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Aims: Approximately 25%–30% of the global population is affected by non-
alcoholic fatty liver disease (NAFLD). This study aimed to explore whether NAFLD
could be effectively detected using 341 volatile organic compounds (VOCs) via
10 machine learning (Mach-L) algorithms in a cohort of 1,501 individuals.

Methods: Participants were selected from the TaiwanMJ cohort, which includes
comprehensive demographic, biochemical, lifestyle, and VOCs data. NAFLDwas
diagnosed by experienced gastroenterologists. Exhaled breath samples were
collected using a 1.0-L aluminum bag (late expiratory fraction) and analyzed
with selected-ion flow-tube mass spectrometry. Ten Mach-L techniques were
employed to evaluate two predictive models: Model 1 (demographic, lifestyle,
and biochemical data), andModel 2 (Model 1 + VOCs), assessed using area under
the receiver operating characteristic curve (AUC).

Results: Subjects with NAFLD had significantly higher values for age, BMI, blood
pressure, and other biomedical markers, except for eGFR and HDL-C. Key
predictors of NAFLD included BMI, triglycerides (TG), uric acid (UA), fasting
plasma glucose (FPG), γ-GT, gender, LDL-C, and sleep duration. The addition
of VOCs to Model 1 improved the AUC from 0.722 ± 0.149 to 0.770 ± 0.264 (p <
0.001). Ten VOCs were identified as the most influential, in order of importance:
2-propanol, acetone, butyl 2-methylbutanoate, diethylethanolamine, urethane,
β-caryophyllene, furfural, tridecane, 4-methyloctanoic acid, and (S)-2-methyl-
1-butanol.

Conclusion: Incorporating VOCs into traditional demographic, biochemical,
and lifestyle data significantly enhanced the model’s predictive performance.
This suggests that VOCs may be associated with the underlying
pathophysiology of NAFLD.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is defined as the
presence of macrovesicular steatosis in more than 5% of hepatocytes
without other identifiable causes, such as alcohol consumption or
medication use. NAFLD progresses from simple steatosis to non-
alcoholic steatohepatitis, fibrosis, and eventually cirrhosis, making
it one of the leading causes of chronic liver disease worldwide
(Younossi et al., 2016; Ghevariya et al., 2014). The global prevalence
of NAFLD has increased from 15% in 2005 to 25%–30% in
2023, reflecting the global rise in obesity rates (Quek et al.,
2023). In Taiwan, a similar trend has been observed, with two
studies estimating that 11.4%–41% of the general population may
be affected by NAFLD (Chen et al., 2006; Lin et al., 2005).
Consequently, early detection and prevention of NAFLD have
become key priorities for healthcare providers and policymakers.

Traditionally, multiple logistic regression (MLR) has been
used to analyze the relationship between risk factors and disease
outcomes in medical research. The performance of MLR models is
commonly evaluated using the area under the receiver operating
characteristic curve (AUC). Recently, machine learning (Mach-
L)—a branch of artificial intelligence that allows algorithms to learn
from past data without explicit programming—has emerged as a
competitive and often superior approach to MLR (Marateb et al.,
2014; Ye et al., 2020; Nusinovici et al., 2020). Unlike MLR, Mach-
L can model complex, nonlinear interactions among multiple
variables, making it more suitable for disease prediction tasks
(Miller and Brown, 2018). Mach-L in the medical field involves
using computer algorithms to analyze large amounts of healthcare
data, helping with tasks. These tools can detect patterns in medical
images, electronic health records, and other data faster and often
more accurately than humans, leading to earlier diagnoses, better
patient care, and more efficient healthcare delivery (Arkoudis and
Papadakos, 2025).

For over five decades, researchers have shown increasing
interest in volatile organic compounds (VOCs) emitted from the
human body. In 1971, Nobel laureate Linus Pauling reported that
human breath contains approximately 250 VOCs (Machado and
Cortez-Pinto, 2014). Later, in 1999, Maurice and Manousou (2018)
identified more than 3,400 VOCs in exhaled breath. Alterations
in VOC concentrations can reflect disease states, such as cancer
(Wei et al., 2020). As a result, breath-derived VOCs have been
proposed as biomarkers for detecting metabolic changes associated
with various diseases. There have been studies investigated the
relationships between VOCs and NAFLD in the past. However,
most of these studies focused on how VOCs affect or damage
liver. The proposed mechanisms included metabolic dysregulation,
oxidative stress, and cell death (Lang and Beier, 2018; Liu et al., 2023;
Duan et al., 2025). Their goals were different from the present study.
Analytical techniques like gas chromatography-mass spectrometry
(GC-MS) have confirmed these associations in numerous studies
(Samudrala et al., 2014; Markar et al., 2019; Ratiu et al., 2020;
Keogh and Riches, 2022; Chung et al., 2022). However, while many
studies have explored VOC-based disease identification, few have
utilized Mach-L techniques for VOC profiling (Tsou et al., 2021;
Shaffie et al., 2022; Sukaram et al., 2023).

In this study, we employed 10 different Mach-L algorithms to
develop predictive models for NAFLD using health examination

data combined with exhaled VOC profiles. The performance of
these models was compared to evaluate their potential utility in
clinical screening for NAFLD. Finally, by applying Shapley addictive
explanation to examine the directions and strengths of impacts.

Materials and methods

This study utilized data from the ongoing Taiwan MJ cohort,
a prospective cohort collected through health examinations
conducted by the MJ Health Screening Centers in Taiwan (Wu et al.,
2017). The dataset includes over 100 essential biological indicators
such as anthropometric measurements, blood tests, and imaging
tests, among others.

The data were obtained from MJ clinic. At the time of their
health checkups, participants provided general consent forms for
future anonymous research. This database was maintained by the
Interpretation Foundation ofMJHealth Research Foundation. All or
part of the data used in this study were authorized and provided by
the foundation (Authorization Code: MJHRF2022009A). However,
it is important to note that all interpretations and conclusions in this
study are those of the authors and do not necessarily represent the
views of the MJ Health Research Foundation.

Thestudyprotocolwas reviewedandapprovedby the Institutional
Review Board of National Yang Ming Chiao Tung University, Taiwan
(IRB No. NCTU-REC-109-074E). All participants signed a written
informed consent form after receiving a thorough explanation of the
study’s purpose, procedures, and potential risks by trained research
assistants.These assistants ensured that all explanationsweredelivered
using clear and understandable language, allowing participants to
fully comprehend the study. After ample time for questions and
deliberation, participants who provided informed and voluntary
consent signed the consent form.

A total of 2,152 participants who underwent both medical
ultrasound diagnosis for NAFLD and three sessions of exhaled
breath volatile organic compounds (VOCs) collection (a total of
6,363 records) were included initially.

The inclusion criteria are:

1. Subjects between 30-70
2. With data of VOCs

Our exclusion criteria are:

1. Having significant medical diseases such as myocardial
infarction, stroke, or cancers

2. Having drinking alcohol habit
3. Miss important data such as age, body mass index (BMI) or

blood pressure

After excluding 651 records due to data loss or specific conditions,
the final analysis included 1,501 individuals, as shown in Figure 1.

Clinical assessments and biochemical
analyses

Details of obtaining basic parameters such as BMI, blood
pressure, collecting blood samples, and questionnaires could be
referred to our previous publication.
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FIGURE 1
The participants selection scheme.

Fatty liver diagnosis
The diagnosis of fatty liver was based on ultrasound features,

including increased hepatic parenchymal brightness, liver-to-kidney
contrast, deep beam attenuation, visible intrahepatic vessels, and
gallbladder wall definition. Qualitative grading classified fatty
liver into mild, moderate, or severe, corresponding to grades
1 to 3, respectively, with grade 0 representing a normal liver
(Mahale et al., 2018; Dasarathy et al., 2009). For the purpose of
this study, grades 1–3 were collectively defined as having fatty
liver (NAFLD).

Variable selection
Seventeen clinical variables potentially associated with NAFLD

were selected (listed in Table 1) as independent variables. NAFLD
status (yes/no) was used as the dependent categorical variable.

Protocol for breath sample collection

All volunteer participants remained in a designated room
under resting conditions for at least 10 min prior to sample
collection. To minimize contamination, each participant was

asked to rinse their mouth with unchlorinated water before
exhaling through a mouthpiece connected to a three-way direct-
connect valve.

Initially, exhaled breath passed through the first outlet, which
was connected to a gas bag (SKC Inc., Eighty-Four, PA, United
States) to estimate the volume of exhaled air. Once the volume
of the initial exhalation reached approximately 0.3 L, the valve
was switched to the second outlet, which was attached to a
1.0-L aluminum bag. This second bag was used to collect
the late expiratory fraction, which is more representative of
alveolar air and thus suitable for volatile organic compound
(VOC) analysis.

To ensure adequate sample volume for analysis, the collection
procedure was repeated two to three times as necessary. All collected
breath samples were sealed, stored at room temperature (25°C), and
analyzed within 48 h.

To validate the stability of VOCs under these storage conditions,
a time-dependent analysis was conducted on ten breath samples.
Samples were analyzed twice daily over three consecutive
days. Comparison of the quantitative VOC data indicated
that the majority of compounds remained stable during the
storage period.
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TABLE 1 The demographic, biochemistry, and volatile organic compounds data of the study cohort.

Men Women

N 653 848

Age (year) 42 ± 12 46 ± 12

Body mass index (kg/m2) 21.3 ± 2.52 24.9 ± 3.84∗∗∗

Systolic blood pressure (mmHg) 111.2 ± 15.9 119.8 ± 16.9∗∗∗

Diastolic blood pressure (mmHg) 72.1 ± 10.3 77.4 ± 11.1∗∗∗

Fasting plasma glucose (mg/dL) 96.5 ± 9.36 104.0 ± 17.0∗∗∗

Total bilirubin (mg/dL) 1.09 ± 0.388 1.04 ± 0.401∗

Albumin (g/dL) 4.40 ± 0.222 4.43 ± 0.229∗∗∗

Alkaline phosphatase (U/L) 56.7 ± 16.3 64.3 ± 18.9∗∗∗

Serum glutamic oxaloacetic transaminase (U/L) 21.4 ± 6.97 24.7 ± 14.6∗∗∗

Serum glutamic pyruvic transaminase (U/L) 20.8 ± 13.2 32.1 ± 29.4∗∗∗

γ-Glutamyl transferase (U/L) 19.5 ± 14.9 31.6 ± 33.6∗∗∗

Estimated glomerular filtration rate (ml/min/1.73 m2) 86.1 ± 13.2 83.3 ± 13.7∗∗∗

Uric acid (mg/dL) 5.17 ± 1.17 6.02 ± 1.43∗∗∗

Triglyceride (mg/dL) 69.1 ± 33.8 115.6 ± 74.2∗∗∗

High density lipoprotein cholesterol (mg/dL) 58.2 ± 16.4 57.6 ± 15.0

Low density lipoprotein cholesterol (mg/dL) 110.9 ± 28.7 126.9 ± 35.3∗∗∗

Alpha-fetoprotein (ng/mL) 2.78 ± 1.91 3.05 ± 1.86∗∗

Beta-caryophyllene (87-44-5) 0.020 ± 0.148 0.010 ± 0.102

Furfural (98-01-1) 5.05 ± 15.4 4.69 ± 9.11

Tridecane (629-50-5) 1.08 ± 3.62 1.89 ± 7.48∗

Butyl 2-methylbutanoate (15706-73-7) 0.134 ± 0.521 0.133 ± 0.683

Diethylethanolamine (100-37-8) 3.03 ± 9.19 2.44 ± 5.72

4-methyloctanoic acid (54947-74-9) 0.170 ± 0.743 0.119 ± 0.735

(S)-2-methyl-1-butanol (1565-80-6) 4.89 ± 37.5 3.85 ± 8.74

Urethane (51-79-6) 20.7 ± 64.1 18.2 ± 29.3

2-propanol (67-63-0) 71.4 ± 161.1 61.2 ± 205.4

Acetone (67-64-1) 1,221.1 ± 3,008.5 1,053.7 ± 4,885.6

Smoking n (%)

Non-smoker 1140 (75)

Less than 10 cigarettes/week 59 (3.9)

10–20 cigarettes/week 129 (8.6)

(Continued on the following page)
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TABLE 1 (Continued) The demographic, biochemistry, and volatile organic compounds data of the study cohort.

Smoking n (%)

20 cigarettes/week 54 (3.4)

More than 20 cigarettes/week 119 (7.6)

Sleeping n (%)

Less than 6 h/day 17 (4.7)

6 h/day 375 (25)

7 h/day 713 (47.5)

8 h/day 347 (24.9)

9 h/day 39 (2.6)

More than 9 h/day 10 (7)

VOCs analysis using SIFT-MS
A selected-ion flow-tube mass spectrometry system (SIFT-MS;

VOICE200 Ultra, Syft Technologies, Christchurch, New Zealand)
was employed to analyze volatile organic compounds (VOCs) in
the collected late expiratory breath fraction. It is a quantitative
mass spectrometry technique used for real-time analysis of trace
volatile compounds, especially volatile organic compounds (VOCs),
in air, breath, or headspace above liquids without the need for
sample preparation or chromatographic separation (Španěl and
Smith, 2020).

In this method, selected precursor ions (H3O
+, NO+, and O2

+)
are injected into a nitrogen carrier gas within the flow tube. When
breath samples are introduced, VOCs present in the sample undergo
ionization, resulting in the formation of characteristic product ions.
These product ions are detected by a quadrupole mass spectrometer,
which measures the count rates of both precursor and product ions
in real time.

For VOCs with significant product ion overlap that could not be
resolved using the tolerance setting, concentrations were reported
on a relative scale. Statistical models were constructed based on
both absolute concentrations and these relative measures to ensure
robustness in VOC profiling and interpretation.

To assure the reproducibility and data reliability we standardized
and calibrated with the following methods:

1. Traceable reference materials: Use primary standards (e.g.,
NIST-traceable mixtures) for instrument calibration and
secondary/working standards for routine checks (RI-
URBANS, 2024; Dusanter et al., 2025).

2. Matrix modifiers: Add salt solutions (e.g., NaCl) to normalize
partitioning behavior of VOCs in complex samples,
reducing bias from dissolved solutes or organic components
(U.S. Environmental Protection Agency, 2014; Final Report,
2012).

3. Dynamic calibration: For instruments like PTR-MS, use
gas standards with known VOC concentrations and
proton transfer rate constants to calculate normalized
sensitivities (Dusanter et al., 2025).

Machine learning-based analysis
technology

While numerous studies have explored the application of VOC
measurements for disease identification (Ratiu et al., 2020; Keogh
and Riches, 2022; Chung et al., 2022), relatively few have focused
on utilizing Mach-L techniques specifically for VOC profiling
(Tsou et al., 2021; Shaffie et al., 2022; Sukaram et al., 2023).
In this study, we employed ten distinct Mach-L algorithms to
construct predictive models for diagnosing non-alcoholic fatty
liver disease (NAFLD) based on VOCs collected from exhaled
breath. To assess the impact of VOCs, models were developed both
with and without VOC data, and their predictive performances
were compared.

The ten machine learning techniques applied are as follows:

• Random Forest (RF): An ensemble learning method
utilizing multiple unpruned decision trees for
classification (Breiman, 2001).

• C5.0 Decision Trees (C5.0): A rule-based model using
entropy, information gain, and gain ratio for decision tree
construction (Quinlan, 2004).

• Stochastic Gradient Boosting (SGB): Combines
bagging and boosting to construct additive regression
tree models (Friedman, 2001).

• Multivariate Adaptive Regression Splines (MARS): A non-
parametric regression technique using piecewise polynomial
functions (Friedman, 1991).

• Classification and Regression Tree (CART): A
decision tree model built using Gini impurity for
splitting nodes (Breiman et al., 1984).

• Least Absolute Shrinkage and Selection Operator (Lasso): A
linear model applying L1 regularization to perform feature
selection (Hastie et al., 2015).

• Ridge Regression (Ridge): Similar to Lasso but
uses L2 regularization for coefficient shrinkage
(Hoerl and Kennard, 2000).
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TABLE 2 t-test comparing volatile organic compounds in subjects with and without NAFLD.

Characteristic (mean ± SD) NAFLD Control groups P value

n (%) 848 (56.50%) 653 (43.50%)

2-propanol 61.28 ± 205.46 71.42 ± 161.10 0.284

Acetone 1053.72 ± 4885.64 1221.07 ± 3008.48 0.414

butyl 2-methylbutanoate 0.13 ± 0.68 0.13 ± 0.52 0.955

diethylethanolamine 2.45 ± 5.73 3.03 ± 9.20 0.158

urethane 18.24 ± 29.31 20.72 ± 64.05 0.360

beta-caryophyllene 0.01 ± 0.10 0.02 ± 0.15 0.296

furfural 4.69 ± 9.11 5.05 ± 15.38 0.599

tridecane 1.89 ± 7.48 1.08 ± 3.62 0.006

4-methyloctanoic acid 0.12 ± 0.74 0.17 ± 0.74 0.190

(S)-2-methyl-1-butanol 3.85 ± 8.75 4.90 ± 37.47 0.485

methanamide 10.32 ± 16.59 12.21 ± 74.70 0.528

1-nonene 6.51 ± 16.03 5.23 ± 8.66 0.049

isobutane 160.08 ± 392.34 165.93 ± 510.95 0.808

trimethylamine 87.84 ± 306.13 104.05 ± 242.21 0.252

6-methyl-5-hepten-2-one 1.92 ± 2.50 1.93 ± 3.19 0.911

pyridine 1.60 ± 2.75 1.49 ± 2.51 0.414

benzoic acid 0.06 ± 0.22 0.08 ± 0.28 0.129

3-buten-2-one 14.13 ± 27.59 15.42 ± 55.93 0.587

propyl acetate 10.98 ± 14.32 15.81 ± 116.80 0.293

propyne 0.97 ± 3.55 0.68 ± 1.77 0.035

Data are presented as means ± standard deviation (SD) or numbers (%) as in the case; P values of excess statistically significant are from the t-test comparing subjects with and without NAFLD. All
the statistical tests of independence were two-sided. Abbreviations: NAFLD, non-alcoholic fatty liver disease.

• Extreme Gradient Boosting (XGBoost): An optimized
gradient boosting algorithm designed for speed and
performance (Meng et al., 2016).

• Gradient Boosting with Categorical Features (CatBoost): A
boosting technique optimized for categorical features using an
ordered boosting method (Dorogush et al., 2018).

• Light Gradient Boosting Machine (LightGBM): A fast,
histogram-based gradient boosting algorithm designed for
efficiency and scalability (Ke et al., 2017).

Although Mach-L algorithms are capable of identifying
key predictor variables, relying on a single method may lead
to suboptimal and biased feature selection. To overcome this
limitation, variable ensemble strategies are often employed,
which integrate the outputs from multiple algorithms. Prior

research indicates that such ensemble approaches enhance variable
selection robustness, reducing both bias and variance (Pes, 2020;
Moghimi et al., 2018; Tuli et al., 2019).

In this study, the variable importance values generated by each
Mach-L model were averaged. The top 10 VOCs, ranked by average
importance across all models, were selected for further discussion.

All analyses were conducted using the R programming language
(version 4.1.2, R Core Team, Vienna, Austria) and RStudio (version
1.1.453) (R Core Team, 2017; RStudio Team, 2015). The following
R packages were employed for model development: random
Forest, C50, gbm, RWeka, kernlab, earth, rpart, glmnet, XGBoost,
LightGBM, and cat boost. Heatmaps were visualized using the
pheatmap package (version 2.6.2) (Browne, 2000; Gu, 2022).

To train and evaluate each Mach-L model, an 80/20 train-test
split was used. The training set (80%) was used to construct models,
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TABLE 3 Results of machine learning in Model 1 (without VOCs) and Model 2 (with VOCs).

Methods ACC Sens Spec AUC BA

Model
1

Model
2

Model
1

Model
2

Model 1 Model 2 Model 1 Model
2

Model
1

Model 2

RF 0.734 0.777 0.639 0.858 0.799 0.713 0.777 0.848 0.719 0.785

C5.0 0.691 0.688 0.762 0.843 0.643 0.563 0.683 0.765 0.702 0.703

SGB 0.718 0.784 0.705 0.769 0.726 0.796 0.773 0.854 0.716 0.783

MARS 0.731 0.781 0.680 0.769 0.765 0.790 0.768 0.846 0.723 0.780

CART 0.714 0.781 0.598 0.716 0.793 0.832 0.696 0.781 0.696 0.774

Lasso 0.718 0.787 0.689 0.754 0.737 0.814 0.768 0.866 0.713 0.784

Ridge 0.741 0.744 0.631 0.881 0.816 0.635 0.780 0.832 0.723 0.758

XGBoost 0.688 0.791 0.885 0.828 0.553 0.761 0.784 0.861 0.719 0.794

CatBoost 0.744 0.787 0.697 0.769 0.777 0.802 0.779 0.860 0.737 0.786

LightGBM 0.761 0.787 0.697 0.866 0.805 0.725 0.792 0.860 0.751 0.795

VOC, volatile organic compound; ACC, accuracy; Sens, sensitivity; Spec, specificity; AUC, area under curve; BA, balanced accuracy; Model 1, without VOCs; Model 2, with VOCs; RF, random
forest; C5.0, C5.0 decision trees; SGB, stochastic gradient boosting; MARS, multivariate adaptive regression splines; CART, classification and regression tree; Lasso, least absolute shrinkage and
selection operator; Ridge, ridge regression; XGBoost, extreme gradient boosting; CatBoost, gradient boosting with categorical features support; LightGBM, light gradient boosting machine.

while the testing set (20%) evaluated predictive performance.
Hyperparameter tuning was conducted using 10-fold cross-
validation (CV) to ensure optimal performance for each algorithm.
The final model for each method was selected based on the
best-performing configuration. Cross-validation procedures were
executed using the caret package (version 6.0-93) (Kuhn, 2022).

In order to understand the directions and impacts of the
variables, XGboost SHAP was applied using the following Python
packages: SHAP, the core package for computing and visualizing
SHAP values, provides interpretability for model predictions
and feature importance. Pandas, a powerful library for data
manipulation and preprocessing, was used tomanage datasets, clean
data, and prepare inputs for SHAP analysis. NumPy, a fundamental
package for numerical computations, supported array operations
and numerical calculations required by SHAP. Matplotlib, a plotting
library for creating static, interactive, and animated visualizations,
was employed to generate SHAP plots, including summary plots,
bar plots, and waterfall plots.te feature contributions to specific
predictions.

Performance evaluation metrics

To comprehensively evaluate the predictive performance of the
Mach-L, we employed a range of widely accepted performance
measures, as recommended in previous studies (Dias Canedo and
Cordeiro Mendes, 2020; Hussain et al., 2021; Tomer and Sharma,
2022). Specifically, the following metrics were utilized in our
analysis: accuracy (ACC), sensitivity (Sens), and specificity (Spec).
These metrics provide an overall understanding of the model’s
classification capabilities.

However, when dealing with imbalanced datasets, traditional
metrics such as ACC, Sens, and Spec can be misleading, as
they tend to be disproportionately influenced by the majority
class distribution. To mitigate this issue, we additionally
calculated balanced accuracy (BA) and area under the
receiver operating characteristic curve (AUC)—both of which
are considered more robust and reliable indicators for
evaluating model performance under class imbalance conditions
(di Biase et al., 2020; Hashim et al., 2021).

• Balanced Accuracy (BA) accounts for imbalanced data by
averaging sensitivity and specificity.

• AUC provides a threshold-independent measure of a model’s
ability to distinguish between classes.

The definitions and formulas for all performance metrics used
in this study are detailed in (Tharwat, 2021).

To assess the impact of volatile organic compounds (VOCs) on
model performance, we compared each Mach-L model’s predictive
ability with and without VOC features. We applied DeLong’s
test for pairwise comparison of AUC values between these two
scenarios across all models (DeLong et al., 1988), allowing for a
statistically grounded evaluation ofVOCs’ contribution to predictive
improvement.

Results

A total of 1,501 participants were included in the
present study. Table 1 presents the demographic and clinical
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FIGURE 2
(Continued).

characteristics of the participants, stratified by the presence or
absence of non-alcoholic fatty liver disease (NAFLD).

As expected, participants diagnosed with NAFLD exhibited
significantly higher values across several variables, including age,

body mass index (BMI), blood pressure, and various biochemical
markers, compared to those without NAFLD. The only exceptions
were estimated glomerular filtration rate (eGFR) and high-density
lipoproteincholesterol (HDL-C),whichdidnot followthe sametrend.
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FIGURE 2
(Continued). The Confusion matrix of Model 1 and 2 for each machine learning methods. Model 1, without VOCs; Model 2, with VOCs; RF, random
forest; C5.0, C5.0 decision trees; SGB, stochastic gradient boosting; MARS, multivariate adaptive regression splines; CART, classification and regression
tree; Lasso, least absolute shrinkage and selection operator; Ridge, ridge regression; XGBoost, extreme gradient boosting; CatBoost, gradient boosting
with categorical features support; LightGBM, light gradient boosting machine. (a) Model 1 o RF. (b) Model 2 o RF. (c) Model 1 of C5.0. (d) Model 2 of
C5.0. (e) Model 1 of SGB. (f) Model 2 of SGB. (g) Model 1 of MARS. (h) Model 2 of MARS. (i) Model 1 of CART. (j) Model 2 of CART. (k) Model 1 of Lasso. (l)
Model 2 of Lasso. (m) Model 1 of Ridge. (n) Model 2 of Ridge. (o) Model 1 of XGBoost. (p) Model 2 of XGBoost. (q) Model 1 of CatBoost. (r) Model 2 of
CatBoost. (s) Model 1 of LightGBM. (t) Model 2 of LightGBM.
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FIGURE 3
The area under receiver operation curve in model 1 and 2 for all the machine learning methods. Model 1, without VOCs; Model 2, with VOCs; RF,
random forest; C5.0, C5.0 decision trees; SGB, stochastic gradient boosting; MARS, multivariate adaptive regression splines; CART, classification and
regression tree; Lasso, least absolute shrinkage and selection operator; Ridge, ridge regression; XGBoost, extreme gradient boosting; CatBoost,
gradient boosting with categorical features support; LightGBM, light gradient boosting machine.

Among all examined variables, the most influential predictors
for identifying NAFLD were found to be: BMI, Triglycerides (TG),
Uric acid (UA), Fasting plasma glucose (FPG), Gamma-glutamyl
transferase (GGT), Gender, Low-density lipoprotein cholesterol
(LDL-C) and Sleeping hours.

In parallel, VOC profiling using 10 different machine learning
(Mach-L) techniques identified 10 key VOCs as significant
predictors for NAFLD. Ranked from most to least important, these
compounds are: 2-Propanol, Acetone, Butyl 2-methylbutanoate,
Diethylethanolamine, Urethane, β -Caryophyllene, Furfural,
Tridecane, 4-Methyloctanoic acid and (S)-2-Methyl-1-butanol.

Table 2 displays the comparative concentrations of these 10VOCs
in subjects with and without NAFLD, along with their corresponding
rankings based on variable importance across the Mach-L models.

Model performance evaluation

The predictive performance of all 10 machine learning (Mach-
L) methods is summarized in Table 3. Across all methods,
Model 2—which incorporated volatile organic compounds
(VOCs)—demonstrated superior performance compared to Model
1, which only included demographic, biochemical, and lifestyle
variables. Specifically, accuracy (ACC), sensitivity (Sens), specificity
(Spec), BA, and AUC were all improved in Model 2.

These findings suggest that the inclusion of VOCs significantly
enhanced the predictive accuracy of the models in identifying
individuals with NAFLD. The confusion matrices for Models 1 and
2 are presented in Figure 2, while Figure 3 illustrates the respective
AUC curves for each model. Additionally, the heatmap of the top 10
VOCs identified across the Mach-L algorithms is shown in Figure 4,
highlighting their relative importance in the classification task.

Table 4 presents the pairwise comparisons of AUC values for
the 10 Mach-L methods, evaluating the improvement in predictive
performance with the inclusion of VOCs compared to models

without VOCs. The results indicate that for all methods, the
inclusion of VOCs led to a statistically significant improvement
in model performance, as evidenced by p-values less than 0.05
across all comparisons. These findings suggest that incorporating
VOC data into the Mach-L models for NAFLD diagnosis results in
significantly enhanced predictive accuracy compared tomodels that
exclude VOCs.

Table 5 displays the most important predictive factors identified
by the Mach-L methods, encompassing demographic, biochemical,
lifestyle, and VOC-related variables. In total, 25 factors were
selected, including the top 10 VOCs. Among the non-VOC
variables, BMI emerged as the most influential predictor, followed
by triglycerides (TG), uric acid (UA), fasting plasma glucose (FPG),
γ -glutamyl transferase (γ -GT), gender, GPT, LDL-cholesterol, sleep
duration, albumin, total bilirubin, alkaline phosphatase, GOT,HDL-
cholesterol, and diastolic blood pressure (DBP). Notably, beginning
from the 10th rank in overall importance, 2-propanol was the first
VOC to appear. The complete list of VOCs identified is detailed in
the Methods section.

The Bee Swarm plot derived from the XGBoost SHAP was
shown in Figure 5. From top to the bottom listed the features
selected and the higher horizontal feature indicates it is more
important. Each circle represents a participant’s value impact of
that feature. The red color has stronger impact whilst the blue one
has less. Thus, this figure shows the direction of impact of each
participants. Finally, Figure 6 shows the absolute strengths each
feature from the highest to the lowest.

Discussion

To the best of our knowledge, this study represents the
largest cohort to date in the field of breath-based diagnostics
for NAFLD, with 1,501 participants included. Previous related
studies typically involved fewer than 100 subjects (Grewal
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FIGURE 4
Heatmap of the top 10 volatile organic compounds identified across the machine learning methods.

and Mahmood, 2009; Chen et al., 2015), thereby limiting the
generalizability and statistical power of their findings. Additionally,
those studies primarily employed traditional statistical methods,
which often fail to capture non-linear relationships among complex
variables. In contrast, our study applied 10 different Mach-L
algorithms, demonstrating that the inclusion of 341 VOCs in Model
1 led to a notable improvement in AUC, ranging from 5.20% to
9.80%, across different modeling approaches.

Volatile organic compounds (VOCs)—produced through
endogenous metabolism, microbiota activity, and various cellular
processes—hold significant potential as non-invasive biomarkers
for disease detection. One of the greatest strengths of VOC-based
diagnostics lies in their non-invasive nature, making them ideal
for monitoring chronic conditions, tracking disease progression,
and conducting large-scale population screening where invasive
procedures are impractical. Furthermore, VOCs may offer early
indicatorsofdisease, enablingpromptdiagnosis and intervention.This
is particularly crucial for diseases like cancer andmetabolic disorders,
where early detection significantly enhances treatment outcomes.

By constructing a quantitative VOCs library from both sub-
healthy and diseased individuals, predictive models and diagnostic
algorithms can be refined to detect diseases at earlier stages.
Importantly, the combination of VOC data with traditional clinical
parameters and biomarkers enhances the accuracy and robustness
of predictive models. Thus, the integration of quantitative VOC

analysis has great potential to advance preventive medicine and
revolutionize early disease detection.

Nevertheless, for VOCs to be effectively implemented in
clinical practice, further research and validation are essential.
Our present study lays a solid foundation for enhancing non-
invasive prediction of NAFLD, and additional studies based on these
findings are currently underway. Compared to previous research
utilizing breathomics in NAFLD patients (Table 6) (Akesson, 1977;
Alkhouri et al., 2014; Calabrese et al., 2023), our study offers a
more comprehensive investigation, not only due to its larger sample
size, but also through the simultaneous consideration of VOCs
and clinical data, and the application of multiple machine learning
algorithms for predictive modeling—an approach not previously
explored in this field. However, it should be noted that, at this stage,
due to two reasons the application of VOC in clinical practice is not
practical; first, the sensitivity and specificity are not high enough;
second, the cost of VOCs is still high.

In the present study we did use XGBoost in order to examine
the directions and impacts of each variable. The interpretation was
given in the results section and, out of the 20 features, 6 different
VOCs were selected and 2-propanol was the third important VOCS.

From the initial 341 VOCs analyzed, the top 10 most
relevant compounds were identified using machine learning
algorithms. Ranked by importance, these VOCs were: 2-propanol,
acetone, butyl 2-methylbutanoate, diethylethanolamine, urethane,
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TABLE 4 Pairwise comparisons of the area under curve values between in Model 1 (without VOCs) and Model 2 (with VOCs) using DeLong’s test.

Methods Model 1 Model 2 Difference Model 1 and Model 2 p-value

RF 0.777 0.848 7.10% −2.050 (0.040)

C5.0 0.683 0.765 8.20% −1.988 (0.047)

SGB 0.773 0.854 8.10% −2.384 (0.017)

MARS 0.768 0.846 7.80% −2.159 (0.031)

CART 0.696 0.781 8.50% −2.304 (0.021)

Lasso 0.768 0.866 9.80% −2.846 (0.004)

Ridge 0.780 0.832 5.20% −1.471 (0.041)

XGBoost 0.784 0.861 7.70% −2.278 (0.023)

CatBoost 0.779 0.860 8.10% −2.403 (0.016)

LightGBM 0.792 0.860 6.80% −2.014 (0.044)

VOC, volatile organic compound; Model 1, without VOCs; Model 2, with VOCs. The numbers in table are the corresponding p-values. p < 0.05 was considered statistically significant.

β-caryophyllene, furfural, tridecane, 4-methyloctanoic acid, and
(S)-2-methyl-1-butanol.

The gold standard for diagnosing NAFLD remains liver biopsy
(Brunt et al., 1999; Kleiner et al., 2005), yet this approach is invasive
and carries a complication risk of approximately 0.5% (Bravo et al.,
2001; Piccinino et al., 1986). Alternative, less invasive methods such
as the Fibrosis-4 Index, which incorporates age, liver enzymes, and
platelet count, have shown a positive predictive value (PPV) of
around 80% (Author Anonymous, 2025). Likewise, ultrasound has
demonstrated high sensitivity and specificity (84.8% and 93.6%,
respectively) in detecting moderate to severe steatosis. Given this,
one might argue that VOC analysis is more labor-intensive and
costly. However, the primary value of VOCs lies in their potential to
uncover novel insights into NAFLD pathophysiology, which could
eventually lead to new therapeutic targets. Importantly, this study
did not establish a causal relationship between VOCs and NAFLD.

As expected, the top-ranking variables in our analysis were
traditional risk factors, including BMI, triglycerides (TG), fasting
plasma glucose (FPG), among others. The first VOC to appear in
the list was 2-propanol. The well-established impact of traditional
clinical variables should not be overlooked (Huh et al., 2022), but
it must also be recognized that these factors may confound the
identification of VOCs truly associated with NAFLD. To address
this, our machine learning models adjusted for the effects of
conventional predictors, allowing for a more accurate evaluation of
VOC contributions.

Below is a brief discussion of the top 10 VOCs identified:

2-Propanol

Lu et al. demonstrated that subchronic exposure to 2-propanol in
mice induced NAFLD through dysregulation of the AMPK signaling
pathway (Lu et al., 2015). Interestingly, in our study, 2- propanol levels
were lower in NAFLD subjects, suggesting possible upregulation of

AMPK as a protective or compensatory modality (Fang et al., 2022).
However, the specific mechanistic studies on 2-propanol and fatty
liver are limited, its known hepatotoxicity and the findings from
animal studies support the possibility that 2-propanol exposure
can contribute to fatty liver development, especially with high
or prolonged exposure (Satapathy et al., 2015; World Health
Organizatiom-INTERNATIONAL P ROGRAMME ON CHEMICAL
SAFETY, 1990).

Acetone

Solga et al. previously reported that breath acetone was
associated with NAFLD in morbidly obese patients undergoing
bariatric surgery (Solga et al., 2006). This may reflect decreased d-
3- hydroxybutyrate dehydrogenase activity or altered NADH levels,
leading to acetone accumulation. There might be two mechanisms
behind this relationship. First, enhancing ketogenesis reduces
hepatic lipid accumulation in preclinicalmodels. Exogenous ketones
(e.g., β-hydroxybutyrate) show anti-inflammatory and antifibrotic
effects, suggesting protective roles (Kwon et al., 2024). Second, while
elevated acetone may indicate metabolic stress in early NAFLD,
targeted ketone supplementation or ketogenic diets could mitigate
steatosis and inflammation in specific contexts (Kwon et al., 2024).
Our findings were consistent, with higher acetone levels in NAFLD
subjects, though the difference was not statistically significant.

Butyl 2-methylbutanoate

This fatty acid ester, found naturally in apricots (Prunus
armeniaca), has been associated with celiac disease and IBS
(pubchem, 2025). Only one prior study has investigated its
link to NAFLD, finding higher prevalence in NAFLD patients
(Raman et al., 2013). It might have influences on NAFLD due
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to the gut microbiota alterations which correlates with elevated
2-butanone (a structurally related ketone), hinting at broader
metabolic disruptions involving ester-like compounds (Del et al.,
2016). In the same time, methyl tert-butyl ether, another ether
compound, shows epidemiological links to NAFLD risk in humans,
suggesting potential shared mechanisms for ester/ether-induced
metabolic dysfunction (Cui et al., 2024). Additional research is
needed to elucidate its pathophysiological role.

Diethylethanolamine

Akesson reported that diethylethanolamine promotes the
conversion of phosphatidylethanolamine to phosphatidylcholine, a
hepatoprotective compound (Akesson, 1977). However, at present,
there is no direct evidence linking it to NAFLD. It is well
known that alcohol metabolism produces acetaldehyde and reactive
oxygen species that cause fatty liver. While diethylethanolamine
is not an alcohol, its metabolism might theoretically produce
reactive intermediates that could similarly affect hepatic cells (Liu,
2014). Our findings—lower levels in NAFLD subjects—support this
mechanism and suggest its potential protective role.

Urethane

Studies in rats demonstrate that administration of carcinogenic
doses of urethane leads to liver microsomal damage, including
degranulation of liver microsomes, which impairs liver cell function
and contributes to hepatic injury (Dani, 1983). In human, it is found
that liver injury in workers exposed to N,N-dimethylformamide
(DMF) (Nakasone et al., 2011; Nomiyama et al., 2001; Redlich et al.,
1988), urethane levels were higher in the control group in our study.
While thismay indicate resistance to hepatic injury, further evidence
is required to substantiate this hypothesis.

β-caryophyllene

This anti-inflammatory, plant-derived compound activates
CB2 receptors, reducing oxidative stress and hepatic injury
in mice models (Varga et al., 2018). In the same time, it
could reduce intracellular lipid accumulation, primarily by lower
saturated fatty acids and modifying the lipid profile toward less
harmful species (Scandiffio et al., 2023). Our findings alignwith this,
supporting its potential therapeutic use.

Furfural

Interestingly, furfural has a complex relationship with
liver health. In low dose, it could improve mitochondrial
function, reduced reactive oxygen species, and restoration of the
NAD+/NADH redox balance, which is crucial for lipid metabolism
and preventing fatty liver progression (Cheng et al., 2022). But
when it is in high dose, a Maillard reaction product with antioxidant
properties, furfural has demonstrated hepatocyte-protective effects
in animal studies (Powell et al., 2014). This may explain its relevance
in our NAFLD model.
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FIGURE 5
The Bee Swarm plot derived from Shapley addictive explanation of eXtreme Gradient Boosting. Note: BMI: body mass index; TG, Triglycerides; LDL-C,
Low density lipoprotein cholesterol; GPT, Serum glutamic pyruvic transaminase; FPG, Fasting plasma glucose; T-Bili, Total bilirubin; GOT, Serum
glutamic oxaloacetic transaminase; UA, Uric acid; SBP, Systolic blood pressure; HDL-C, High density lipoprotein cholesterol; AFP, Alpha-fetoprotein;
eGFR, estimated Glomerular filtration rate; γ-GT, Gamma glutamyl transpeptidase.

Tridecane

There is currently no direct evidence or well-established
research linking tridecane specifically to NAFLD or its progression.
Tridecane is a hydrocarbon (alkane) commonly found in
petroleum products and some environmental pollutants, but
its direct impact on liver fat accumulation or liver metabolism
has not been clearly documented. The only evidence is that
tridecane has been associated with inflammation and lipid
peroxidation, particularly in distinguishing NASH from non-
NASH (The good scents company, 2025).

4-methyloctanoic acid

Although largely known for its use in food flavoring, this
compound is a fatty acid and may reflect metabolic changes.

The possible mechanisms include it is a BCFA involved in lipid
metabolism; it can modulate gene expression related to fatty
acid metabolism; and there is an indirect link to the NAVLD
(Zhao et al., 2022; Liu et al., 2018; Pooya et al., 2012). We
observed higher levels in non-NAFLD subjects, potentially
due to better hepatic metabolism in healthier individuals
(Yamaguchi et al., 2007).

(S)-2-methyl-1-butanol

Produced by Saccharomyces cerevisiae, this compound has
antioxidant properties (Wilson et al., 2022; Agarwal et al.,
2020; Landolfo et al., 2008), which may be linked to liver
protection. In the same time, it is a fatty alcohol lipid molecule
involved in metabolic pathways related to fatty acid and alcohol
metabolism. It can be oxidized to 2-methylbutyrate, which then
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FIGURE 6
The absolute Shapley addictive explanation values of each feature. Note: BMI, body mass index; TG, Triglycerides; LDL-C, Low density lipoprotein
cholesterol; GPT, Serum glutamic pyruvic transaminase; FPG, Fasting plasma glucose; T-Bili, Total bilirubin; GOT, Serum glutamic oxaloacetic
transaminase; UA, Uric acid; SBP, Systolic blood pressure; HDL-C, High density lipoprotein cholesterol; AFP, Alpha-fetoprotein; eGFR, estimated
Glomerular filtration rate; γ-GT, Gamma glutamyl transpeptid.

TABLE 6 Analysis pipelines of studies using breath-based VOCs towards non-alcoholic fatty liver prediction.

Technique Sample size # Of VOCs Methods References

GC-MS 46 127 Partial least square discriminant analysis Calabrese et al., 2023

SIFT-MS 60 14 Canonical discriminant analysis Alkhouri et al., 2014

GC-MS 60 220 Univariate analysis Raman et al., 2013

enters beta-oxidation to produce acetyl-CoA and propionyl-
CoA, key intermediates in energy metabolism (Thompson et al.,
2020). This indicates that (S)-2-methyl-1-butanol is metabolically
linked to fatty acid catabolism through its conversion to fatty
acid derivatives that feed into mitochondrial energy pathways.
While no prior study has evaluated its relationship with NAFLD,
our findings suggest it may play a role in hepatic defense
mechanisms.

Limitations

Despite the strengths of our study—including a large sample size
and comprehensiveVOCprofiling—there are important limitations.
In the present study, we do have limitations. First, this is a cross-
sectional study which is less persuasive than a longitudinal one.
There is no conclusion of cause-effect relationship could be drawn.
However, since some of these participants will continue to have a
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health check up in our clinic, in the future, we believe that we will
have a longitudinal study. Second, the participants were only limited
to Taiwanese. It should be exercised to another ethnic group with
cautious. In the future, since these participants will remain to be
followed up in the MJ clinic, longitudinal studies could be done by
using the present results of VOCs to predict future diseases. In the
same time, we will separate these participants into two groups; one
for selecting the VOCs, the rest will be treated as a validation group.

Conclusion

Using 10 different Mach-L algorithms, we identified the
relative importance of both clinical parameters and volatile
organic compounds (VOCs) in predicting non-alcoholic fatty liver
disease (NAFLD) within a cohort of 1,501 participants. Among
clinical variables, the most influential features included body mass
index (BMI), triglycerides (TG), uric acid (UA), fasting plasma
glucose (FPG), γ-glutamyltransferase (γ-GT), gender, low-density
lipoprotein cholesterol (LDL-C), and sleep duration.

In addition to traditional clinical predictors, 2-propanol
emerged as the most influential VOC, followed in descending
order by acetone, butyl 2-methylbutanoate, diethylethanolamine,
urethane, β-caryophyllene, furfural, tridecane, 4-methyloctanoic
acid, and (S)-2-methyl-1- butanol.The potential biological relevance
and mechanisms of action of these VOCs were discussed in relation
to liver metabolism and disease pathology.

While this study offers new insights into the role of VOCs
as non-invasive biomarkers for NAFLD, its cross-sectional design
limits the ability to determine causality. Future research should
aim to conduct longitudinal studies to further elucidate the
cause-effect relationships between VOCs and the development or
progression of NAFLD.
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