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The chloroplast genome of plants contains a single gene encoding the splicing
factor Maturase K (MatK). To elucidate the functional role and underlying
mechanism of MatK, we investigated it in Lavandula angustifolia (lavender).
Structural models of MatK1 and Matk2 were predicted using AlphaFold2, and
potential active site residues were identified via the GalaxyWEB program. The
results of RT-qPCR analysis revealed that the expression of MatK1 and MatK2
peaked in leaves at 14:00. For heat treatments, MatK1 expression in leaves
increased with the duration of heat exposure, reaching its highest levels at 40°C
for 3 h and 30°C for 6 h, before declining. Similarly, under salt treatment, MatK1
expression in leaves showed an increasing trend with exposure time, peaking
at 300 mM NaCl for 3 h and 200 mM for 12 h, before decreasing. This study
provides the first detailed characterization of Maturase K in L. angustifolia.

KEYWORDS

lavandula x intermedia (lavandin), maturase K, prediction of structural models, RT-qPCR
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Introduction

Lavender plants are compact, aromatic shrubs widely cultivated for their essential oils
(EOs), which consist of complex blends of mono- and sesquiterpenoid alcohols, esters,
oxides, and ketones (Crişan et al., 2023; de Melo Alves Silva et al., 2023). The Lavandula
genus includes 30 recognized species, with Lavandula angustifolia, Lavandula latifolia,
and Lavandula x intermedia—a natural hybrid of L. latifolia and L. angustifolia—being
of significant economic importance (Crişan et al., 2023; de Melo Alves Silva et al., 2023;
Landmann et al., 2007; Liu et al., 2025d; Liu et al., 2025c). The highest-quality EOs are
derived from the flowering tops of L. angustifolia, commonly known as ‘true lavender’,
which has been valued for its distinctive fragrance since ancient times. Lavender EOs have
diverse applications in cosmetics, hygiene, and alternative medicine (Hedayati et al., 2024;
Khan et al., 2024; Li et al., 2024). For example, EOswith elevated camphor concentrations are
used in inhalants to treat respiratory conditions like coughs and colds, as well as in liniments
and balms for topical pain relief (Malloggi et al., 2021; Batiha et al., 2023; Braunstein and
Braunstein, 2023; Liu et al., 2024a). Camphor has also been investigated as a radiosensitizing
agent to enhance tumor oxygenation prior to radiotherapy (Bungau et al., 2023; Crişan et al.,
2023; de Melo Alves Silva et al., 2023; Dewanjee et al., 2023; Khan et al., 2024).
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The production of EOs in plants is closely linked to
photosynthesis, a process involving several enzymes, including
Maturase K (MatK). Recently, MatK has gained attention as a
crucial gene due to its strong phylogenetic signal (Mukhopadhyay
and Hausner, 2024). The high rate of amino acid substitution in
MatK is attributed to the nearly uniform distribution of substitution
rates across the three codon positions, in contrast to most protein-
coding genes, where substitution rates are typically biased toward the
third codon position (Unnikrishnan et al., 2021; Zhang et al., 2021;
Algarni, 2022). In addition to its significance in plant phylogenetics,
MatK is the only putative group II intron maturase encoded in the
chloroplast genome. MatK enzymes catalyze the nonautocatalytic
removal of introns from precursor RNAs. These enzymes typically
consist of three domains: a reverse-transcriptase domain, domain X
(the proposed maturase functional domain), and a zinc-finger-
like domain. While there is a substantial body of literature on
MatK in plants (Mukhopadhyay and Hausner, 2024; Tripodi,
2023; Liu et al., 2024c; Muino et al., 2024; Oyelakin et al., 2024;
Tiono et al., 2024; Urbina et al., 2024), its specific function and
mechanism in lavender remain poorly understood.

Herein, we used AlphaFold2 program to predict structural
models of MatK1 and Matk2, and then identified potential active
site residues via the GalaxyWEB program. Gene expression analysis
revealed that MatK1 was upregulated by 553.8-fold in leaves, 4.2-
fold in flowers, 1.7-fold in stems, and 1.1-fold in roots at 14:00.
Similarly,MatK2 expression was upregulated by 267.5-fold in leaves,
4.2-fold in flowers, 1.3-fold in stems, and 1.0-fold in roots at
14:00. MatK1 expression in leaves increased with the duration of
heat treatment, peaking at 40°C for 3 h and 30°C for 6 h, before
declining. Similarly, under salt treatment, MatK1 expression in
leaves showed a progressive increase, peaking at 300 mM NaCl for
3 h and 200 mM for 12 h, before decreasing. This study provides the
first comprehensive analysis ofMaturaseK in L. angustifolia, offering
valuable insights for improving the quality of lavender essential oil.

Results

Biochemical characteristics of Matk1 and
Matk2

Bioinformatics analysis of the two target proteins, MatK1
and MatK2, was performed using data retrieved from the
UniProt database (MatK1, entry ID A0A2R2V059; MatK2, entry
ID A0A125QY04) (Figure 1, Supplementary Figure S1–S5). The
molecular weights of MatK1 and MatK2 were approximately
60.31 kDa and 60.89 kDa, respectively (Table 1). Their
molecular formulas were C2784H4317N751O722S14 for MatK1 and
C2801H4350N762O736S13 for MatK2. The amino acid composition of
MatK1 included 36 negatively charged residues and 70 positively
charged residues, while MatK2 contained 35 negatively charged
residues and 70 positively charged residues. The grand average of
hydropathy (GRAVY) values for MatK1 and MatK2 were −0.10
and −0.12, respectively (Table 1). The aliphatic indexes for MatK1
and MatK2 were 103.02 and 101.24, respectively (Table 1). Both
MatK1 and MatK2 had an estimated half-life of 30 h (Table 1).
The isoelectric points (pI) for MatK1 and MatK2 were 10.01

and 10.04, respectively, with protein instability indices of 51.32
and 50.08 (Table 1).

Secondary structure prediction of Matk1
and Matk2

PSIPRED analysis (Buchan et al., 2024; Jones, 1999) revealed
that MatK1 contains 227 alpha helices (44.86%) in its secondary
structure, along with a significant number of extended strands
and random coils (Figure 2a; Table 2). Similarly, MatK2 consists of
216 alpha helices (41.86%) and numerous strands and coils in its
predicted secondary structure (Figure 2b; Table 2).

Prediction and quality assessment of Matk1
and Matk2 structures

The three-dimensional (3D) structures of MatK1
and MatK2 were predicted using AlphaFold2 (Wayment-
Steele et al., 2023; Jumper et al., 2021), which employs deep
learning algorithms for more accurate and reliable protein structure
predictions compared to traditional homology modeling methods.

To assess the quality of the predicted models (Figures 3a,d),
we used the Ramachandran plot to evaluate the dihedral angles of
the protein backbone, ensuring they fell within acceptable regions
indicative of a stable conformation. ForMatK1, 86.5%of the residues
were in the most favored region, 11.9% in the additionally allowed
region, 0.8% in the generously allowed region, and 0.8% in the
disallowed region (Figure 3b; Table 3). ForMatK2, 84.6% of residues
were in the most favored region, 13.7% in the additionally allowed
region, 1.4% in the generously allowed region, and 0.2% in the
disallowed region (Figure 3e; Table 3).

ProSA analysis revealed Z-scores of −5.39 for MatK1 and -5.68
for MatK2 (Figures 3c,f), further supporting the high quality of the
predicted models.

While the overall fold of MatK1 closely resembles that of MatK2
(Figure 4), the rootmean square deviation (RMSD) for all atomswas
1.05 Å, with a sequence identity of 85.30% (Figure 4).

Predicting the active sites of Matk1 and
Matk2

Using the predicted models (Figures 3–5), we utilized the
GalaxyWEB program (Seok et al., 2021; Heo et al., 2013; Heo et al.,
2016; Ko et al., 2012) to identify the active sites ofMatK1 andMatK2.
The analysis revealed that the active site residues of MatK1 are H33,
N34, K51, S52, S53, and L54 (Figure 5a). For MatK2, the active site
residues include K58, R59, T62, R63, and Q66 (Figure 5b). These
residues are likely involved in substrate interactions, potentially
forming bonds with the substrate’s side chain atoms.

Gene expression profiles of Matk1 and
Matk2 in various tissues

To investigate the spatiotemporal expression profiles of
MatK1 and MatK2, we performed real-time quantitative
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FIGURE 1
Sequence alignment of maturase K family. The alignment employs the ClustalW default color scheme, where conserved amino acids are highlighted in
darker shades compared to variable residues. It includes the following reference protein sequences: P0C383, Oryza sativa subsp. japonica (Rice);
P0C381, Oryza sativa (Rice); P0C382, Oryza sativa subsp. indica (Rice); P17158, Hordeum vulgare (Barley); P68750, Lilium canadense (Canada lily);
Q9B1U9, Lilium longiflorum (Trumpet lily); A0A125QY04, Lavandula angustifolia (Lavender); A0A2R2V059, Lavandula angustifolia (Lavender); Q8SEL8,
Acer monspessulanum (Montpellier maple); Q8W8E6, Fagus crenata (Japanese beech); P09364, Sinapis alba (White mustard, Brassica hirta); P56784,
Arabidopsis thaliana (Mouse-ear cress); Q1ACK9, Chara vulgaris (Common stonewort); Q7YKY5, Chara connivens (Convergent stonewort).

TABLE 1 Characteristics of Matk1 and Matk2.

Name Number of
amino acids

Molecular
weight
(kDa)

Theoretical
pIa

Instability
index

Aliphatic
index

GRAVYb Estimated
half-life (h)

Matk1 506 60.31 10.01 51.32 103.02 −0.10 30

Matk2 516 60.89 10.04 50.08 101.24 −0.12 30

Note.
aIsoelectric point.
bGRAVY, grand average of hydropathy.

polymerase chain reaction (RT-qPCR) using gene-specific primers
(Supplementary Table S1). The results showed that the highest
expression of both MatK1 and MatK2 occurred in the leaves at
14:00 (Figure 6). Specifically, MatK1 expression was upregulated
by 553.8-fold in leaves, 4.2-fold in flowers, 1.7-fold in stems, and

1.1-fold in roots at 14:00 (Figure 6). Similarly, MatK2 expression
was upregulated by 267.5-fold in leaves, 4.2-fold in flowers,
1.3-fold in stems, and 1.0-fold in roots at 14:00 (Figure 6).
These results suggest that MatK1 and MatK2 are primarily
involved in chloroplast photosynthesis, aligning with previous
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FIGURE 2
Prediction of (a) Matk1 and (b) Matk2 secondary structure models.

TABLE 2 Secondary structure prediction of Matk1 and Matk2.

Secondary
structure

Alpha helix Extended strand Random coil

Residual
Properties

Number of
residues

% of
residues

Number of
residues

% of
residues

Number of
residues

% of
residues

Matk1 227 44.86 55 10.87 224 44.27

Matk2 216 41.86 57 11.05 243 47.09

studies (Muino et al., 2024; Hertel et al., 2013; Barthet and
Hilu, 2007; Qu et al., 2018).

Expression levels of genesMatk1 andMatk2
under heat and salt treatments

We conducted RT-qPCR analysis to examine the expression
levels of the MatK1 gene under heat and salt treatments in leaves,

as MatK1 exhibited higher expression in leaves compared to MatK2
(Figure 6). The results showed that MatK1 expression in leaves
increased with the duration of heat treatment, peaking at 40°C
for 3 h and 30°C for 6 h, before declining (Figure 7a). Similarly,
MatK1 expression in leaves also increased with the duration of
salt treatment, peaking at 300 mM NaCl for 3 h and 200 mM for
12 h, before decreasing (Figure 7a). These findings suggested that
temperature and salt concentration influence the photosynthetic rate
of lavender, supporting the link betweenMatK1 and photosynthesis.
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FIGURE 3
Structural prediction and quality assessment of MatK1 and MatK2. The three-dimensional (3D) structures of (a) MatK1 and (d) MatK2 were predicted
using AlphaFold2. Both models are depicted as cyan ribbon diagrams from two distinct orientations, with α-helices in pink and β-sheets in cyan.
Structural validation was performed using Ramachandran plot analysis [(b) for Matk1, (e) for Matk2], where the most favorable residue conformations
are highlighted in red, and less favorable regions are shown in progressively lighter shades. Additionally, (c,f) ProSA analysis yielded Z-scores of −5.39
(MatK1) and −5.68 (MatK2), confirming the high quality of the predicted models.

TABLE 3 Ramchandran plot analysis of structural models of MatK1 and Matk2 using PDBsum.

Residues Residues in most
favored regions

Residues in additional
allowed regions

Residues in generously
allowed regions

Residues in disallowed
regions

Structural
models

Number
of

residues

% of
residuesa

Number
of

residues

% of
residues

Number
of

residues

% of
residues

Number
of

residues

% of
residues

Matk1a 415 86.5 57 11.9 4 0.8 4 0.8

Matk2b 413 84.6 67 13.7 7 1.4 1 0.2

Note.
aNumber of end-residues (excl. Gly and Pro): 2; Number of glycine residues: 10; Number of proline residues: 14.
bNumber of end-residues (excl. Gly and Pro): 2; Number of glycine residues: 13; Number of proline residues: 13.

Discussion

In this work, we generated structural models using AlphaFold2
and employed the GalaxyWEB program to predict potential
active site residues. At 14:00, MatK1 expression was significantly
upregulated, showing a 553.8-fold increase in leaves, 4.2-fold in
flowers, 1.7-fold in stems, and 1.1-fold in roots. Similarly, MatK2
expression increased by 267.5-fold in leaves, 4.2-fold in flowers, 1.3-
fold in stems, and remained nearly unchanged (1.0-fold) in roots.
Under heat stress, MatK1 transcript levels in leaves progressively
increased, peaking after 3 h at 40°C and 6 h at 30°C, followed by
a decline. Similarly, under salt stress, MatK1 expression in leaves
rose with prolonged exposure, peaking after 3 h at 300 mM NaCl
and after 12 h at 200 mM, before decreasing. This study provides
the first comprehensive analysis of Maturase K in L. angustifolia,
offering valuable insights that could enhance the quality of lavender
essential oil.

The MatK reading frame is present in all known autotrophic
land-plant chloroplast genomes containing group II introns, as well
as in basal streptophyte algae (Mukhopadhyay and Hausner, 2024;
Liu et al., 2018; Ho et al., 2021; Oyelakin et al., 2024). Despite
their low sequence identity (Figure 1), these active sites coordinate
magnesium ions (Mg2+), primarily via negatively charged residues.
The maturase K (MatK) family may employ divergent catalytic
mechanisms to promote the splicing of both its own and other
chloroplast group II introns. To elucidate these mechanisms, we
are examining the structural and mechanistic basis of MatK-
catalyzed reactions using experimental techniques, including X-
ray crystallography. In the streptophyte alga Zygnema, the fern
Adiantum capillus-veneris, and the parasitic land plants Epifagus
virginiana, Cuscuta exaltata, and Cuscuta reflexa, MatK exists as
a stand-alone reading frame, with the trnK gene being absent.
This suggests that MatK functions ‘in trans’, likely involved in
splicing pre-RNAs other than its corresponding trnK intron
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FIGURE 4
Structure comparison between Matk1 (in magenta) and Matk2 (in cyan). (a) The overall quality factors of structural models of Matk1 and Matk2. (b)
Despite adopting a similar overall fold, MatK1 displayed a root mean square deviation (RMSD) of 1.05 Å (all atoms) relative to MatK2, with 85.30% amino
acid sequence identity between the two proteins.

FIGURE 5
Predicting (a)Matk1 and (b)Matk2 active site residues. (a) The GalaxyWEB program predicted H33, N34, K51, S52, S53 and L54 as the active site residues
of MatK1 (in magenta). (b) In MatK2 (in cyan), the active site residues identified were K58, R59, T62, R63, and Q66. The ribbon diagram of each model is
shown, with a close-up view of each active site on the right.
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FIGURE 6
Expression levels of Matk1 and Matk2 in (a) leaf, (b) flower, (c) stem and (d) root within a 24 h day/night cycle. Relative expression analysis was
conducted using RT-qPCR (real-time quantitative polymerase chain reaction). The relative expression ratios were presented as log2 values, where a
ratio greater than zero indicated upregulation of gene expression.

(Hertel et al., 2013; Qu et al., 2018; Barthet and Hilu, 2007).
Notably, among all analyzed embryophytes, only parasitic species
have lost MatK. The retention of MatK in chloroplast genomes
across early streptophytes indicates that its presence is not a random
event. Furthermore, attempts at reverse genetic manipulation
of the chloroplast MatK reading frame through transplastomic
mutagenesis have been unsuccessful, supporting the notion that
MatK is an essential gene.

To elucidate the functional role of L. angustifolia MatK in
terpenoid biosynthesis and stress responses, we will employ a
combination of in vivo and in vitro assays. Targeted knockdown of
MatK via virus-induced gene silencing (VIGS) and RNA interference
(RNAi) will be used to assess loss-of-function phenotypes, while
Agrobacterium-mediated overexpression studies will evaluate gain-
of-function effects on metabolic pathways. Functional validation will
be further confirmed throughmutant complementation in transgenic
lines. These integrated approaches will systematically investigate
MatK molecular mechanisms, including its potential interactions
with plastid-encoded proteins and regulatory influence on secondary
metabolite production. Transcriptional, translational, and metabolic
changes will be monitored using quantitative PCR, Western blotting,
and HPLC analyses, respectively.

In conclusion, our study offers a novel approach to
comprehensively investigate the functional mechanisms of MatK

(Maturase K) in L. angustifolia (lavender), with the goal of enhancing
the quality of lavender essential oils.

Materials and methods

Bioinformatics analysis

The amino acid sequences of MatK1 (UniProt code
A0A2R2V059) and MatK2 (UniProt code A0A125QY04) (Figure 1,
Supplementary Figure S1–S5) were analyzed using the ProtParam
(Gasteiger, 2003; Duvaud et al., 2021) to predict their chemical
properties and physicochemical parameters.

Prediction of structural models

Structural predictions of the target proteins (MatK1 and
MatK2) were performed using the AlphaFold2 program (Wayment-
Steele et al., 2023; Jumper et al., 2021). Secondary structures
were predicted with the PSIPRED program (Jones, 1999;
Buchan et al., 2024), and active site residues were identified
using the GalaxyWEB program (Ko et al., 2012; Heo et al.,
2013; Heo et al., 2016; Seok et al., 2021). Multiple sequence
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FIGURE 7
RT-qPCR data analysis of gene Matk1 in leaf under (a) heat and (b) salt stress conditions. (a) For heat stress, plants were exposed to 30°C for 48 h and
40°C for 48 h, respectively. (b) For salt stress, plants were exposed to 200 mM NaCl for 48 h and 300 mM NaCl for 48 h, respectively. The relative
expression level of the Matk1 gene in leaf was calculated using the 2−ΔΔCT method.

alignment datawere obtained from the LSQKABprogramwithin the
CCP4 suite (Collaborative Computational Project, Number, 1994),
and the root mean square deviation (RMSD) for Cα atoms was
calculated. Structural images were generated using PyMOL 2.3.4
(https://www.pymol.org/2/).

Quality assessment of structural models

To validate the tertiary structures, we used the PDBsum
database (Laskowski, 2022; de Beer et al., 2014; Laskowski, 2004;
2009; Laskowski et al., 2017) to generate Ramachandran plots
for MatK1 and MatK2. This tool helps assess and validate
protein structure quality by identifying geometric errors and
improving accuracy. The Ramachandran plot specifically evaluates
the stereochemical properties of the structures, displaying the
dihedral angles of amino acid residues, highlighting allowed
conformational regions, and identifying disallowed orientations.

Additionally, ProSA (Protein Structure Analysis) is a
widely used tool for analyzing and validating predicted
protein models (Wiederstein and Sippl, 2007). It aids in the analysis
of protein structures derived from X-ray crystallography and
NMR spectroscopy, identifying structural errors and pinpointing
problematic regions, thereby improving the interpretation of the
protein structures.

Expression levels of genesMatk1 andMatk2

To quantify the expression levels of MatK1 and MatK2 under
different light conditions, real-time quantitative PCR (RT-qPCR)
was performed using PowerUp SYBR Green Master Mix (Applied
Biosystems). Total RNA was extracted with the Universal Plant
Total RNA Extraction Kit (Bioteke, Beijing, China) according
to the manufacturer’s instructions. cDNA was synthesized from
RNA using the PrimeScript 1st Strand cDNA Synthesis Kit
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(Takara, Kyoto, Japan). The primers used are listed in
Supplementary Table S1. RT-qPCR was conducted with the Applied
BiosystemsQuantStudio 5 instrument, and datawere analyzed using
the 2−ΔΔCT method (Green and Sambrook, 2018; Schmittgen and
Livak, 2008; Livak and Schmittgen, 2001; Liu et al., 2025d; Liu et al.
2025a; Liu et al. 2025b; Liu et al. 2025c; Liu et al. 2024a; Liu et al.
2024b). Relative expression ratios are presented as log2 values
in histograms. Beta-actin served as the housekeeping gene for
normalization, with a positive control using the beta-actin gene.
A ratio greater than zero indicated up-regulation, while a ratio less
than zero indicated downregulation.

Statistical analysis

All experiments were conducted at least in triplicate. The
data were expressed as mean ± SD. Statistical analysis was
conducted using Origin 8.5, Microsoft Excel 2013 and SPSS
19.0. In the all statistical evaluations, p < 0.05 was considered
statistically significant, and p < 0.01 was considered high statistically
significant.
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