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Alzheimer’s disease (AD) is the most prevalent cause of dementia worldwide,
disproportionately affecting women and lacking effective disease-modifying
therapies. While traditional approaches have focused on amyloid β (Aβ)
plaques and tau pathology, emerging evidence highlights the role of
metabolic dysfunction, mitochondrial impairment, and hormonal signaling in
the pathogenesis of AD. Estrogens exert neuroprotective effects by modulating
synaptic plasticity, enhancing mitochondrial bioenergetics, and reducing
oxidative stress and inflammation. Similarly, glucagon-like peptide-1 receptor
agonists (GLP-1RAs), initially developed for the treatment of type 2 diabetes,
have demonstrated promising cognitive benefits, potentially mediated through
improved insulin signaling, neuronal survival, and reduced β-amyloid (Aβ) and
tau burden. This review explores the converging mechanisms through which
estrogens and GLP-1RAs may act synergistically to prevent or delay the onset
of AD. We examine the influence of sex differences in mitochondrial dynamics,
estrogen receptor distribution, and GLP-1 signaling pathways, particularly within
central nervous system regions implicated in AD. Preclinical studies using GLP-
1-estrogen conjugates have shown enhanced metabolic and neuroprotective
outcomes, accompanied by reduced systemic hormonal exposure, suggesting
a viable therapeutic strategy. As the global prevalence of AD continues to rise,
especially among postmenopausal women, dual agonism targeting estrogen
and GLP-1 receptors may represent a novel, physiologically informed approach
to prevention and intervention. Ongoing clinical trials and future research
must consider sex-specific factors, receptor polymorphisms, and brain-region
selectivity to optimize the translational potential of this combined strategy.

KEYWORDS

Alzheimerr′s disease, GLP-1 agonists, estrogens, prevention, metabolism

1 Introduction

Alzheimer’s disease (AD) represents the most prevalent form of dementia
to date. According to the World Health Organization (WHO), over 55 million
people worldwide live with some form of dementia, with approximately
10 million new cases reported each year. The prevalence of this condition
varies by gender, with an estimated 8.1% of women and 5.4% of men over
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the age of 65 experiencing some form of dementia, nearly 70% of
which corresponds to Alzheimer’s disease (AD) (Livingston et al.,
2020; Montero-Odasso et al., 2020; OMS, 2021).

The etiology of AD is complex and multifactorial, characterized
by progressive neuronal aging, synaptic loss, and dysfunction
of neural networks (Knopman et al., 2021). Pathologically, AD
is marked by the extracellular accumulation of β-amyloid (Aβ)
plaques and intracellular neurofibrillary tangles composed of
hyperphosphorylated tau (τ) protein (Shi et al., 2020). Aβ plaques
originate from the aberrant processing of amyloid precursor
protein (APP), mediated sequentially by β- and γ-secretases.
This cleavage generates the membrane-bound C-terminal fragment
CTF99, which is subsequently processed by γ-secretase to release
Aβ peptides of 40–42 amino acids (Neha and Parvez, 2023).
The aggregation of these peptides into oligomers and their
subsequent deposition as extracellular senile plaques is facilitated by
interactions with apolipoproteins and proteoglycans, contributing
to the synaptic dysfunction and neurodegeneration that define
the disease (Arjmand et al., 2024).

Additionally, the hyperphosphorylation of tau protein disrupts
its binding to neuronal microtubules. Hyperphosphorylated
tau induces the formation of insoluble protein aggregates and,
ultimately, intracellular tangles. This abnormal accumulation
interferes with axonal transport and promotes axonal
degeneration (Kinney et al., 2018).

Therapeutic efforts aimed at neutralizing these pathological
processes have thus far yielded limited results. Monoclonal
antibodies targeting Aβ, such as aducanumab, lecanemab, and
donanemab, have not demonstrated clinically meaningful efficacy
(Terao and Kodama, 2024). Antibodies directed against tau
protein, including semorinemab, tilavonemab, and gosuranemab,
have shown unpromising preliminary results and fail to improve
global patient functionality (Florian et al., 2023; Monteiro et al.,
2023). In general, these treatments only modestly reduce
disease progression, and their clinical application remains
limited due to a lack of effectiveness (Livingston et al., 2020;
Walsh et al., 2021; van Dyck et al., 2023).

For these reasons, recent investigations have expanded the focus
to additional diseasemechanisms.Notably, alterations in cholinergic
signaling, neuroinflammation involving microglial activation, and
calcium dysregulation have emerged as relevant contributors to
AD pathogenesis. Moreover, increasing attention has been given
to metabolic dysfunction, particularly in glucose metabolism
and the bioenergetic role of estrogens, as potentially essential
triggers of AD. Recent research has highlighted the therapeutic
potential of glucagon-like peptide-1 receptor agonists (GLP-1RAs)
beyond glucose metabolism, particularly in neurodegenerative
diseases such as Alzheimer’s disease (AD). These agents have
demonstrated neuroprotective effects, including the reduction of
oxidative stress, enhancement of mitochondrial function, and
attenuation of neuroinflammation. Furthermore, emerging evidence
suggests that GLP-1RAs may modulate central insulin signaling and
synaptic plasticity, pathways that are increasingly implicated in the
pathophysiology of AD. In this context, exploring the mechanistic
relationship between GLP-1 receptor activation and mitochondrial
function in the brain may provide valuable insights into novel
therapeutic strategies for AD (Liang et al., 2024).

This review highlights estrogens’ role in the central
nervous system, with emphasis on their regulatory functions in
mitochondrial metabolism. It also explores their potential as a
pharmacological target for AD prevention.

2 Neuronal metabolism and
Alzheimer’s disease

Neurons are subject to systemic metabolic regulatory processes
involving carbohydrates and lipids. Metabolic disturbances that
elevate cardiovascular risk also affect the cerebral microvasculature,
contributing to cognitive decline and the development of dementia,
including AD. Impaired cerebral perfusion compromises white
matter integrity, deteriorates neural connectivity, and facilitates
neurodegenerative processes (Kellar and Craft, 2020; Hernandez-
Rodriguez et al., 2022).

The metabolic events most closely associated with AD
include insulin resistance, hyperglycemia, lipid dysregulation,
mitochondrial dysfunction, and oxidative stress. All these factors
promote disease progression. While the exact mechanisms remain
incompletely understood, type 2 diabetes mellitus (T2DM) is
strongly linked to the pathogenesis of AD (Mittal and Katare, 2016).
Both conditions share overlapping pathological mechanisms that
impair cognitive function, eventually leading to Aβ deposition
in the brain. Furthermore, chronic inflammation, oxidative
stress, dyslipidemia, mitochondrial dysfunction, impaired insulin
signaling, and synaptic dysfunction are all common features of
T2DM and AD (Kapogiannis et al., 2019; Bernabe-Ortiz and
Carrillo-Larco, 2022).

At the molecular level, central or peripheral insulin resistance
can result from reduced insulin receptor expression, decreased
binding affinity, and disruption of downstream signaling pathways
(Tatar et al., 2003). Insulin exerts its cellular effects through
two primary pathways: the mitogen-activated protein kinase
(MAPK) pathway and the phosphatidylinositol 3-kinase (PI3K)-
Akt pathway, the latter of which plays a crucial role in cell
growth and survival. Insulin receptor activation triggers the
recruitment of insulin receptor substrate (IRS) proteins, which,
when phosphorylated on tyrosine residues, activate PI3K-Akt
signaling. In contrast, serine phosphorylation of IRS proteins
inhibits this signaling cascade (Craft and Watson, 2004).

The ratio of serine-phosphorylated IRS to total IRS is widely
used as a biomarker of insulin resistance in both brain andperipheral
tissues. An elevated ratio reflects greater insulin resistance. Studies
have demonstrated cerebral insulin resistance in AD patients using
ex vivo insulin stimulation and measurement of this ratio in
brain tissue (Bassil et al., 2014).

Consequently, impaired insulin sensitivity reduces PI3K-Akt
activation and downstream phosphorylation of proteins essential
for neuronal survival, such as glycogen synthase kinase-3β (GSK3β).
This promotes tau hyperphosphorylation and neurofibrillary
tangle formation, hallmark features of AD. Additionally, defective
insulin signaling contributes to neuronal energy deficits by
decreasing glucose uptake and reducing the expression and
function of glucose transporters GLUT3 and GLUT4 in the central
nervous system (Schulingkamp et al., 2000).
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Moreover, reduced cerebral vascularization observed in
T2DM leads to chronic hypoxia, which is implicated in
the progression of AD. Decreased oxygen supply disrupts
neuronal energy homeostasis, induces oxidative stress, and
compromises mitochondrial function (Neth and Craft, 2017).
Under hypoxic conditions, cells activate adaptive responses
mediated by hypoxia-inducible factor-1 (HIF-1), which regulates
genes involved in angiogenesis, cell survival, and glucose
metabolism. However, sustained HIF-1 activation in the context
of neurodegeneration may exacerbate inflammation and promote
Aβ production, thereby worsening synaptic dysfunction and
neuronal damage (Zhang et al., 2007).

In addition to impaired glucose metabolism, extensive clinical,
preclinical, and epidemiological data have linked lipid metabolic
dysfunction to AD risk. Lipids are essential for numerous brain
processes, including synaptic regulation, myelin sheath formation,
and energy storage. Given the brain’s high lipid content, numerous
studies have identified early alterations in specific lipid classes inAD,
such as decreased plasmalogens, sulfatides, and elevated ceramides
(Han, 2005). Lipids also modulate APP trafficking and processing,
influencing neurotoxic Aβ peptide formation (Penke et al., 2018).

Apolipoprotein E (APOE) is a key lipid-transporting protein
primarily involved in cholesterol and phospholipid metabolism
in both peripheral tissues and the central nervous system. It
exists in three major isoforms in humans -APOE2, APOE3,
and APOE4- which differ by single amino acid substitutions
and exhibit distinct structural and functional properties. While
APOE3 is the most prevalent and considered the “neutral”
isoform, APOE2 is often associated with protective effects against
neurodegeneration. In contrast, APOE4 has been consistently linked
to increased risk and earlier onset of Alzheimer’s disease (AD),
possibly due to its detrimental influence on lipid homeostasis,
mitochondrial integrity, and neuroinflammatory pathways
(Volgman et al., 2024; Guo et al., 2025).

Apolipoprotein E4 (ApoE4) is a major genetic risk factor that
connects lipid metabolism disorders with AD. Recent studies have
highlighted lipid droplet accumulation in ApoE4 carriers, especially
within phagocytic cells. In these microglia, lipid overload impairs
phagocytosis and increases inflammatory responses, contributing to
neurodegeneration. Lipid dyshomeostasis interacts with several AD
pathogenic pathways, including amyloidogenesis, mitochondrial
dysfunction, oxidative stress, neuroinflammation, and myelin
degeneration (Yin, 2023; Jackson et al., 2024).

The human APOE gene encodes the 34-kDa lipid-binding
protein ApoE, whichmediates lipid transport throughout peripheral
organs and between brain cells (Hauser et al., 2011). Compared to
the common ε3 isoform, the ε4 variant is the strongest genetic risk
factor for late-onset AD (Houlden et al., 1998), while the ε2 isoform
significantly reduces risk (Reiman et al., 2020). Each ApoE4 allele
increases AD risk three- to fourfold and lowers the age of onset by
approximately 8 years (Neu et al., 2017).

ApoE4 also exerts pathological effects by disrupting lipid
concentration homeostasis. ApoE4 carriers exhibit higher plasma
levels of total cholesterol and triglycerides, but reduced HDL
cholesterol, while ApoE2 carriers show the opposite pattern
(Notkola et al., 1998;Huang andMahley, 2014). Additionally, ApoE4
enhances cytosolic phospholipase A2 (cPLA2) activity, increasing
arachidonic acid production. ApoE4-associated pathology can be

mitigated by DHA-rich (docosahexaenoic acid) diets but worsens
with high-cholesterol intake (Wang et al., 2005; Grimm et al., 2017).

Cholesterol, sphingolipids, and polyunsaturated fatty acids are
particularly implicated in AD pathogenesis. Understanding lipid
alterations may lead to therapeutic strategies targeting lipids, which
could vary depending on disease stage, ApoE status, and metabolic
profiles [28]. Other genes related to lipid metabolism and AD
risk include TREM2, APOJ, PICALM, ABCA1, and ABCA7, all
involved in lipid transport. Additionally, SREBP-2, a key regulator
of cholesterol metabolism, has also been genetically associated with
increasedAD risk (Zhao et al., 2015; Kober andBrett, 2017; Shimano
and Sato, 2017; Yin, 2023).

3 The mitochondrial theory of
Alzheimer’s disease

Mitochondria possess their own genome, which enables the
synthesis of proteins essential for their function. This genome
encodes 13 subunits of the complexes that constitute the electron
transport chain (ETC), while the remaining subunits, along with
other mitochondrial proteins, are encoded by nuclear DNA. Due
to the absence of histones, mitochondrial DNA (mtDNA) is
particularly vulnerable to oxidative stress. Moreover, its limited
capacity for repair and recombination increases the accumulation
of mutations that compromise mitochondrial function (Elson et al.,
2006). Structural alterations in mtDNA are exacerbated in patients
with AD, with microscopic analyses revealing abnormally small
mitochondria and disrupted cristae, particularly in the mammillary
bodies and certain hypothalamic regions (Baloyannis et al., 2015;
Baloyannis et al., 2016). Several studies have also reported
a higher incidence of oxidized nucleotides and an increased
number of mutations in the coding regions of mtDNA in
AD patients (Wang et al., 2005).

Although little is known about the epigenetic regulation
of mtDNA, significant differences in mtDNA methylation
have been observed between individuals with AD and
healthy controls (Stoccoro et al., 2017). Mitochondrial function
depends on a dynamic equilibrium between fusion and fission.
Mitochondrial fusion allows the merging of individual organelles,
promoting the exchange of materials and dilution of damaged
components, thusmaintainingmitochondrial efficiency. In contrast,
fission generates smaller mitochondria, facilitating the selective
removal of dysfunctional organelles through mitophagy and
ensuring proper mitochondrial distribution according to cellular
energy demands.

In AD, increased mitochondrial fission leads to excessive
fragmentation. Postmortem studies have shown elevated expression
of mitochondrial fission proteins in the prefrontal cortex of AD
patients (Manczak et al., 2011). Several experimental studies
have demonstrated that mitochondrial dysfunction is an early
and central feature in the pathogenesis AD. In rodent models,
intracerebroventricular (icv) administration of streptozotocin
(STZ) has been widely used to mimic sporadic AD by inducing
brain insulin resistance, oxidative stress, and cognitive decline,
without affecting peripheral glycemic control. Unlike systemic
administration, which causes selective pancreatic β-cell destruction
via GLUT2 transporters and is used to model type 1 diabetes
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mellitus (T1DM), icv-STZ acts directly on neurons in the central
nervous system (CNS). Notably, STZ-treated animals exhibit
alterations in mitochondrial dynamics, including increased
expression of fission proteins such as Drp1 and Fis1, accompanied
by decreased levels of fusion-related proteins like Mfn2 and
OPA1, particularly in the hippocampus and in the prefrontal
cortex (Paidi et al., 2015; Joshi et al., 2018). Transgenic AD
models such as APP/PS1 mice, which overexpress mutant
human amyloid precursor protein and presenilin-1, have also
revealed mitochondrial fragmentation and respiratory deficits,
reinforcing the hypothesis that impaired mitochondrial dynamics
and mitophagy are mechanistically linked to AD pathology. These
findings suggest that mitochondrial fragmentation and bioenergetic
failure contribute to neurodegeneration and cognitive impairment
in this model.

Given that mitochondrial bioenergetic alterations appear early
in the disease course, they are considered potential primary
events underlying synaptic failure, neuroinflammation, oxidative
stress, and neuronal loss (Joshi et al., 2018). Mitochondria
are central to ATP production via oxidative phosphorylation
and regulate calcium homeostasis, cell growth, and metabolism
(Du et al., 2010; Peggion et al., 2024).

One hallmark of AD is the impaired removal of damaged
mitochondria due to defective autophagy. A particular alteration
involves lysosomal dysfunction, which hinders the degradation
of structurally damaged mitochondria, leading to cellular toxicity
(McGill Percy et al., 2025). Furthermore,mitochondrial impairment
can, in turn, disrupt endolysosomal processes, as endolysosomal
biogenesis may be modulated in response to mitochondrial
damage (Fernandez-Mosquera et al., 2017). Studies have shown
that mitochondrial dysfunction alters lysosomal function and
morphology, either through exposure to mitochondrial toxins or
deletion of proteins such as apoptosis-inducing factor (AIF), PTEN-
induced kinase 1 (PINK1), or the ubiquitin ligase Parkin (Demers-
Lamarche et al., 2016).

In AD, dysfunctional mitochondria accumulate and exacerbate
lysosomal degradation bottlenecks. Affected neurons exhibit
mitochondrial membrane potential loss, resulting in microtubule
network disintegration and impaired autophagic flux toward
lysosomes (Silva et al., 2017; Brewer et al., 2020). Aβ-
induced oxidative stress further disrupts mitochondrial mobility
and function (Brewer et al., 2020), establishing a negative feedback
loop wherein Aβ exacerbates mitochondrial dysfunction, which in
turn promotes further Aβ accumulation.

Mitochondrial dysfunction also contributes to tau pathology by
increasing τ oligomer levels and shifting the monomer–oligomer
balance toward toxic oligomers (Weidling et al., 2020).
During oxidative phosphorylation, mitochondria generate
and scavenge reactive oxygen species (ROS). However,
persistent ROS overproduction exceeding antioxidant capacity
leads to damage of cellular macromolecules, including
phospholipids, proteins, and nucleic acids, compromising
cellular function (Lane C. A. et al., 2018).

Elevated ROS levels can also result from Aβ modifications; for
instance, the Met35 residue of Aβ, along with upregulated oxidases
such as NADPH oxidases and monoamine oxidase B (MAO-B),
increase ROS production. Moreover, Aβ interactions with excess

metals-such as Fe2+, Cu2+, and Zn2+-further elevate oxidative stress
(Lane D. J. R. et al., 2018; Bai et al., 2022).

4 Role of estrogens in neuronal
function

Estrogens are steroid hormones primarily produced in the
ovaries of women of reproductive age. Their primary biological
activity is mediated by receptors belonging to the nuclear receptor
superfamily, which function as transcription factors that modulate
gene expression. After crossing the plasma membrane-facilitated
by their steroid structure-estrogens bind to cytoplasmic receptors,
which translocate to the nucleus and interact with DNA to regulate
transcription (Lonard and O'Malley, 2006).

Estrogen receptors exist in two main isoforms, ERα and
ERβ, both widely distributed throughout the body (Matthews and
Gustafsson, 2003). These receptors form dimers and bind to specific
DNA sequences known as estrogen response elements (EREs) in
the promoter regions of target genes. Notably, approximately one-
third of estrogen-regulated genes lack canonical EREs, suggesting
alternative regulatory mechanisms (Johri et al., 2024; Peralta and
Lizcano, 2024). Molecular and biochemical studies have shown that
estrogens may also exert transcriptional effects via protein–protein
interactions with other transcription factors (Aranda and Pascual,
2001; Marino et al., 2006; Mauvais-Jarvis et al., 2013).

Many estrogenic effects are not genomic and occur more rapidly
than expected from transcriptional activation. The discovery of the
G-protein–coupled estrogen receptor (GPER1) in the early 2000s
provided insight into these non-genomicmechanisms (Nilsson et al.,
2011). GPER1mediates rapid signaling cascades involving adenylate
cyclase, cyclic AMP, protein kinase A, and other second messengers.
GPER1 mRNA and protein have been detected in blood vessels and
cardiac tissue across various species (Haas et al., 2009). Expression
in adipocytes, hepatocytes, and myocytes is more variable, and the
precise in vivo role of GPER1 remains under debate (Meyer et al.,
2011; Hewitt et al., 2017; Luo and Liu, 2020).

Ligand-independent actions of estrogen receptors (ERs) have
also been described, particularly in the uterus, where ERα can
be activated by growth factor pathways (e.g., IGF-1), leading to
receptor recruitment to chromatin in the absence of estrogen
binding (Meyer et al., 2011; Hewitt et al., 2017) (see Figure 1).

Estrogens play a multifaceted role in the central nervous system
(CNS), influencing synaptic plasticity, neuronal development, and
survival in newly formed spinal synapses, as well as promoting
neural stem cell proliferation and maintaining the integrity of
the blood-brain barrier (McCullough et al., 2003; Mukai et al.,
2010; Frick et al., 2015; Na et al., 2015). Both neuron- and
astrocyte-derived estrogens are believed to contribute significantly
to neuroprotection and cognitive function through interactionswith
ERs expressed in multiple brain regions (McEwen and Woolley,
1994; McEwen et al., 1995; Azcoitia et al., 2001).

Preclinical and human studies have shown that ERα is
abundantly expressed in the hypothalamus, particularly in the
preoptic area (POA), ventromedial nuclei (VMN), amygdala, and
periventricular nuclei (PV). ERβ exhibits a similar distribution,
maintaining high expression in the POA, bed nucleus of the stria
terminalis (BNST), PV, and supraoptic nuclei (Laflamme et al.,
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FIGURE 1
Estrogen signaling mechanisms. (A) Genomic signaling: Estrogens cross the plasma membrane and bind to the cytoplasm’s estrogen receptors (ERs).
The estrogen-ER complex moves into the nucleus, forming homodimer and/or heterodimer complexes. These complexes bind to specific
estrogen-sensitive elements (EREs) in DNA or recruit transcription factors. (B) Non-genomic signaling: Estrogens can perform a non-genomic effect by
binding to their receptors on the plasma membrane. Additionally, some ERb are in the plasma membrane that induce the signaling cascade.
Non-genomic information is established by extracellular signaling that stimulates second messengers in the cytoplasm; Responses are mediated by
specific G-protein-coupled (GPER) receptors or estrogen receptors on the membrane. Finally, non-genomic action can indirectly increase gene
expression.

1998; Azcoitia et al., 2001; Kruijver et al., 2003; Mitra et al.,
2003; Kelly and Ronnekleiv, 2012). ERβ is also expressed in the
hippocampus, amygdala, and cerebral cortex, where it participates
in adult neurogenesis, synaptic plasticity, and new neuron
formation (Weiser et al., 2008).

Postnatal expression of ERβ tends to decline, but it remains
present in microglia, oligodendrocytes, and specific brain regions,
such as the hypothalamus and amygdala (Vargas et al., 2016). ERβ
signaling has been associated with several potential therapeutic
benefits in CNS disorders: (1) it enhances GABAergic over
glutamatergic signaling, exerting anticonvulsant effects (Veliskova
and Desantis, 2013); (2) promotes oligodendrocyte maturation
and myelination (Vargas et al., 2016; Karim et al., 2018); (3)
modulates microglial activation and reduces inflammation (Valdes-
Sustaita et al., 2021); and (4) supports serotonergic neurons,
providing antidepressant effects (Suzuki et al., 2006). In both rodent
models and postmenopausal women, ERβ ligands have shown
beneficial effects on anxiety, depression, epilepsy, and multiple
sclerosis (Warner and Gustafsson, 2015; Jellinger, 2024). However,
clinical outcomes in humans have been inconsistent, potentially
due to alternative splicing variants of ERβ, which may alter
therapeutic responsiveness (Kim et al., 2018; Ulhaq and Garcia,
2021). Some natural compounds with estrogenic effects, such as
polyphenols, have a beneficial impact on neurons by mitigating

oxidative stress, inflammation, and apoptosis. However, their direct
effects on the progression of Alzheimer’s disease have not been
established (Abdelsalam et al., 2023).

Estrogens can also be synthesized de novo in the brain by
neurons and astrocytes, starting from cholesterol (Blakemore
and Naftolin, 2016). Moreover, local steroid metabolism in
the brain can produce estrogens via aromatase, the enzyme
responsible for converting androgens into estrogens (Gillies and
McArthur, 2010; Brann et al., 2022). Aromatase expression varies
across brain regions, with high levels found in the cerebellum,
amygdala, hippocampus, and white matter. While sex differences
in expression are not apparent in these regions, elevated aromatase
levels have been reported in the hypothalamus—specifically in
the POA and VMN—of male animals, suggesting regulation
by circulating testosterone, which is subsequently converted to
estradiol (E2) (Gillies and McArthur, 2010).

5 Estrogen effects on mitochondrial
function

It is also important to consider the impact of estrogens
on mitochondrial function. Mitochondria play a critical role
in regulating cell survival and apoptosis, and the respiratory
chain is a principal structural and functional target of
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FIGURE 2
Los estrógenos pueden inducir la expresión de genes que aumentan la función mitocondrial, como SIRT3, PGC-1α, NRF1. ERβ increases NRF-1 which,
in turn, increases TFAM that stimulates mtDNA transcription. Estradiol can increase glucose utilization by cells and ETC activity and prevent ROS
production. E2 regulate many enzymes in the TCA. E2, estradiol; mtDNA, mitochondrial DNA; SIRT3, Sirtuin 3; PGC-1α, Peroxisome
proliferator-activated receptor gamma, coactivator-1 alpha; NRF1, Nuclear respiratory factor −1; ERβ, Estrogen receptor beta; TFAM, Transcription
factor A, mitochondrial; TCA, tricarboxylic acid cycle; ETC, Electron transport chain.

estrogenic activity. Estrogens exert protective effects against
oxidative stress by promoting the translocation of specific
cytosolic enzymes into mitochondria, thereby shielding
mitochondrial DNA (mtDNA) from free radical-induced damage
(Leclere et al., 2013; Arjmand et al., 2024).

The distribution of ERα and ERβ in patients with AD
varies considerably across brain regions. In women with AD,
increased ERα expression has been observed in certain hippocampal
areas, whereas levels are lower in hypothalamic nuclei and
the medial mammillary nucleus (Hestiantoro and Swaab, 2004).
However, overall, ERα has not been consistently implicated in AD
pathogenesis. In contrast, growing evidence supports a protective
role for ERβ, which appears to influence both disease risk and
progression. In animal models, ERβ overexpression has been
associated with reduced Aβ plaque deposition. Human studies have
reported decreased ERβ levels in the frontal cortex of women with
AD (Long et al., 2012; Tian et al., 2013).

The presence of estrogen receptors within mitochondria was
initially identified in MCF-7 breast cancer cell lines and later
confirmed in brain cells. Estrogens may influence mitochondrial
function through both direct and indirect mechanisms. Specifically,
ERβ upregulates nuclear respiratory factor 1 (NRF-1), which
in turn stimulates the expression of mitochondrial biogenesis
regulators, including mitochondrial transcription factor A
(TFAM), and multiple subunits of the mitochondrial respiratory
chain (MRC). These factors contribute to the regulation
of mitochondrial gene expression and the maintenance of
mitochondrial homeostasis (see Figure 2).

A decline in estradiol (E2) levels leads to significant reductions
inmitochondrial function, resulting in oxidative stress and impaired
cerebral bioenergetics. Preclinical studies have shown increased
hippocampal Aβ accumulation under E2-deficient conditions. This

phenotype is characterized by reducedmaximal respiratory capacity,
diminished basal oxygen consumption, and lower extracellular
acidification rates—indicative of decreased lactate production and
glycolytic activity (Irwin et al., 2012).

Estrogens regulate the expression and activity of key enzymes
in glycolysis, including hexokinase, phosphoglucoisomerase,
phosphofructokinase, aldolase, glyceraldehyde-3-phosphate
dehydrogenase, phosphoglycerate kinase, 6-phosphofructo-2-
kinase, and fructose 2,6-bisphosphatase (Lizcano and Guzman,
2014). Estrogens also enhance the expression of glucose transporters
GLUT3 and GLUT4 in the brain (Stirone et al., 2005; Razmara et al.,
2008). In addition, estrogenic regulation extends to enzymes
of the tricarboxylic acid (TCA) cycle, such as citrate synthase,
mitochondrial aconitase 2, isocitrate dehydrogenase, and succinate
dehydrogenase (Nilsen et al., 2007; Alaynick, 2008; Lizcano, 2022).

6 Do GLP-1 receptor agonists
influence mitochondria and
Alzheimer’s disease?

Type 2 diabetes mellitus (T2DM) and AD share metabolic
abnormalities, including insulin resistance, mitochondrial
dysfunction, inflammation, and increased oxidative stress. Incretin-
based antidiabetic therapies, such as glucagon-like peptide-1
receptor agonists (GLP-1RAs), may offer benefits for individuals at
risk of neurodegeneration due to their central effects on appetite
and satiety regulation via the hypothalamus (Correia et al.,
2012). Beyond glucose lowering and weight reduction, GLP-
1RAs have shown positive effects on cognitive dysfunction in
T2DM patients (Reich and Holscher, 2022).
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While GLP-1 is primarily synthesized and secreted by intestinal
L-cells in response to nutrient intake, it is also produced in the
brain, particularly in the nucleus of the solitary tract in the
brainstem. Following the ingestion of carbohydrates and fats, GLP-
1 is released and exerts multiple physiological effects essential
for maintaining glucose homeostasis (Bullock et al., 1996). It
promotes glucose-dependent insulin secretion from pancreatic
β-cells, ensuring proportional release relative to glycemia, and
concurrently inhibits glucagon secretion from α-cells, reducing
hepatic glucose production. GLP-1 also delays gastric emptying,
therebymoderating postprandial glycemic excursions, and enhances
satiety via central nervous system (CNS) signaling, contributing to
appetite suppression and weight loss (Drucker, 2006).

Metabolically, GLP-1 acts through G protein-coupled receptors
to improve insulin sensitivity in muscle and adipose tissues
while enhancing β-cell function by promoting proliferation and
inhibiting apoptosis (see Figure 3). Additionally, GLP-1RAs exert
cardiovascular benefits, including improved endothelial function,
reduced blood pressure, and cardioprotection. Clinically, GLP-
1RAs—such as exenatide, liraglutide, dulaglutide, semaglutide, and
tirzepatide—are used to manage T2DM, mimicking endogenous
GLP-1 activity. These agents not only enhance glycemic control
but also promote satiety and delay gastric emptying, making them
effective in treating obesity (Drucker et al., 1987; Kreymann et al.,
1987; Mojsov et al., 1987; Turton et al., 1996; Baggio and
Drucker, 2007). The effects of GLP-1 on different tissues have
demonstrated an enhanced insulin effect on skeletal muscle through
SESN2-mediated autophagy and the attenuation of IRS1 serine
phosphorylation (Tian et al., 2023). In obese mouse models,
liraglutide improved insulin sensitivity in visceral adipose tissue,
which was associated with reduced endoplasmic reticulum stress
and increased Akt phosphorylation following insulin stimulation
(Jiang et al., 2018). However, regarding the proliferation of insulin-
producing pancreatic beta cells, there is no consensus regarding
the ability to stimulate cell proliferation. Although GLP-1 receptor
agonists have been shown to induce β-cell proliferation in rodent
models, particularly in young animals, this effect has not been
consistently replicated in human islets, where β-cell replication
capacity ismarkedly limited.Thus, in humans, GLP-1 action appears
to be predominantly functional and anti-apoptotic rather than
proliferative (Dai et al., 2017; Buteau et al., 2003).

Both peripherally secreted GLP-1 and pharmacologic GLP-
1RAs can cross the blood–brain barrier (BBB) or interact with
circumventricular organs, suggesting that peripheral administration
is sufficient to reach CNS targets. Central administration of GLP-
1RAs reduces food intake, likely via GLP-1 receptor–expressing
regions in the hypothalamus and brainstem (Kastin and Akerstrom,
2003), many of which are also estrogen targets (Kanoski et al., 2011),
supporting a potential interaction between these systems (Miller,
2012). Substantial evidence suggests that GLP-1R signaling in the
central nervous system (CNS) modulates reward-driven behavior,
including food cravings and substance addiction, underscoring the
broader implications of these peptides in neurobehavioral regulation
(Shirazi et al., 2013; Richard et al., 2015).

Recent investigations have explored the therapeutic potential
of GLP-1 in cardiovascular disease, metabolic-associated fatty
liver disease, Parkinson’s disease, and AD. These multifaceted
mechanisms underscore the relevance of GLP-1 in managing

metabolic, cardiovascular, and neurodegenerative disorders
(Cukierman-Yaffe et al., 2020; Arredouani, 2025).

The cloning and characterization of the GLP-1 receptor (GLP-
1R) marked a key milestone in understanding GLP-1’s mechanisms
of action. Pharmacological and molecular biology studies identified
GLP-1R as a high-affinity receptor expressed across diverse tissues.
As a member of the G protein–coupled receptor (GPCR) family,
GLP-1R features a large extracellular domain responsible for ligand
recognition and binding (Drucker and Holst, 2023).

The widespread expression of GLP-1R suggests that GLP-
1 plays pleiotropic physiological roles beyond insulin secretion.
In the CNS, GLP-1 has demonstrated neuroprotective effects,
particularly in the hippocampus and cerebral cortex—key
regions for memory and learning. These benefits include
reducing neuroinflammation, improving neuronal energy
homeostasis, and limiting neurodegenerative progression
(Adams et al., 2018; Chang et al., 2018).

Potentialmechanisms bywhichGLP-1RAs enhance cognition in
T2DM patients include attenuation of oxidative stress, suppression
of neuroinflammation, inhibition of apoptosis, reduction or
prevention of Aβ accumulation, and mitigation of tau aggregation
(Yaribeygi et al., 2021). Several preclinical studies have confirmed
the ability of GLP-1RAs to reduce Aβ and tau deposits. Although
findings in human studies have been less consistent, a pilot
study reported reduced cerebrospinal fluid levels of Aβ42, and
a large-scale clinical trial is currently underway to assess the
efficacy of a GLP-1RA in early-stage AD patients (Crook and
Edison, 2024; Cummings et al., 2025).

These pharmacological advances have reshaped the
management of metabolic diseases, improving glycemic control,
weight reduction, and cardiovascular outcomes. As research
continues, GLP-1’s therapeutic potential in AD remains a
promising frontier (Gejl et al., 2016; Du et al., 2022). Phase II
clinical trial results with liraglutide support this hypothesis. In
a multicenter UK study involving 204 participants randomized
to liraglutide or placebo, cognitive decline in the liraglutide
group was 18% slower than in the placebo group after 1 year
of treatment (Femminella et al., 2019). Liraglutide may reduce
neuroinflammation, decrease insulin resistance, improve neuronal
communication, and limit Aβ and tau pathology.

Currently, the first randomized, double-blind phase III trial
is underway to evaluate the effects of oral Semaglutide in AD
prevention and progression. The EVOKE and EVOKE + trials
are supported by robust preclinical evidence demonstrating GLP-
1RA benefits in neurodegeneration and cognitive enhancement
in T2DM patients (Akimoto et al., 2020; Cukierman-
Yaffe et al., 2020; Norgaard et al., 2022).

7 Could dual agonism of estrogen and
GLP-1 influence Alzheimer’s disease
prevention?

The social and clinical impact of GLP-1RA therapy is reflected
in the growing number of individuals using these medications.
Currently, one in eight U.S. adults over the age of 18 reports
having used a GLP-1 analogue (Harris, 2024). Additionally, novel
combination therapies—such as Tirzepatide, which combines
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FIGURE 3
GLP-1RA activation initiates a cascade of signaling events through Gαs coupling, leading to the activation of adenylyl cyclase (AC) and subsequent
production of cAMP. Protein kinase A (PKA) acts as a central mediator of downstream effects, modulating various ion channels. These channels jointly
regulate membrane depolarization and calcium (Ca2+) influx. Parallel signaling through Akt activates ERK 1/2, which differentiates cellular responses:
nuclear translocation of ERK 1/2 leads to transcriptional activation via mTOR and CREB, while cytoplasmic activation targets specific partners. The
PI3K/AKT pathway regulates cell survival and metabolism. Calcium-dependent activation of CaMKII modulates these processes, emphasizing the
complexity and versatility of GLP-1R signaling. Activation of PKA increase Memory, BDNF reduce oxidative stress and synapse loss. GSK-3β reduce tau
phosphorylation, Akt reduce cytotoxity and apoptosis. PI3K, phosphoinositide 3-kinase; PKA, Protein kinase A; AkT, protein kinase B; ERK, Extracellular
Signal-regulated Kinase; mTOR, mammalian target of rapamycin; GSK-3β, glycogen synthase kinase-3β; CREB, cAMP response element-binding
protein; BDNF, Brain-derived neurotrophic factor; CaMKII, Ca2+/calmodulin-dependent protein kinase II.

a GLP-1 analogue with glucose-dependent insulinotropic
polypeptide (GIP)-are rapidly gaining traction, and it is expected
that new formulations will continue to emerge, incorporating
peptides capable of modulating metabolism and thermogenesis
(Jastreboff et al., 2022; Rosenstock et al., 2023; Loomba et al., 2024).

Despite their widespread use, certain aspects of GLP-1 function,
particularly its actions in the central nervous system (CNS),
remain poorly understood—an important gap given the growing
number of patients receiving these treatments. A key limitation
of preclinical research, including GLP-1RA studies, is that most
experiments are conducted in male animals. This introduces
variability in pharmacodynamics, as GLP-1RA penetration into
specific brain regions may differ based on sex, compound
properties, and age (Borchers and Skibicka, 2025).

This raises important questions for ongoing trials such
as EVOKE, which may uncover sex-specific differences and
justify subsequent investigations of GLP-1 analogues in female
populations. Moreover, the combined effect of GLP-1RAs
with other molecules may vary depending on sex. Known
polymorphisms and splice variants in ERβ could influence

the efficacy of estrogen therapy in AD and may also impact
GLP-1RA activity. Exploring these potential interactions could
enhance our understanding of brain-targeted pharmacotherapy
(Holscher, 2018; Jastreboff et al., 2022).

Sex differences in the incidence and progression of aging-
related neurodegenerative diseases, particularly Alzheimer’s disease,
are well established and globally consistent. In the United States,
although men have higher age-adjusted mortality rates for 8
of the 10 leading causes of death, AD is a notable exception:
women experience higher prevalence and AD-specific mortality,
making it the only major cause of death more common in women
(Budreviciute et al., 2020). This trend extends beyond the U.S., with
higher AD burden reported among women in Europe, the United
Kingdom, Japan, and other regions (Benziger et al., 2016).

Today, nearly two-thirds of patients receiving medical care for
AD are women. This statistic reflects both a higher age-adjusted
incidence of AD and longer life expectancy among women (Report,
2024). However, this female predominance appears paradoxical
given the greater prevalence of classical AD risk factors-such
as cardiovascular and metabolic diseases-among men. One
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explanation involves survival bias: men with high AD risk may
die earlier from cardiovascular events, precluding the clinical
manifestation of dementia. Sociocultural factors, such as unequal
access to education in the 20th century (a known protective factor),
may also play a role.

From a biological standpoint, several hypotheses have been
proposed to explain female susceptibility to AD. Mitochondrial
dysfunction plays a central role in AD pathophysiology, but
sex differences in mitochondrial function remain poorly defined.
Experimental models have shown that male and female animals
differ in mitochondrial substrate utilization under stress conditions,
though findings vary by context. For instance, in 3xTg-AD
mice, sex-specific alterations in brain bioenergetics have been
observed: females showed impaired complex I activity in synaptic
cortical mitochondria, while non-synaptic mitochondria exhibited
enhanced complex II–mediated respiration (Stojakovic et al., 2021).

In developmental neurobiology, Arnold proposed three
categories of sex differentiation mechanisms: (1) organizational
differences driven by fetal hormonal exposure; (2) activational
differences induced by the adult hormonal environment; and
(3) genetic differences linked to chromosomal content (Arnold,
2022). Studies using transgenic hAPP mouse models have shown
that XY animals exhibit more severe clinical courses and earlier
mortality compared to XX animals, independent of gonadal sex.
This suggests a protective role of the second X chromosome
(Davis et al., 2020), reinforcing the need to consider both
genetic and hormonal factors when designing targeted therapies,
including those involving hormonal agonists and estrogens for AD
prevention (Lopez-Lee et al., 2024).

The beneficial effects of estrogens and GLP-1 agonists observed
in other metabolic diseases raise the possibility that their combined
use could also prevent or delay the onset of Alzheimer’s disease. A
dual GLP-1-estrogen conjugate (GE) designed to selectively deliver
estrogen to GLP-1R + cells induced substantial weight loss in
mice without evidence of systemic estrogenic effects, as assessed
by uterine weight and growth of estrogen-dependent breast cancer
xenografts (Finan et al., 2012). Genetic studies in mice suggested
that these effects were mediated by CNS GLP-1Rs, with increased
expression of POMC and leptin receptors in the arcuate nucleus
(Kanoski et al., 2011). Selective estrogen delivery to β-cells via a
GE conjugate improved viability in both human and murine β-cells,
again without systemic estrogen exposure (Sachs et al., 2020).

In another preclinical study, GE demonstrated superior
metabolic effects compared to GLP-1-GIP or GLP-1-GIP-glucagon
multiagonist therapies in models of polycystic ovary syndrome
(PCOS), a condition frequently associated with obesity and insulin
resistance. Chronic GE administration in female mice with PCOS
significantly improved metabolic profiles, outperforming individual
agonists. In the PWA model, GE suppressed hypothalamic
expression of BCAP31, a pro-apoptotic protein, and promoted
proteins associated with autophagy-critical processes for neuronal
function and energy homeostasis. Altered CAMKII expression,
which regulates orexigenic neuropeptides like NPY, also
reflected compensatory adaptation to weight loss (Sanchez-
Garrido et al., 2024).

Previous studies in obese rodents and diet-induced obesity
models have shown that GE’s primary site of action is
central, particularly within hypothalamic regions such as the

supramammillary nucleus, lateral hypothalamus, and the nucleus
of the solitary tract (Tiano et al., 2015). This therapeutic strategy-
combining GLP-1 and estrogen receptor activation—was developed
to enhance metabolic benefits while limiting systemic estrogen
exposure, thereby minimizing reproductive and oncogenic risks.
Data confirm that this approach enables tissue-specific action
in GLP–1R–expressing regions, avoiding adverse effects in
reproductive organs (Vogel et al., 2016).

Proteomic analyses of the hypothalamus following GE
treatment revealed downregulation of inflammation-, apoptosis-,
and immune-related proteins, and upregulation of pathways
related to autophagy, vesicular transport, and intracellular
signaling. These changes may help restore central energy
homeostasis and explain the marked weight loss observed even
at moderate GE doses (Schwenk et al., 2015).

8 Conclusion

Alzheimer’s disease remains a complex neurodegenerative
disorder with multifactorial origins, including amyloid
accumulation, tau pathology, insulin resistance, mitochondrial
dysfunction, and chronic inflammation. The evidence reviewed
herein underscores the critical role of estrogens in maintaining
neuronal homeostasis, particularly through their effects on
mitochondrial efficiency, antioxidant defense, and synaptic
resilience. In parallel, GLP-1 receptor agonists have demonstrated
neuroprotective actions beyond their establishedmetabolic benefits,
offering a promising avenue for cognitive preservation in at-risk
individuals.

The convergence of estrogen and GLP-1 signaling on metabolic
and neuroinflammatory pathways supports the rationale for dual-
targeted interventions. Preclinical models using GLP-1–estrogen
conjugates have shown superior outcomes in metabolic regulation,
neuronal viability, and hypothalamic signaling, with reduced
systemic estrogenic effects. These findings open a new frontier
in personalized neuroendocrine therapy, particularly relevant for
postmenopausal women, who bear a disproportionate burden of AD
and are often underrepresented in clinical trials.

Future research must prioritize the inclusion of sex as a
biological variable, explore differential receptor expression and
function, and validate the safety and efficacy of dual agonist
strategies in humans. As large-scale trials like EVOKE and EVOKE
+ unfold, integrating insights from estrogen biology could enhance
the impact of GLP-1–based therapies in neurodegenerative disease.
Ultimately, a deeper understanding of hormone–metabolism
interactions may unlock novel, sex-specific strategies for the
prevention of Alzheimer’s disease.
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