucose metabolism and vascular gene
regulation (Thymiakou et al., 2023; Chai et al., 2019). In contrast,
STAT2 was activated in T2DM but markedly repressed in HTN,
suggesting a divergent interferon signaling response (Gothe et al.,
2022). These opposing patterns suggest that while both diseases
share inflammatory components, the nature and direction of
immune signaling may differ, with T2DM engaging antiviral
and metabolic immune pathways, and HTN exhibiting immune
suppression that is potentially linked to chronic vascular stress or
immune exhaustion.

These findings collectively delineate a transcriptional regulatory
landscape shaped by disease-specific and overlapping master
regulators. Identifying HNF4A and STAT2 as standard hubs
across T2DM and HTN underscores their potential as dual-
disease targets in metabolic and vascular pathologies. This
convergence is consistent with integrative analyses of GWAS loci
and transcriptomic networks linking inflammatory signaling and
metabolic regulation (Fernández-Tajes et al., 2019).

The expression analysis of hub genes, the co-expression module
most relevant to them, rewired genes, and transcription factors
across normal tissues provides critical functional context for
their roles in T2DM and HTN. Hub genes from the T2DM
network, such as RNF11 and GCA, exhibited elevated expression
in adipose depots and pancreas (Z-scores >0.5), supporting their
involvement in insulin signaling, vesicle trafficking, and β-cell
responses to metabolic stress (Azmi and Seth, 2005). In contrast,
HTN-associated genes, such as RPS7 and QPCT, showed higher
expression in arterial tissues (aorta and coronary arteries) and
lungs, consistent with their functions in translational regulation and
vascular remodeling. For instance, RPS7 displayed Z-scores >0.9 in
coronary arteries and >1.1 in subcutaneous adipose tissue, while
QPCT was upregulated in adrenal gland tissue, a key endocrine
regulator of blood pressure (Villa et al., 2024).

Furthermore, TFs including HNF4A and STAT2 showed broad
expression across metabolic (liver and pancreas) and cardiovascular
(aorta and left ventricle) tissues. This reinforces their proposed
role as upstream regulators orchestrating shared inflammatory and
metabolic programs across both diseases.

Frontiers in Molecular Biosciences 16 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1621413
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Norzagaray-Valenzuela et al. 10.3389/fmolb.2025.1621413

These findings underscore the relevance of tissue context
in interpreting molecular signatures and highlight the value of
integrating transcriptomic data with expression atlases to identify
therapeutic targets across cardiometabolic diseases.

However, it is important to acknowledge methodological
limitations related to the transcriptomic platform employed in this
study. Microarrays are widely used in transcriptomic analyses, but
they have significant limitations compared tomodern platforms like
RNA-Seq (Lowe et al., 2017). Their lower sensitivity and restricted
dynamic range hinder accurate detection of transcriptswith very low
or high expression levels due to signal saturation and hybridization
noise. Additionally, because they rely on pre-designed probes for
known transcripts, microarrays cannot identify novel genes or
unannotated transcripts, limiting their role in biomarker discovery
and exploration of new regulatory pathways. Nevertheless, they
remain valuable in functional genomics due to the availability of
historical datasets, cost-effectiveness, and reliable performance in
comparative studies (Dopazo, 2006).

This study shows connections between gene expressions and
conditions like type 2 diabetes and hypertension. However, these
connections are only correlative. They do not prove that changes in
gene expression cause these diseases. Instead, the changes are likely
responses to diseases. To truly understand the role of certain genes
in T2DMandHTN,we needmore experiments, such as RT-qPCRor
gene knockdown.Until we conduct these studies, we cannot confirm
that the hub genes or transcription factors we identified directly
cause the onset or progression of these diseases. Therefore, future
research is necessary to understand the importance of these genes
and their networks in heart and metabolic health.

5 Conclusion

Our multiscale network analysis reveals shared transcriptional
and regulatory mechanisms between type 2 diabetes mellitus
and hypertension, centered on inflammation, oxidative stress, and
metabolic dysregulation. Key hub genes and transcription factors,
includingHNF4A and STAT2, emerged as potential standard drivers,
suggesting the existence of central nodes mediating the comorbidity
between these diseases. These findings open new avenues for
developing shared biomarkers and targeted therapeutic strategies
for convergentmolecular processes. Further experimental validation
will be essential to confirm their clinical relevance and translational
potential.
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