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Introduction: Uterine corpus endometrial carcinoma (UCEC) is a prevalent
malignancy of the female reproductive system with increasing incidence,
necessitating the identification of molecular mechanisms and biomarkers.
While coiled-coil domain-containing protein 138 (CCDC138) is implicated in
ciliopathies and cancer, its role in UCEC remains underexplored.

Methods: We integrated transcriptomic and proteomic data from the Cancer
Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis Consortium (CPTAC),
and Genotype-Tissue Expression (GTEx). Bioinformatics approaches, including
weighted gene co-expression network analysis (WGCNA), singlesample gene
set enrichment analysis (ssGSEA), machine learning, and survival analysis, were
employed to assess CCDC138 expression and its functional relevance in UCEC.
In vitro experiments involved CCDC138 knockdown, followed by CCK8 and EdU
assays and qPCR for mTOR, S6K1, and p21 expression.

Results: CCDC138 was significantly overexpressed at mRNA and protein levels
in UCEC and correlated with poor overall survival. ssGSEA revealed associations
with oncogenic pathways, including mTOR, p53/Rb, and MYC/MYCN. High
CCDC138 expression was linked to reduced stromal and immune scores,
indicating altered immune cell infiltration and tumor microenvironment. Drug
sensitivity analysis showed increased responsiveness to chemotherapeutic
agents like 5-fluorouracil and alpelisib in high-CCDC138 tumors. Protein-
protein interaction analysis identified interactions with DCTN2 and CEP72.
In vitro, CCDC138 knockdown reduced cell proliferation and downregulated
mTOR, S6K1, and p21 mRNA expression.

Discussion: These findings underscore CCDC138’s role in UCEC progression,
immune modulation, and therapeutic responsiveness, highlighting its potential
as a prognostic biomarker and therapeutic target. Its shared relevance in UCEC
and ciliopathies suggests broader implications for targeted therapies.
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1 Introduction

Uterine corpus endometrial carcinoma (UCEC) is one of the
most prevalent gynecologic malignancies, with a steadily increasing
incidence worldwide, particularly in developed countries (Lortet-
Tieulent et al., 2018; Huang et al., 2022). While early-stage UCEC
is often curable through surgery and adjuvant therapy, treatment
options for advanced or recurrent cases remain limited, leading to
poor overall survival. Understanding the molecular mechanisms of
UCEC and identifying robust biomarkers and therapeutic targets are
essential for improving outcomes and advancing precisionmedicine.

Advancements in high-throughput omics technologies
and bioinformatics have provided new insights into cancer
biology. Integrative tools, such as weighted gene co-expression
network analysis (WGCNA), single-sample gene set enrichment
analysis (ssGSEA), and machine learning algorithms, have
facilitated the discovery of key regulatory genes and oncogenic
pathways. In UCEC, increasing evidence links various forms of
programmed cell death—including disulfidptosis, cuproptosis, and
ferroptosis—with tumorigenesis, immune modulation, and drug
sensitivity (Shi et al., 2018).

Cilia-related genes play a vital role in cancer development
and progression. Coiled-coil domain-containing protein 138
(CCDC138), known for its role in ciliogenesis, has recently gained
attention due to its involvement in cancer (Drew et al., 2017;
Anurag et al., 2024). Ciliopathies, inherited disorders caused
by structural or functional defects in cilia—organelles critical
for cell signaling, differentiation, and homeostasis—have been
associated with disrupted cellular sensing, signal transduction,
and tissue homeostasis. Although aberrant ciliary signaling has
been implicated in oncogenesis, the role of CCDC138 in UCEC
and its link to ciliopathy-related mechanisms remain poorly
understood (Pontén et al., 2009).

To address this, we conducted a comprehensive analysis
integrating transcriptomic and proteomic data from The Cancer
Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis
Consortium (CPTAC) databases. Using WGCNA and machine
learning, we identified UCEC-associated gene modules and
prioritized candidate genes. We focused on CCDC138 to examine
its expression patterns, prognostic value, association with oncogenic
and cilia-related pathways, immune cell infiltration, tumor
microenvironment (TME) regulation, and drug sensitivity. To
validate these findings, we conducted in vitro experiments in
Ishikawa cells, assessing the effects of CCDC138 knockdown on
cell proliferation and oncogenic pathway gene expression (mTOR,
S6K1, p21). These findings position CCDC138 as a potential shared
target in UCEC and ciliopathies, offering novel insights into its
contribution to tumor progression and opportunities for precision
oncology based on ciliopathy-related mechanisms.

2 Materials and methods

2.1 Data acquisition and preprocessing

RNA sequencing data for uterine UCEC were obtained from
the TCGA-UCEC cohort within TCGAdatabase (https://portal.gdc.
cancer.gov/). Raw count data were converted into transcripts per

million (TPM) to construct the expressionmatrix. Following quality
control and filtering, 584 samples (including tumor and adjacent
normal tissues) and 60,616 genes were retained for downstream
analyses. To normalize expression levels and reduce data skewness,
the TPM matrix was log-transformed using the formula log2 (TPM
+1) (Zhang et al., 2020). Genes with low-expression (mean TPM <1
across all samples) were excluded, yielding a final dataset suitable
for subsequent analyses. To validate transcriptomic findings at the
protein level, clinical and proteomic data for UCEC were retrieved
from the CPTAC via the UALCAN portal (http://ualcan.path.uab.
edu/) (Chandrashekar et al., 2017; Chandrashekar et al., 2022). In
addition, transcriptomic data from the Genotype-Tissue Expression
(GTEx) database were integrated to compare CCDC138 expression
across 33 cancer types (Coorens et al., 2025).

2.2 ssGSEA

ssGSEAwas performedusing theGSVApackage (version 1.38.2)
in R (version 4.2.1) to quantify the enrichment levels of specific
biological pathways (Hänzelmann et al., 2013). Gene sets related to
disulfidptosis, cuproptosis, and ferroptosis were curated from the
Molecular Signature Database (MSigDB, version 7.5.1). Enrichment
scores were computed for each sample, and hierarchical clustering
was conducted to identify differential enrichment patterns between
tumor and normal tissues. Heatmaps were generated using the
pheatmap package (version 1.0.12) for visualization. Statistical
significance was assessed using the Wilcoxon rank-sum test, with p
< 0.05 considered significant.

2.3 WGCNA

To investigate gene co-expression patterns in TCGA-
UCEC data, WGCNA was performed using the WGCNA
package in R (Langfelder and Horvath, 2008). The log-transformed
TPM expression matrix was used as input after filtering for genes
with a mean TPM >1. Sample outliers were removed based on
a WGCNA of 137,000. An appropriate soft-thresholding power
(β) was determined using the pickSoftThreshold function to
approximate a scale-free network topology. Gene modules were
identified using the dynamic tree cut algorithm (cutreeDynamic),
with the minimum module size set to 100. Module similarity was
assessed through eigengene clustering, and correlations between
gene modules and clinical traits were evaluated via correlation
analysis. The blue module, which showed the strongest correlation
with tumor traits, was selected for further analysis. Heatmaps and
scatter plots were generated for data visualization.

2.4 Differentially expressed gene (DEG)
analysis

DEGs between tumor and normal samples were identified
based on the gene expression data derived from WGCNA. Gene
expression values were normalized using the trimmed mean of M-
values method and converted to counts per million. Genes with
low expression were filtered out before analysis (Robinson and
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FIGURE 1
Molecular and genomic analyses of UCEC samples (A) Heatmap of ssGSEA enrichment scores for disulfidptosis, cuproptosis, and ferroptosis pathways,
illustrating distinct separation between tumor and normal samples, red indicates higher enrichment scores, blue indicates lower scores. (B) WGCNA
module-trait correlation heatmap, highlighting the blue module’s significant association with tumor traits. (C) Volcano plot of differentially expressed
genes (DEGs) in the blue module, with significant DEGs (|log2FC| > 1, FDR <0.05) annotated. (D) Venn diagram depicting five overlapping feature genes
(MAP6, CCDC138, DNAAF3, STX2, FABP6) identified by five machine learning algorithms (GBM, RF, SVM-RFE, Lasso, XGBoost).

Oshlack, 2010). For each gene, fold change and false discovery
rate (FDR) were computed, and those meeting the criteria of
|log2 fold change (log2FC)| > 1 and FDR <0.05 were considered
significantly differentially expressed (Zhao et al., 2021). Volcano
plots were generated to visualize differential expression patterns,
with significantly upregulated and downregulated genes annotated.
Boxplots were used to compare the expression levels of selected
DEGs between tumor and normal groups. The resulting DEG
expressionmatrix was retained for subsequent analyses. DEG results
were saved in text format, and the resulting DEG expression matrix
was retained for downstream analyses.

2.5 Feature gene selection using machine
learning

To identify key feature genes among the 46 DEGs, five
machine learning algorithms were employed: gradient boosting
machine (GBM), random forest (RF), support vector machine-
recursive feature elimination (SVM-RFE), least absolute
shrinkage and selection operator (Lasso), and extreme gradient

boosting (XGBoost) (Sanz et al., 2018; Tibshirani, 1996)
(Becker et al., 2023; Chen and Guestrin, 2016). These analyses were
conducted using the caret (version 6.0–90), randomForest (version
4.6–14), e1071 (version 1.7–9), glmnet (version 4.1–2), andXGBoost
(version 1.5.0.2) packages in R. Each algorithm ranked genes based
on their contribution to classification accuracy. Venn diagrams were
generated using theVennDiagrampackage (version 1.7.1) to identify
overlapping feature genes across allmethods.The expression profiles
of the consensus genes were retained for downstream analyses.

2.6 Survival analysis

Overall survival (OS) analysis was performed using the survival
(version 3.2–13) and survminer (version 0.4.9) packages in R. The
prognosticrelevanceofcandidategeneswasassessedviaKaplan–Meier
survivalcurves,withstatistical significancedeterminedbythe log-rank
test (p<0.05). ForCCDC138, patientsweredivided intohigh and low-
expression groups based on the median expression level. Differential
expression of CCDC138 between tumor and normal tissues was
validated using boxplots generated with the ggplot2 package.
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FIGURE 2
Survival and expression analysis of CCDC138 in UCEC (A) Kaplan–Meier survival curve showing poorer overall survival (OS) in the CCDC138
high-expression group (p = 0.003). (B) Boxplot validates significantly higher CCDC138 expression in UCEC tumor tissues than in normal tissues. (C) Bar
plot of CCDC138 transcriptional levels across 33 cancer types from TCGA and GTEx databases, with significant upregulation in UCEC.

2.7 CCDC138 expression and subcellular
localization

The transcriptional expression of CCDC138 across
33 cancer types was analyzed by integrating data from
TCGA and GTEx (Tang et al., 2017). Boxplots were generated using
the ggplot2 package in R to visualize differential expression. Protein
level expression in UCEC was evaluated using CPTAC data assessed
via the UALCAN portal. Expression differences across tumor

stages, histological grades, and molecular subtypes were compared,
with statistical significance determined using the Wilcoxon rank-
sum test (p < 0.05). Subcellular localization of CCDC138 was
assessed using immunofluorescence data from The Human Protein
Atlas (https://www.proteinatlas.org/). Staining patterns in A-
431 (epidermoid carcinoma), U-251MG (glioma), and U-2 OS
(osteosarcoma) cell lines were examined to evaluate co-localization
with cellular components, including nuclei, endoplasmic reticulum,
and microtubules.

Frontiers in Molecular Biosciences 04 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1622496
https://www.proteinatlas.org/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Wang et al. 10.3389/fmolb.2025.1622496

FIGURE 3
CCDC138 protein expression in UCEC (A) Boxplot of CCDC138 protein expression in UCEC (100 samples) versus normal samples (31 samples) from the
CPTAC dataset, showing significant upregulation in UCEC. (B) Boxplot of CCDC138 protein expression across different UCEC stages, indicating
significant upregulation in early stages. (C) Boxplot of CCDC138 protein expression across UCEC grades, showing significant differences. (D) Boxplot of
CCDC138 protein expression across UCEC histological subtypes, highlighting subtype-specific upregulation.

2.8 Signaling pathway analysis

To elucidate signaling pathways associated with CCDC138,
proteomic data from the CPTAC-UCEC cohort (99 tumor
samples and 31 adjacent normal samples) were analyzed. Samples
were grouped based on pathway activity status (“pathway-
altered” vs. “other”), and differences in CDKN2A protein
expression were assessed using the Wilcoxon rank-sum test.
Key pathways analyzed included Hippo, NRF2, RTK, WNT,
chromatin remodeling,mTOR, p53/Rb, andMYC/MYCN(Sanchez-
Vega et al., 2018; Dou et al., 2020). Boxplots were generated
using the ggplot2 package in R to visualize pathway-specific
alterations.

2.9 Immune cell infiltration and TME
analysis

The association between CCDC138 expression and immune cell
infiltration was assessed using the CIBERSORT algorithm (version
1.03) and immune profiling data from the TIMER database (https://
cistrome.shinyapps.io/timer/) (Newman et al., 2015; Li et al.,
2016). Pearson correlation coefficients were computed for 68
immune cell types, with significance set at p < 0.05. Correlation

patterns were visualized using bubble plots generated with
ggplot2. TME components, including stromal and immune
scores, were estimated using the ESTIMATE algorithm in R
(version 1.0.13). Tumor purity was also calculated. Differences
in TME metrics between high and low CCDC138 expression
groups were evaluated using the Wilcoxon rank-sum test
(p < 0.05).

2.10 Drug sensitivity analysis

To assess potential drug responses in TCGA-UCEC samples,
TPM expression data were integrated with drug sensitivity
profiles from the Genomics of Drug Sensitivity in Cancer
database (Yang et al., 2013). Normal tissue samples and genes
with low expression were excluded. The half-maximal inhibitory
concentration (IC50) values for various therapeutic agents were
predicted using a drug response modeling approach (Geeleher et al.,
2014). Samples were categorized into high and low CCDC138
expression groups based on the median expression level.
IC50 values were then compared between the two groups.
Drugs showing significantly increased sensitivity in the high-
expression groups (p < 0.001 and logFC <0) were visualized using
boxplots.
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FIGURE 4
Subcellular localization and signaling pathway analysis of CCDC138 (A) Immunofluorescence images showing CCDC138 subcellular distribution in
A-431, U-251MG, and U-2 OS cell lines, co-localized with DAPI-stained nuclei, endoplasmic reticulum, and microtubules. (B–J) Boxplots comparing
CCDC138 protein expression in CPTAC-UCEC samples (99 cases) with pathway-altered versus other groups, relative to 31 normal adjacent samples,
revealing associations with Hippo, NRF2, RTK, WNT, chromatin modifiers, mTOR, p53/Rb, and MYC/MYCN pathways.

2.11 Protein-protein interaction (PPI)
network analysis

The PPI network of CCDC138 was constructed using the
GeneMANIA database (https://genemania.org/). Interacting

proteins were identified along with their interaction types (e.g.,
physical, genetic) and interaction strengths. The network was
visualized in Cytoscape software (version 3.9.1), with nodes
representing proteins and edges denoting the type and strength
of the interactions (Shannon et al., 2003).
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FIGURE 5
Immune microenvironment and TME analysis of CCDC138 (A) Bubble plot illustrating correlations between CCDC138 expression and 68 immune cell
types, highlighting significant positive (e.g., plasmacytoid dendritic cells) and negative (e.g., NKT cells) correlations. (B) A scatter plot from the TIMER
database shows negative correlations between CCDC138 expression and immune cell activity. (C) Kaplan–Meier curve demonstrating significant
associations between CCDC138 expression and UCEC patient survival. (D) Bar plot of CCDC138 mutation frequency across TCGA cancers, with the
highest frequency in UCEC. (E) Boxplot showing significantly lower stromal and immune scores in the CCDC138 high-expression group. (F) Boxplot
indicating higher tumor purity in the CCDC138 high-expression group.

2.12 Cell culture and siRNA transfection

Ishikawa cells were cultured in RPMI-1640 medium (Hyclone,
Cat.No.SH30809.01B) supplemented with 10% fetal bovine serum
(FBS, Hyclone, Cat.No.SH30087.01) and penicillin-streptomycin
(Hyclone, Cat.No.SH30010) at 37°C with 5% CO2. Cells were
seeded at 5 × 104 cells/well in 6-well plates. At 40% confluence,
cells were transfected with siRNA targeting CCDC138 (si-
CCDC138: ctcgactatgacatcaacattgadTdT) or negative control
(si-NC: tcccgcgagacaacaccacctcadTdT) using Lipofectamine™
RNAiMAX (Invitrogen) in Opti-MEM. After 4–6 h, the transfection
medium was replaced with complete medium. Transfection
efficiency was assessed via RT-PCR after 24 h.

2.13 Cell proliferation assays

For CCK-8 assay, cells (1 × 104/well) were seeded in 96-well
plates. At 0, 24, 48, and 72 h, CellTiter96 AQueous One Solution
(Promega, Cat.No.G3582) was added (10 µL/100 µL medium),
incubated for 4 h, and absorbance measured at 490 nm using
a microplate reader (Thermo Fisher Scientific, Multiscan MK3).
Proliferation and inhibition rates were calculated.

For EdU assay, log-phase cells were seeded in 96-well plates,
incubatedwithEdU(10 µM) for 2 h, fixedwith 4%paraformaldehyde,
and stained using an EdU kit. Nuclei were counterstained with
DAPI. Images were captured using a Leica DMI6000B fluorescence
microscope, and EdU-positive cells were quantified.

2.14 RT-PCR analysis

Total RNA was extracted using TRIzol (Invitrogen), treated
with DNase I (Promega), and reverse-transcribed. RT-PCR was
performed using SYBR Green qPCR SuperMix (Invitrogen) on
an ABI PRISM®7500 system with primers for CCDC138, S6K1,
mTOR, p21, andGAPDH (internal control). Relative expressionwas
calculated using the 2−ΔΔCT method.

2.15 Statistical analysis

All statistical analyses were performed in R (version 4.2.1),
with parallel processing enabled via the future.apply and doParallel
packages. Continuous variables were analyzed using the Wilcoxon
rank-sum test or t-test, as appropriate. Survival analysis was

Frontiers in Molecular Biosciences 07 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1622496
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Wang et al. 10.3389/fmolb.2025.1622496

TABLE 1 Protein-protein interactions of CCDC138.

Entity 1 Entity 2 Weight Network group

PMS1 CCDC138 0.025178 Co-expression

ZBED5 CCDC138 0.026149 Co-expression

HEATR1 CCDC138 0.025981 Co-expression

ZNF45 CCDC138 0.025609 Co-expression

RARS2 CCDC138 0.024698 Co-expression

NLGN4X CCDC138 0.03203 Co-expression

EPHB6 CCDC138 0.029218 Co-expression

PLD5 CCDC138 0.028058 Co-expression

SSX2IP CCDC138 0.006313 Co-expression

PMS1 CCDC138 0.013945 Co-expression

PAK5 CCDC138 0.002528 Genetic Interactions

ANKRD26 CCDC138 0.09482 Physical Interactions

CEP120 CCDC138 0.090043 Physical Interactions

OFD1 CCDC138 0.071572 Physical Interactions

CEP72 CCDC138 0.0588 Physical Interactions

CEP131 CCDC138 0.053746 Physical Interactions

IKBKG CCDC138 0.133863 Physical Interactions

SSX2IP CCDC138 0.125896 Physical Interactions

CEP290 CCDC138 0.071661 Physical Interactions

DCTN2 CCDC138 0.20366 Physical Interactions

PAK5 CCDC138 0.168674 Physical Interactions

STX12 CCDC138 0.092275 Physical Interactions

DCTN2 CCDC138 0.254645 Physical Interactions

STX12 CCDC138 0.104813 Physical Interactions

HYOU1 CCDC138 0.311397 Physical Interactions

conducted using the log-rank test. For multiple comparisons, p-
values were adjusted using the FDR method. Unless otherwise
specified, p-values <0.05 were considered statistically significant.

3 Results

3.1 Data preprocessing and expression
matrix construction

RNA sequencing data from the TCGA-UCEC cohort were
preprocessed to generate normalized expression matrices. After

quality control and filtering, 584 samples and 60,616 genes
were retained. Expression values were converted to the TPM
matrix and subsequently log-transformed using the formula log2
(TPM +1). Genes with low-expression (mean TPM <1) were
excluded, establishing a high-quality dataset for downstream
analyses.

3.2 ssGSEA and clustering

ssGSEA was performed to calculate enrichment scores
for disulfidptosis, cuproptosis, and ferroptosis pathways. The
resulting heatmap (Figure 1A) demonstrated distinct separation
between tumor and normal samples, indicating pronounced
molecular differences.

3.3 WGCNA

WGCNA identified six distinct co-expression modules using
a soft-thresholding power of β = 16 (R2 > 0.9). After removing
outliers, 584 samples were retained for analysis. The blue
module, containing 1,800 genes, showed the strongest correlation
with tumor traits and was selected for subsequent analysis
(Figure 1B).

3.4 Differential expression analysis

A total of 46 DEGs were identified within the blue module
(|log2FC| > 1, FDR <0.05), comprising 28 upregulated and 18
downregulated genes. Significant DEGs were visualized using
a volcano plot (Figure 1C), and expression differences were
further validated through boxplots (Supplementary Material,
containing boxplots of DEG expression). The resulting
DEG expression matrix was retained for downstream
analyses.

3.5 Machine learning-based feature
selection

Five machine learning algorithms were applied to identify
feature genes, yielding 19 from GBM, 18 from RF, eight from
SVM-RFE, 20 from Lasso, and 16 from XGBoost. A Venn diagram
revealed five overlapping genes—MAP6, CCDC138, DNAAF3,
STX2, and FABP6 —which were selected for downstream analyses
based on their consensus across models expression profiles
(Figure 1D).

3.6 Survival analysis

Survival analysis identified four genes significantly associated
with OS (p < 0.05). Among them, high expression of CCDC138
was significantly correlated with poorer OS (p = 0.003, Figure 2A).
Differential expression analysis further revealed that CCDC138
expression was significantly elevated in UCEC tumor tissues
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FIGURE 6
Protein-protein interaction network of CCDC138 Network diagram generated from the GeneMania database, illustrating interactions between
CCDC138 and proteins, including DCTN2, SSX2IP, CEP72, CEP290, CEP131, CEP120, OFD1, STX12, PMS1, PAK5, IKBKG, ANKRD26, RARS2, HYOU1,
ZNF45, HEATR1, PLD5, ZBED5, EPHB6, and NLGN4X, with interaction types and strengths detailed in Table 1.

compared to that in normal tissues (Figure 2B), highlighting its
potential as a prognostic biomarker.

3.7 CCDC138 expression analysis

To assess the biomarker potential of CCDC138 in UCEC,
its transcriptional expression was analyzed across 33 cancer
types using data from TCGA and GTEx databases (Figure 2C).
CCDC138 was significantly upregulated in several cancers,
including UCEC. Protein-level analysis using the CPTAC dataset
via the UALCAN portal further confirmed elevated CCDC138

expression in UCEC tumor tissues compared to that in normal
controls (31 normal vs. 100 tumor samples, Figure 3A). Stratified
analysis revealed significantly higher protein expression across
different UCEC stages (Figure 3B), histological grades (Figure 3C),
and subtypes (Figure 3D), with marked elevation in early-stage
disease and specific subtypes.

3.8 Subcellular localization of CCDC138

Immunofluorescence analysis of A-431 (epidermoid
carcinoma), U-251MG (glioma), and U-2 OS (osteosarcoma)
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TABLE 2 RT-PCR detection of siRNA knockdown efficiency.

Sample-
gene

Repeat 1 Ct
value

Repeat 2 Ct
value

Repeat 2 Ct
value

Ct average ΔCT ΔΔCT 2−ΔΔCT

Cell-CCDC138 25.19 25.06 25.11 25.12 ± 0.07 14.95 ± 0.07 0.00 ± 0.07 1.00 ± 0.05

si-NC-CCDC138 25.04 25.05 25.13 25.07 ± 0.05 14.84 ± 0.05 −0.10 ± 0.05 1.07 ± 0.04

si-CCDC138-
CCDC138

28.01 28.06 27.86 27.98 ± 0.10 17.80 ± 0.10 2.85 ± 0.10 0.14 ± 0.01

Cell-GAPDH 10.21 10.17 10.14 10.17 ± 0.04 —— —— ——

si-NC-GAPDH 10.3 10.27 10.11 10.23 ± 0.10 —— —— ——

si-CCDC138-
GAPDH

10.24 10.21 10.1 10.18 ± 0.07 —— —— ——

FIGURE 7
In vitro validation of CCDC138 function in Ishikawa cells (A) RT-PCR analysis showing significant reduction in CCDC138 mRNA expression in
si-CCDC138 cells (p < 0.05). (B) CCK-8 assay results showing reduced proliferation in si-CCDC138 cells compared to that in the control and si-NC
groups. (C) Proliferation rates calculated from CCK-8 assay data, highlighting lower proliferation in si-CCDC138 cells at 24 h, 48 h, and 72 h (p < 0.05 at
48 h and 72 h). (D) Inhibition rates from CCK-8 assay, showing increasing inhibition over time in si-CCDC138 cells (p < 0.05 at 48 h and 72 h). (E–G)
RT-PCR analysis of S6K1, mTOR, and p21 mRNA expression, showing significant downregulation post-CCDC138 knockdown (p < 0.05). (H) EdU assay
quantification showing reduced proliferation in si-CCDC138 cells (p < 0.05). (I–K) Fluorescence microscopy images of EdU assays for control, si-NC,
and si-CCDC138 groups, respectively, visually confirming fewer proliferating cells in the si-CCDC138 group.

cell lines, as reported in the THPA, was used to investigate the
subcellular distribution of CCDC138 (Figure 4A). CCDC138
exhibited co-localizationwithDAPI-stained nuclei andwas detected
in both the nuclear and cytoplasmic compartments in all examined
cell lines.

3.9 Signaling pathway analysis

To investigate the involvement of CCDC138 in UCEC
pathogenesis, proteomic data from the CPTAC-UCEC cohort (99
tumor samples and 31 adjacent normal tissues) were analyzed.
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TABLE 3 CCK-8 assay for cell proliferation.

Time Sample OD1 OD2 OD3 Mean Std

0 h

Cell 0.313 0.346 0.322 0.327 0.014

si-NC 0.328 0.301 0.343 0.324 0.017

si-
CCDC138

0.346 0.317 0.312 0.325 0.015

24 h

Cell 0.531 0.513 0.554 0.533 0.017

si-NC 0.529 0.502 0.551 0.527 0.020

si-
CCDC138

0.506 0.479 0.511 0.499 0.014

48 h

Cell 0.677 0.676 0.671 0.675 0.003

si-NC 0.643 0.695 0.687 0.675 0.023

si-
CCDC138

0.601 0.603 0.595 0.600 0.003

72 h

Cell 0.816 0.813 0.827 0.819 0.006

si-NC 0.826 0.833 0.820 0.826 0.005

si-
CCDC138

0.651 0.691 0.708 0.683 0.024

TABLE 4 Proliferation rate calculation.

Sample 0 h 24 h 48 h 72 h

Cell 0.00% 62.90% 106.32% 150.36%

si-NC 0.00% 62.76% 108.33% 155.04%

si-CCDC138 0.00% 53.44% 84.51% 110.26%

TABLE 5 Inhibition rate calculation.

Sample 0 h 24 h 48 h 72 h

Cell 0.00% 0.00% 0.00% 0.00%

si-NC 0.92% 1.00% −0.05% −0.94%

si-CCDC138 0.61% 6.38% 11.12% 16.53%

Samples were categorized into “pathway-altered” and “other”
groups for key oncogenic pathways. Comparative analysis revealed
significantly elevated CCDC138 protein expression in samples
with alterations in the Hippo, NRF2, RTK, WNT, and chromatin
remodeling pathways. In addition, CCDC138 expression was
strongly associated with dysregulations of the mTOR, p53/Rb, and
MYC/MYCN pathways (Figures 4B–J).

3.10 Immune cell infiltration correlation

CCDC138 expression was significantly correlated with 68
immune cell types (p < 0.05), including a strong positive correlation
with plasmacytoid dendritic cells (r = 0.484, p = 1.20e-33) and a
negative correlation with natural killer T (NKT) cells (r = −0.378,
p = 4.43e-20). A bubble plot illustrated the overall correlation
patterns (Figure 5A), suggesting a potential role for CCDC138
in modulating the immune microenvironment. Further analysis
using the TIMER database confirmed negative associations between
CCDC138 expression and immune cell infiltration (Figure 5B),
significant links with OS in patients with UCEC (Figure 5C),
and the highest CCDC138 mutation frequency among TCGA
cancer types (Figure 5D).

3.11 TME analysis

The high CCDC138 expression group exhibited significantly
lower stromal scores (p = 3.92e-07) and immune scores (p = 1.41e-
08; Figure 5E), with higher tumor purity (p = 1.88e-10; Figure 5F),
indicating that CCDC138 may influence the TME and contribute to
tumor progression.

3.12 Drug sensitivity prediction

Drug sensitivity analysis identified 81 compounds with
significantly lower IC50 values in the high CCDC138 expression
group (p < 0.001, logFC <0), indicating enhanced drug
sensitivity. Boxplots for agents, such as 5-fluorouracil, acetalax,
alpelisib, AZ6102, and AZD3759 (Supplementary Material,
containing drug sensitivity boxplots) highlighted the potential
of CCDC138 as a predictive biomarker for treatment
response.

3.13 PPI network

PPI analysis using the GeneMania database identified
multiple CCDC138-interacting partners, including DCTN2,
SSX2IP, CEP72, CEP290, CEP131, CEP120, OFD1, STX12,
PMS1, PAK5, IKBKG, ANKRD26, RARS2, HYOU1, ZNF45,
HEATR1, PLD5, ZBED5, EPHB6, and NLGN4X. Interaction
types and strengths are summarized in Table 1 and illustrated in
a network diagram (Figure 6).

3.14 In Vitro validation of CCDC138
function

To validate the bioinformatics findings, in vitro experiments
were conducted using Ishikawa cells, a well-established
UCEC model.

3.14.1 siRNA knockdown efficiency
RT-PCR confirmed effective CCDC138 knockdown in Ishikawa

cells transfected with si-CCDC138 (2−ΔΔCT = 0.14 ± 0.01) compared
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TABLE 6 EdU assay cell counts.

Sample DAPI EdU EDU/DAPI Mean Std

Cell 80 85 93 42 45 51 52.50% 52.94% 54.84% 53.43% 1.01%

si-NC 86 87 91 43 47 48 50.00% 54.02% 52.75% 52.26% 1.68%

si-CCDC138 87 87 90 21 20 22 24.14% 22.99% 24.44% 23.86% 0.63%

TABLE 7 RT-PCR analysis of gene expression.

Sample-gene Repeat 1 Ct
value

Repeat 2 Ct
value

Repeat 3 Ct
value

Ct average DCT DDCT 2−DDCT

Cell-S6K1 25.73 25.62 25.73 25.69 ± 0.06 14.39 ± 0.06 0.00 ± 0.06 1.00 ± 0.05

si-NC-S6K1 25.78 25.67 25.63 25.69 ± 0.08 14.40 ± 0.08 0.00 ± 0.08 1.00 ± 0.05

si-CCDC138-S6K1 26.81 26.97 26.62 26.80 ± 0.18 15.50 ± 0.18 1.11 ± 0.18 0.46 ± 0.06

Cell-mTOR 26.17 26.19 26.15 26.17 ± 0.02 14.87 ± 0.02 0.00 ± 0.02 1.00 ± 0.01

si-NC-mTOR 26.17 26.28 26.28 26.24 ± 0.06 14.95 ± 0.06 0.08 ± 0.06 0.95 ± 0.05

si-CCDC138-mTOR 27.81 27.99 27.76 27.85 ± 0.12 16.55 ± 0.12 1.68 ± 0.12 0.31 ± 0.03

Cell-p21 26.54 26.47 26.49 26.50 ± 0.04 15.20 ± 0.04 0.00 ± 0.04 1.00 ± 0.03

si-NC-p21 26.47 26.46 26.5 26.48 ± 0.02 15.19 ± 0.02 −0.01 ± 0.02 1.01 ± 0.01

si-CCDC138-p21 28.16 28.27 28.33 28.25 ± 0.09 16.95 ± 0.09 1.75 ± 0.09 0.30 ± 0.02

Cell-GAPDH 11.26 11.31 11.33 11.30 ± 0.04 —— —— ——

si-NC-GAPDH 11.27 11.27 11.34 11.29 ± 0.04 —— —— ——

si-CCDC138-GAPDH 11.31 11.32 11.26 11.30 ± 0.03 —— —— ——

to control (2−ΔΔCT = 1.00 ± 0.05) and si-NC (2−ΔΔCT = 1.07 ± 0.04; p
< 0.05; Table 2; Figure 7A).The significant reduction (86% decrease)
in CCDC138 mRNA expression validated the efficacy of the siRNA
construct.

3.14.2 Cell proliferation assays
CCK-8 assay was used to assess cell proliferation at 0, 24, 48,

and 72 h post-transfection (Table 3; Figure 7B). The si-CCDC138
group showed significantly reduced proliferation compared to those
of the control and si-NC groups. Proliferation rates were 53.44% (si-
CCDC138) vs. 62.90% (control) at 24 h, 84.51% vs. 106.32% at 48 h,
and 110.26% vs. 150.36% at 72 h (Table 4; Figure 7C). Inhibition
rates increased over time, reaching 6.38% at 24 h, 11.12% at 48 h,
and 16.53% at 72 h (Table 5; Figure 7D). These results indicate that
CCDC138 promotes cell proliferation in UCEC.

The EdU incorporation assay further confirmed reduced
proliferation in the si-CCDC138 group. The percentage of EdU-
positive cells (EdU/DAPI) was significantly lower in si-CCDC138
(23.86% ± 0.63%) than in the control (53.43% ± 1.01%) and si-

NC (52.26% ± 1.68%; p < 0.05; Table 6; Figure 7H). Fluorescence
microscopy images (Figures 7I–K) visually demonstrated fewer
proliferating cells in the si-CCDC138 group, corroborating CCK-
8 findings and highlighting CCDC138’s role in driving UCEC
cell growth.

3.14.3 RT-PCR analysis of oncogenic pathways
RT-PCRwas used to assess the impact of CCDC138 knockdown

on mTOR, S6K1, and p21 mRNA expression, key components of
oncogenic pathways identified by bioinformatics analyses (Table 7).
In the si-CCDC138 group, mRNA expression was significantly
reduced: S6K1 (2−ΔΔCT = 0.46 ± 0.06 vs. 1.00 ± 0.05 in control,
p < 0.05; Figure 7E), mTOR (2−ΔΔCT = 0.31 ± 0.03 vs. 1.00 ±
0.01, p < 0.05; Figure 7F), and p21 (2−ΔΔCT = 0.30 ± 0.02 vs.
1.00 ± 0.03, p < 0.05; Figure 7G). The si-NC group showed
no significant changes compared to those in the controls (p
> 0.05). These findings confirm that CCDC138 regulates key
oncogenic signaling pathways, consistent with bioinformatics
predictions.
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4 Discussion

In this study, we comprehensively examined the role of
CCDC138 in UCEC using integrative bioinformatics and multi-
omics data from public repositories, including TCGA and CPTAC,
complemented by in vitro experiments in Ishikawa cells. Our key
findings revealed that CCDC138 is significantly upregulated at the
mRNA and protein levels in UCEC and is associated with poor
OS. Moreover, its expression correlates with major cancer-related
pathways—such as mTOR, p53/Rb, and MYC/MYCN—and is
significantly linked to immune infiltration and TME characteristics.
High CCDC138 expressionwas associated with increased sensitivity
to various chemotherapeutic agents. In vitro experiments validated
these findings, demonstrating that CCDC138 knockdown in
Ishikawa cells achieved an 86% reduction in mRNA expression
(2−ΔΔCT =0.14± 0.01 vs. 1.00 ± 0.05 in control, p < 0.05), significantly
reduced cell proliferation (CCK-8 assay: 16.53% inhibition at 72 h;
EdU assay: 23.86% ± 0.63% EdU/DAPI vs. 53.43% ± 1.01% in
control, p < 0.05,), and downregulated mTOR (2−ΔΔCT = 0.31 ±
0.03), S6K1 (2−ΔΔCT = 0.46 ± 0.06), and p21 (2−ΔΔCT = 0.30 ±
0.02) mRNA expression (p < 0.05), key components of the mTOR
and p53/Rb pathways, confirming its oncogenic role. These findings
suggest that CCDC138 may serve as a promising biomarker and
therapeutic target in UCEC, highlighting its unique dual relevance
in ciliopathies and cancer.

The overexpression of CCDC138 across UCEC subtypes,
stages, and grades suggests its involvement in tumor development
and progression. The upregulation was observed at both
transcriptional and protein levels and was significantly associated
with adverse survival outcomes, underscoring its potential as
a prognostic biomarker. In vitro validation further supported
this, as CCDC138 knockdown significantly reduced proliferation
rates (53.44% vs. 62.90% at 24 h, 84.51% vs. 106.32% at 48 h,
110.26% vs. 150.36% at 72 h; Figure 7C), indicating a direct
role in driving tumor cell growth. While CCDC138 has been
reported as overexpressed in other malignancies per THPA,
its functional relevance in UCEC has not been previously
characterized (Uhlén et al., 2015). This study is the first to delineate
the expression profile of CCDC138 in UCEC and to establish its
clinical relevance, laying a groundwork for future diagnostic and
therapeutic strategies.

As a ciliopathy-associated gene, CCDC138 may influence
the structure and function of primary cilia—organelles essential
for signal transduction, cellular differentiation, proliferation, and
tissue homeostasis (Anvarian et al., 2019). While cilia sustain
tumorigenic signaling in cancers, such as medulloblastoma and
basal cell carcinoma via hedgehog signaling, UCEC is not typically
driven by hedgehog signaling (Hassounah et al., 2012). Instead,
CCDC138 may exert its effects through alternative cilia-dependent
pathways (Wnt or PDGF) or non-ciliary mechanisms. Subcellular
localization analysis revealed that CCDC138 is present in nuclear
and cytoplasmic compartments, suggesting potential roles in
transcriptional regulation or chromatin organization (Liu et al.,
2023). The in vitro findings, showing reduced proliferation and
altered gene expression post-knockdown, support the hypothesis
that CCDC138 may regulate cellular processes through both
ciliary and non-ciliarymechanisms, warranting furthermechanistic
exploration. Pathway analysis showed that CCDC138 is associated

with the mTOR, p53/Rb, and MYC/MYCN signaling pathways, all
of which are crucial in UCEC pathogenesis. The mTOR pathway
is a known therapeutic target due to its role in cellular growth,
metabolism, and survival (Saxton and Sabatini, 2017). In vitro
experiments confirmed that CCDC138 knockdown significantly
reduced mTOR (69% reduction) and S6K1 (54% reduction)
mRNA expression, validating the bioinformatics association with
the mTOR pathway and suggesting that CCDC138 directly or
indirectly modulates this pathway to promote tumor growth.
p53 and Rb are tumor suppressors, and their inactivation drives
uncontrolled proliferation (Zhou et al., 2023); the observed
downregulation of p21 (70% reduction) post-knockdown indicates
that CCDC138 may inhibit p53/Rb-mediated cell cycle arrest.
MYC governs the expression of genes involved in cell cycle
progression (Stine et al., 2015). The associations between
CCDC138 and these signaling cascades suggest that CCDC138
may modulate oncogenic signaling either directly or indirectly.
Its nuclear localization raises the possibility of transcriptional
regulation, while potential cilia-dependent mechanisms might
influence upstream signaling dynamics. The in vitro reduction
in proliferation further supports these pathway associations, as it
aligns with the expected outcomes of disrupted mTOR and p53/Rb
signaling.

The results also showed that high CCDC138 expression was
associatedwith lower immune and stromal scores, and higher tumor
purity, indicative of an immunosuppressive TME. This “cold” TME
phenotype often correlates with poor responses to immunotherapy
and unfavorable prognosis (Wu et al., 2024). CCDC138 expression
demonstrated both positive and negative correlations with specific
immune cell populations, including a notable positive correlation
with plasmacytoid dendritic cells and a negative correlation with
NKT cells. These findings suggest that CCDC138 may modulate
immune evasion mechanisms by altering immune cell recruitment
or function. The in vitro data, while focused on proliferation and
pathway regulation, indirectly support the idea of an altered TME,
as reduced proliferation may reflect changes in tumor cell behavior
that influence immune interactions. Further studies should examine
whether CCDC138 regulates immune checkpoint expression or
cytokine signaling.

Drug sensitivity analysis revealed that high CCDC138
expression conferred increased sensitivity to 81 therapeutic
agents, including 5-fluorouracil and alpelisib. These findings
suggest that CCDC138 may serve as a predictive biomarker
for treatment response in UCEC. For example, alpelisib targets
the PI3K pathway and has shown clinical efficacy in various
cancers (Mohankumar et al., 2015; Mohankumar et al., 2014a;
Mohankumar et al., 2014b); CCDC138 expression may help
identify patients with UCEC likely to benefit from such targeted
therapies (Chang et al., 2021).The in vitro downregulation ofmTOR,
a pathway closely linked to PI3K, supports the potential efficacy
of alpelisib in high-CCDC138 tumors. However, these results are
based on computational predictions and require validation in
clinical trials.

To further investigate the molecular functions of CCDC138,
we constructed a PPI network, identifying patterns involved in
centrosome function, cilia formation, and cell cycle regulation.
Notable interactors included DCTN2, SSX2IP, CEP72, CEP290,
CEP131, andCEP120, proteins central tomicrotubule dynamics and
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ciliogenesis. For instance,DCTN2plays a vital role inmitotic spindle
assembly and has been implicated in hepatocellular carcinoma via
the AKT pathway (Li et al., 2022; Ch et al., 2015; Chaudhuri et al.,
2018). SSX2IP contributes to centrosome maturation (Hori et al.,
2015) and is overexpressed in leukemia. CEP290 regulates the
ciliary transition zone and has roles in both Joubert syndrome
and oncogenic signaling (Shimada et al., 2017; Stowe et al., 2012;
Lüddecke et al., 2016). CEP131 is involved in centriole duplication
and genome integrity (Denu et al., 2019). CEP120 facilitates
centriole elongation in coordination with SPICE1 (Comartin et al.,
2013). Therefore, through its interactions with ciliary proteins,
CCDC138 may regulate centrosome integrity, ciliary assembly,
and signaling pathways, such as hedgehog and Wnt. The in vitro
findings, particularly the reduced proliferation post-knockdown,
suggest that these interactions may contribute to tumor cell growth,
potentially through disrupted ciliary or centrosomal functions.
In UCEC, these interactions may lead to cilia dysfunction,
promoting tumorigenesis, while in ciliopathies, disrupted centriole
replication or basal body formation may result in structural
ciliary defects. As ciliary dysfunction is a common feature in
both cancer and ciliopathies, CCDC138 may contribute to disease
progression by modulating cilia-dependent pathways, including
mTOR and p53/Rb, thereby influencing the TME and cell cycle.
Through these interactions, CCDC138 may influence both cancer
progression and ciliary dysfunction, reinforcing its relevance in both
disease contexts.

Based on these findings, we propose that CCDC138 may exert
its effects in UCEC through several mechanisms: (1) regulating
ciliary assembly and signaling via interaction with transition zone
proteins, such as CEP290; (2) modulating microtubule-mediated
transport through interaction with DCTN2; and (3) affecting cell
cycle progression and centrosome dynamics via interaction with
centrosomal proteins. These mechanisms may contribute to both
tumor proliferation and ciliary abnormalities observed in related
disorders.

Despite these insights, this study has several limitations.
First, the analyses were conducted using public datasets without
experimental validation, limiting the ability to establish causality.
Second, the drug sensitivity predictions have not been confirmed
in clinical or laboratory models. Third, the study did not
directly assess the role of CCDC138 in ciliary function, which
would further clarify its role in ciliopathies and tumor biology.
Future in vitro and in vivo studies are essential to validate
these findings and fully elucidate the mechanistic roles of
CCDC138 in UCEC.

5 Conclusion

This study is the first to systematically characterize the
expression profile of CCDC138 in UCEC and to evaluate its
prognostic relevance and associations with key oncogenic pathways,
the immune microenvironment, and drug sensitivity. As a
gene implicated in ciliopathies and UCEC, CCDC138 offers
a novel perspective for exploring the molecular link between
ciliary dysfunction and cancer. Its overexpression is associated
with poor prognosis, activation of oncogenic pathways, and an
immunosuppressive TME, highlighting its potential as a diagnostic,

prognostic, and predictive biomarker. In vitro experiments
confirmed that CCDC138 knockdown inhibits proliferation and
downregulates mTOR, S6K1, and p21, validating its oncogenic
role. As a ciliopathy-associated gene, CCDC138 bridges ciliary
dysfunction and cancer, offering a novel biomarker and therapeutic
target for precision oncology in UCEC.
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