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Background: Uveitis is a complex intraocular inflammatory disease and
pathology results from the continuous production of proinflammatory cytokines
in the optical axis. Qinghuo Rougan Formula (QHRGF), a traditional Chinese
medicine (TCM) is now used to treat uveitis with desirable effect. However,
the mechanism of action is still unclear. This study aimed to explore the
potential diagnostic and therapeutic biomarkers for uveitis using systems biology
methods, including network pharmacology and weighted gene co-expression
network analysis (WGCNA).

Methods: A molecular drug-compound-target-uveitis interaction network was
established using network pharmacology. Functional enrichment analyses were
performed to screen potential signaling pathways. The uveitis gene expression
dataset from the Gene Expression Omnibus database was subjected to WGCNA
to identify gene co-expression modules related to uveitis and explore the
potential hub genes. The least absolute shrinkage and selection operator
(LASSO) model was used to identify the hub genes. Additionally, molecular
docking was performed to verify the accuracy and stability of the model. Finally,
the suppressive effects of QHRGF on uveitis were experimentally verified in vivo.

Results: Network pharmacology and functional enrichment analysis
showed that 18 targets and immune/inflammation-related pathways
were associated with the QHRGF-targeted pathway network. The yellow
module contained 120 genes had a strong correlation with uveitis using
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WGCNA. In total, 12 putative targets of QHRGF, differentially expressed genes,
and yellow module genes were determined. Six hub genes were identified
using LASSO model and the receiving operating characteristic curve analysis
demonstrated the model can serve as biomarkers for uveitis. The advantages of
these geneswere approved usingmolecular docking. Finally, in vivo experiments
provided evidence confirming that QHRGFwas identified as the key target of the
anti-inflammatory effect of uveitis.

Conclusion: In conclusion, this research revealed that QHRGF can be used to
treat uveitis through multiple components and targets. Meanwhile, the potential
anti-inflammatory action of QHRGF in the treatment of uveitis was verified
by combining network pharmacology and in vivo experiments, suggesting its
potential as a quite prospective agent for the therapy of uveitis.
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1 Introduction

Uveitis, which is an intraocular inflammatory disorder in
developed countries, can be classified according to the parts of the
eye involved (anterior, intermediate, posterior, or panuveitis) or
etiology (infectious or non-infectious) (Caspi, 2010; Santeford et al.,
2016). Conventional treatment for non-infectious uveitis is non-
specific and includes the frequent use of topical and/or systemic
corticosteroids and other immunosuppressive agents or biologics,
such as anti-tumor necrosis factor-α (TNF-α) antibodies. However,
these therapeutic strategies do not effectively prevent uveitis
relapse (Crabtree et al., 2019). Mounting studies have shown
that uveitis is associated with bacterial, viral infections, genetic,
and autoimmune factors (Chen et al., 2005; Klaska et al., 2017).
Targeted immunotherapy is an effective treatment strategy for
autoimmune disease (Daveson et al., 2017) and the therapeutic
potential of targeted immunotherapy for uveitis has piqued the
interest of the scientific community. Thus, there is an urgent need
to identify novel promising therapeutic avenues, the underlying
mechanism of pathogenesis, or novel immune-related biomarkers
with increased specificity to facilitate early diagnosis and establish a
comprehensive therapeutic schedule.

The main aim of systems biology, a biological science field,
is to predict the system-level biological networks and molecular
interactions (Danchin, 2009). The elucidation of molecular
interactions, such as protein-protein interactions (PPIs) and
protein-small molecule interactions are critical to explore the
mechanism of biological processes and identify treatments for
diseases (Balaji et al., 2012). Network pharmacology is a commonly
applied strategy that enables to comprehensively understand
the complex relationship between drugs and diseases based on
the interaction among drugs, ingredients, targets, and diseases
(Hopkins, 2008). Recently, traditional Chinese medicine (TCM)-
based therapeutics or natural medicines have become increasingly
popular owing to their advantages of multi-ingredient, multi-link,
and multi-target principles (Wang et al., 2008). Therefore, network
pharmacology or system biology can provide a novel strategy to
elucidate the molecular interactions between bioactive components
and the underlying mechanisms of TCM from a systemic and
holistic perspective.

Qinghuo Rougan Formula (QHRGF), a therapeutic used in
TCM, has been widely used to treat uveitis for several decades. The
composition of QHRGF is as follows form. Previously, we examined
the 10 major herbal components of QHRGF and demonstrated that
QHRGF exerts potent immunomodulatory effects and decreases the
occurrence of uveitis (Jing et al., 2019). In this study, a molecular
interaction network was established for the active small molecule
compounds of QHRGF and their protein targets using network
pharmacology. The therapeutic targets of QHRGF for uveitis were
predicted. The uveitis gene expression data were retrieved from
the Gene Expression Omnibus (GEO) database to identify co-
expression modules related to the disease status using weighted
gene co-expression network analysis (WGCNA). Furthermore, the
potential hub genes were identified, and a prognostic model was
constructed to distinguish uveitis from health. Molecular docking
was then performed to verify the accuracy and stability of the
model. Finally, we carried out biological experiments to validate
the mechanism by which QHRGF mediates its therapeutic effect
on uveitis. This research shifted the focus from simple network
pharmacological analysis to the mathematical modeling of the
systems biology approach, which improved our understanding
and enabled the prediction of the molecular mechanisms
underlying uveitis.

2 Methods

2.1 Preparation of QHRGF decoction

The composition of QHRGF was listed in Supplementary
 Table S1. There were 13 medicinal ingredients including Gentian
and others, all of which were purchased from Shandong Baiwei
Tang Traditional Chinese Medicine Decoction Pieces Co., Ltd.
Each bag of this product was measured in terms of gentiopicroside
(C16H20O9), which should not be less than 4.2 mg, and the
content of gardenia with geniposide (C17H24O10) and Scutellaria
baicalensis with baicalin (C21H18O11) should not be less than
4.2 mg and 13.8 mg, respectively. The ingredients were decocted
twice, the first time with 10 times quantity of water for 2 h, and the
second time with 8 times quantity of water for 1 h. The combined
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filtrates were concentrated under reduced pressure at 60°C to a
relative density of 1.5 g/mL. Then, the cornstarch was incorporated
into the slurry and mixed well, granulated, dried, shaped,
and packed.

2.2 High-performance liquid
chromatography (HPLC)

For quantitative analysis, a mixed reference solution of the
standards (30 μg gentiopicroside, 30 μg gardenoside, and 60 μg
baicalin) were prepared by precisely weighting and dissolving
them in 1 mL methanol. The QHRGF sample (2.0 g) was weighed
accurately, grinded, and extracted by ultrasonication with 50 mL
of 50% methanol for 30 min, then the solution was stirred for
homogeneity and filtered.The stationary phase was octadecylsilane-
bonded silica gel, and the mobile phase A was acetonitrile, and
the mobile phase B was 0.1% formic acid solution. The detection
wavelength was 254 nm. The number of theoretical plates of the
baicalin peak should be no less than 2,000. Precisely extract 5 μL
of the reference solution and the sample solution respectively, inject
them into the liquid chromatograph for measurement.

2.3 Selection of target compounds of
QHRGF and prediction of targets

The compounds of the 13 herbs of QHRGF were downloaded
from the Traditional Chinese Medicine Systems Pharmacology
(TCMSP, Version 2.3, http://lsp.nwu.edu.cn/) database (Ru et al.,
2014). The candidate active ingredients were screened based on
the following criteria using the in silico absorption, distribution,
metabolism, and excretion integrative model: oral bioavailability
(OB) ≥ 30%; drug likeness (DL) ≥ 0.18. OB is a pharmacokinetic
parameter that estimates the percent of an orally administered
drug reaching systemic circulations. Meanwhile, DL is a qualitative
concept used in drug design to estimate compounds with
“drug-like” properties (Pang et al., 2018). Additionally, the
predicted target genes of TCM ingredients were obtained from
the Encyclopedia of Traditional Chinese Medicine (ETCM,
http://www.tcmip.cn/ETCM/) database (accessed on March,
2024), which is a comprehensive data resource that aids in
the mechanistic investigation, new drug discovery, and clinical
application of TCM (Xu et al., 2019). The two databases can
compensate each other for the lack of some data on compounds.

2.4 Identification of uveitis-related and
immune-related genes

The uveitis-related target genes were obtained from the
GeneCards database (https://www.genecards.org/, accessed on
March, 2024), which is a searchable, integrative database
that furnishes information of all annotated and predicted
human genes (Qian et al., 2020). The keywords “uveitis” and
“immune” were used to search for uveitis-related and immune-
related targets, respectively.

2.5 Microarray data collection and
procession

In this study, the GSE7850 dataset (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE7850), comprising data of uveitis
and healthy (control) samples, was selected by narrowing the study
type and organism to “expression profiling by array” and “Homo
sapiens,” respectively, as well as using the inclusion criteria. The
gene expression profile of GSE7850, containing data on 24 uveitis
and 20 healthy samples, submitted by Justine Smith et al. was
analyzed using theGPL201 platform (AffymetrixHumanHG-Focus
Target Array). The probe name was converted to gene symbols
using the platform annotation information and probes with missing
expression values were removed. The average values of genes with
multiple corresponding probes were used as the expression values.

2.6 Identification of differentially expressed
genes (DEGs)

The Bayesian method of the Linear Models for Microarray
(Limma) package in R software was applied for identifying DEGs
between uveitis and healthy tissues (Diboun et al., 2006). The gene
expression data from the GSE7850 dataset were log2-transformed
and quantile normalized prior to differential expression analysis
using the limma package. The P-values were adjusted for multiple
testing correction with the Benjamini–Hochberg method to control
the false discovery rate (FDR). Significant DEGs were identified
based on the following criteria: |log2 fold change (FC)| > 1 and
adjusted P < 0.05. The DEGs of the GSE7850 dataset were visualized
using the volcano plot and heatmap, which were constructed using
the R package ‘ggplot2.’

2.7 Network construction and central
network topological analysis

To comprehensively understand the molecular mechanisms
of uveitis, the drug-compound-target-disease interaction network
was constructed for targets of QHRGF and DEGs based on
the interaction data. The network was visualized using the
Cytoscape software (Version 3.9.2, http://www.cytoscape.org/). In
this network, nodes represented the TCM-based therapeutics,
compounds, or targets, while the edges represented the compound-
target interactions.

The central network analysis was performed using the
topological method with the Cytoscape software plugins CytoNCA
and BisoGenet (Tang et al., 2015). BisoGenet provides an easy-to-
use interface that allows users to customize searches by specifying a
target set of genes to retrieve theirmolecular interactions froman in-
house database of Cytoscape (Martin et al., 2010). Two topological
properties (degree centrality, DC and betweenness centrality, BC)
were calculated to analyze the central topological attributes of the
nodes in the network. The levels of these two parameters represent
the topological importance of the nodes in the network. In addition
to analyzing the interactions among the target genes, other genes
associatedwith the target geneswere examined to accurately identify
the hub targets.
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2.8 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses were used
to explore the underlying biological progresses and functional
pathways of the targets with the clusterProfiler v3.6.0 (Yu et al.,
2012). Enrichments were considered significant at adjusted P < 0.05.

2.9 Weighted gene co-expression network
analysis (WGCNA)

Weighted gene co-expression network analysis (WGCNA) was
performed to identify genemodules associatedwith uveitis using the
WGCNA package in R (Langfelder and Horvath, 2008). Expression
data from the GSE7850 dataset were used as input. Outlier samples
were removed based on hierarchical clustering. A soft-thresholding
power of β = 5 was selected to achieve a scale-free topology (R2

> 0.9). An adjacency matrix was constructed and transformed
into a topological overlap matrix (TOM), followed by module
detection using dynamic tree cutting with a minimum module
size of 50 genes. Modules with similar expression profiles were
merged using a threshold of 0.25. Module eigengenes (MEs) were
calculated as the first principal component of each module. The
correlation between MEs and uveitis status was assessed using
Pearson correlation analysis to identify disease-relevant modules.
The module most strongly associated with uveitis was selected for
downstream analysis.

2.10 Identification of overlapping genes

Venn diagram, which was drawn using the R package ‘Venn
Diagram,’ was constructed to obtain the overlapping genes among
the target genes of active ingredients, DEGs, and co-expression
genes. Analyzing the functional interactions between proteins
can provide novel insights into the function of proteins and
improve our understanding of the general organizing principles of
functional cell systems. To mine the data of the direct or indirect
regulatory relationship, a PPI network was generated from Search
Tool for the Retrieval of Interacting Genes (STRING) database
(version 11.5; https://string-db.org/). Cytohubba, which was used
to analyze the genes, is a Cytoscape plug-in that can be used in
11 calculation methods to analyze and discover key targets and
subnetworks of a complex network (Chin et al., 2014). Additionally,
principal component analysis (PCA)was employed to investigate the
difference between uveitis and healthy samples using the overlapped
gene expression profiles.

2.11 Identification of hub genes using least
absolute shrinkage and selection operator
(LASSO)

LASSO was used to further narrow down the range of genes
and obtain an optimal model with the lowest expected prediction
error that can accurately predict observations in future sample
analysis (Sohn et al., 2009). In this study, the expression profile

of the overlapped genes was used to construct the LASSO model
to distinguish uveitis samples from control samples. To select the
optimal regularization parameter (λ), we performed five-fold cross-
validation using the glmnet package in R (Friedman et al., 2010).The
value of λ that minimized the cross-validated mean squared error
was chosen to build the final model. The lambda selection curve is
provided in Figure 5A. Given the limited sample size (n = 44), we did
not split the data into training and test sets. Instead, cross-validation
was used to avoid overfitting and ensure model robustness. Finally,
several hub genes were retained to construct the prognostic model.
A model index of individual sample was calculated as follows:

Risk index =∑Coe(i) × x(i)

where, Coef (i) and x(i) indicate the estimated regression coefficient
from LASSO analysis and the expression value of each hub gene,
respectively. The receiver operating characteristic (ROC) curve and
the area under the ROC curve (AUC)were calculated to examine the
accuracy of the constructed signature predictions.

2.12 Gene set enrichment analysis (GSEA)

GSEA was used to screen potential KEGG pathways based
on the overlapped gene expression profiles (Subramanian et al.,
2005).The c5.all.v7.1.symbols.gmt and c2.cp.kegg.v7.1.symbols.gmt
datasets in the MsigDB V7.1 database were used as reference
gene sets (Liberzon et al., 2015). These pre-ranked genes
were analyzed using GSEA with GSEA software (http://www.
broadinstitute.org/gsea) using default parameters. Enrichments
were considered significant at P < 0.05 and FDR <0.25.

2.13 Molecular docking

The 2D structure of the active ingredients corresponding
to the hub genes was obtained from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/). Next, the crystal structure
file of the protein was downloaded from RCSB Protein Data
Bank (RCSB PDB) database (http://www.rcsb.org/pdb/home/home.
do). Molecular docking was carried out using AutoDock Vina
(Version 1.2.0) (Trott and Olson, 2010). The 2D structures of active
compounds were retrieved from PubChem, and protein crystal
structures were downloaded from the RCSB Protein Data Bank.
Docking poses were ranked by binding energy (kcal/mol). For each
compound–target pair, we selected the pose with the lowest docking
score.These top-ranked conformations were visualized using PyMol
(Version 3.03) (Lilkova et al., 2015).

2.14 Animals and induction of experimental
autoimmune uveitis (EAU)

All animal experiments were carried out in accordance with the
Committee guidelines of the Eye Institute of Shandong University of
Traditional Chinese Medicine (2015-XK-013) and the Association
for Research in Vision and Ophthalmology (ARVO) Statement for
theUse ofAnimals inOphthalmic andVisionResearch.All surgeries
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were performed under anesthesia, and all efforts were made to
minimize animal discomfort and stress. Female Lewis rats aged six
to 8 weeks and weighing 160–180 g were purchased from Beijing
Vital River Laboratory Animal Ltd. (Beijing, China). Prior to the
study, all the rats were adapted to the housing conditions for 7 days.
Meanwhile, a routine examination was performed on all subjects
to rule out pre-existing eye diseases. The experimental conditions
for the animals were as follows: controlled room temperature of
25°C ± 1.731°C, a relative humidity of 50% ± 10%, and a 12-h
light/dark cycle.

Healthy Lewis rats aged 6–8 weeks were randomly divided into
the following groups: healthy control (NC) (n = 30), EAU (n = 30),
and QHRGF groups (n = 30). An emulsion of interphotoreceptor
retinoid-binding protein (IRBP) was prepared by dissolving 100 µg
of IRBP peptides, 100 µg of Mycobacterium tuberculosis H37Ra
(strain H37 Ra), and 150 µL of complete Freund’s adjuvant (CFA) in
sterilized phosphate-buffered saline (PBS, pH = 7.2) and making up
the volume to 300 µL. On day 0, a total of 300 µL of IRBP emulsion
was subcutaneously injected in three sites: base of tail and both
thighs (EAU andQHRGF groups).The control rats were immunized
only with CFA and H37RA.

2.15 Reagents and intervention with
QHRGF

IRBP peptides (residues 1,177–1,191; sequence
ADGSSWEGVGVVPDV) were synthesized by Shanghai Sangon
Biological Engineering Technology & Services Co., Ltd. (Shanghai,
China). H37Ra was purchased from Difco (Detroit, MI, USA), and
CFA was purchased from Sigma-Aldrich (St. Louis, MO, USA).
PBS, formaldehyde, paraffin, and hematoxylin and eosin (HE)
stain were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Roswell Park Memorial Institute-1640 medium
was purchased fromGibco;ThermoFisher Scientific, Ltd. (Waltham,
MA, USA). The rats in the QHRGF group were treated through
oral gavage (1,000 mg/kg bodyweight/day) during the experimental
period. Consecutive QHRGF was administered daily until the rats
were sacrificed. The equal volume of sterilized PBS was used for NC
and EAU groups.

2.16 Clinical evaluation and
histopathological analysis

The rats were examined on days 0, 3, 5, 7, 9, 11, 13, 15, 17, 19,
and 21 post-immunizations by Genesis-D camera (Kowa Company
Ltd., Japan) for the evaluation of the clinical scores. The degree
of inflammation was scored (Agarwal et al., 2012) on a scale of
0–4: Grade 0 indicates normal retinal architecture with no signs
of inflammation. 0.5 reflects mild inflammatory cell infiltration
affecting less than one-quarter of the section, with or without
photoreceptor damage. Grade 1 to 4 represent increasing severity of
inflammation and structural disruption, from photoreceptor outer
segment damage to full-thickness retinal damage.

Rats in the NC, EAU, and QHRGF groups were randomly
distributed on day 13 post-immunization, with 3 rats in each group.
Rats were anesthetized and euthanized by intraperitoneal injection

of 3% pentobarbital sodium (50 mg/kg).The eyeball was enucleated
immediately and fixed in eyeball fixative solution (Servicebio,
Wuhan, China) for 24 h at room temperature,The sampleswere then
dehydrated, embedded, sectioned, and subjected to HE staining.
The histopathological changes of the retina and ciliary body were
observed under microscope (Ti; Nikon Corporation, Tokyo, Japan).

2.17 Quantitative-PCR (Q-PCR)

Total RNA was isolated from the eye tissues, spleen tissues
and lymph nodes on day 13 post-immunization, and cDNA
was synthesized from total RNA using the High-Capacity cDNA
Reverse Transcription Kit (Thermo Fisher, USA). All qPCR
reactions were performed on the LightCycler®96 system (Roche
Diagnostics) using the Fast SYBR Green Master Mix (Roche).
Relative quantification was calculated by the 2−ΔΔCT method
and normalized by β-actin. The primer sequences for the target
(IL-10, IL-4, IL-17, and IFN-γ) and reference genes primer
are shown in Supplementary Table S2. Three biological replicates
were used per group (n = 3).

2.18 Enzyme-linked immunosorbent assay
(ELISA)

On day 13 post-immunization, extracted eye tissues, spleen
tissues and lymph nodes from the three groups were ground with
liquid nitrogen until reaching a uniformly fine powder, followed
by the addition of TRI reagent. After sonication and incubation
for 20 min on ice, extracts were centrifuged at 10,000 g at 4 °C
for 20 min. The protein levels of IL-10, IL-4, IL-17, and IFN-γ
on day 13 post-immunization were detected by ELISA using a
multifunctional microplate reader. Three biological replicates were
used per group (n = 3).

3 Results

3.1 High-performance liquid
chromatography (HPLC)

Figure 1 shows the experimental workflow. The chemical
composition of QHRGF was analyzed using high-performance
liquid chromatography (HPLC). Many distinct peaks appeared in
the chromatogram. Each peak represented a different compound
(Supplementary Figures S1A–E). To identify the main active
ingredients, we compared the peaks in the QHRGF extract with
those of known reference standards. All samples were tested under
the same chromatographic conditions. We confirmed three key
compounds by matching their retention times. Baicalin showed
a retention time of 7.84 min. Geniposide appeared at 9.52 min.
Gentiopicroside appeared at 11.36 min. Their relative peak areas
were 21.3%, 15.7%, and 12.9%. The peak for baicalin had more than
2000 theoretical plates. The resolution between peaks was greater
than or equal to 1.5. These values showed that the compounds were
well separated. We confirmed that the peaks matched the standard
compounds. The reference standards were obtained from the
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FIGURE 1
Overview of the study workflow. The study began with compound screening of Qinghuo Rougan Formula (QHRGF) using the TCMSP and, ETCM
databases. Putative targets were integrated with uveitis-related genes from public databases. Differential expression analysis and weighted gene
co-expression network analysis (WGCNA) were performed on the GSE7850 dataset to identify key disease-associated modules. Hub genes were
selected using LASSO regression modeling. Molecular docking was used to assess compound-target binding. In vivo experiments in the EAU rat model
were used to validate the anti-inflammatory effects of QHRGF.

National Institutes for Food and Drug Control (Beijing, China). The
batch numbers are listed in Supplementary Table S1. These results
showed that the QHRGF extract had stable and consistent chemical
composition. This extract was used in both the computational and
experimental parts of this study.

To validate the analytical method, we conducted a
series of quality assessments. Specificity was confirmed by
comparing QHRGF samples with negative controls lacking each

individual component, which showed no interfering peaks at
the respective retention times. The linearity was established
over appropriate concentration ranges with excellent correlation
coefficients: gentiopicroside (6.66–66.66 μg/mL, R2 = 0.9989),
geniposide (6.176–61.76 μg/mL, R2 = 0.9948), and baicalin
(13.334–133.34 μg/mL, R2 = 0.9999) (Supplementary Figure S1F).
Precision was supported by six repeated injections, with RSD values
below 2%. Reproducibility was confirmed in six independently
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prepared sample batches, with RSDs ranging from 1.9% to 2.3%.
Stability tests showed that all three compounds remained chemically
stable at room temperature over a 24-h period, with peak area RSDs
under 3.1%. These results confirm that the HPLC method used for
QHRGF is specific, linear, precise, reproducible, and stable, and
provides a reliable basis for qualitative and quantitative analysis.

3.2 Screening of active components of
QHRGF and predicting their putative
targets

In this study, a multi-dimensional analysis of the potential
biomarkers of uveitis and targets of QHRGF in uveitis was
performed using the integrated bioinformatics approach. To identify
the active ingredients of QHRGF, the components of each herb in
QHRGF were retrieved from the TCMSP database. Based on the
screening criteria (OB ≥ 30% and DL ≥ 0.18), 117 active compounds
were identified from 13 herbs of QHRGF (Supplementary Table S3).
A part of the compound ‘MolName’ in the TCMSP database was
missing, which was retrieved using the, ETCM database. In total,
3,520 potential targets of active components were identified and
used for subsequent analysis (Supplementary Table S4).

3.3 Identification of immune-related genes
and DEGs

The uveitis-related/immune-related targets were retrieved
from the GeneCards database. In total, 1,033 uveitis-related
were obtained. The GSE7850 dataset was downloaded from
the GEO database. In total, 216 DEGs (170 upregulated
genes and 46 downregulated genes) between uveitis and
healthy tissues were identified. The DEGs were visualized
using a heatmap (Supplementary Figure S2A) and a
volcano plot (Supplementary Figure S2B).

3.4 Network construction and central
network topological analysis

Analysis of common targets among putative targets and DEGs
that are potential targets of QHRGF revealed 18 common disease-
drug targets (Figure 2A). We found 18 genes that overlapped
between predicted QHRGF targets and DEGs. In a later step, we
also included 8 immune-related genes from pathway enrichment
results. This gave a total of 26 genes. These genes were linked
to inflammation-related pathways. An interactive QHRGF-
compound-target-uveitis networkwas constructed (Figure 2B).This
network comprised 70 nodes and 168 edges, suggesting the complex
correlations among different compounds and targets.

The topological feature analysis of the PPI was performed using
the Cytoscape plug-in CytoNCA based on the following two major
parameters: DC and BC. The criterion of the first screening was
DC ≥ 70, which yielded 368 targets and 14,077 edges (Figure 2C).
Next, 143 targets were then further screened with a criterion of BC
≥ 200, which yielded 6 targets and 136 edges. These six targets were
CDKN1A, VCAM1, NFKBIA, ICAM1, CASP3, andMYC, which can
serve as the targets for the therapeutic effect of QHRGF on uveitis.

3.5 Functional and pathway enrichment
analysis of the 18 common targets

To further explore the underlying mechanism of QHRGF
in uveitis, 26 common targets were subjected to functional
enrichment analyses. The top 3 enrichments of targets in the
GO term BP were response to lipopolysaccharide, response to
molecule of bacterial origin, and leukocyte migration. In the
CC category, the shared targets were significantly associated with
membrane raft and membrane microdomain. The top enrichment
of shared targets in the MF category was cytokine receptor binding
(Supplementary Figure S3A, B).Next, the sharedgeneswere subjected
toKEGGpathway enrichment analysis. Based on the threshold of adj-
P value <0.05, 59 KEGG pathways were obtained. Thirty significant
pathways significantly associated with the pathogenesis of uveitis
were shown in Supplementary Figures S3C, D.

3.6 Weighted co-expression network
construction and key module identification

To find the key modules associated with uveitis, all genes of
44 samples in the GSE7850 dataset were subjected to co-expression
analysis with the ‘WGCNA’ package in R. After quality control using
the WGCNA R package, none of the samples were removed in the
sample clustering (Figure 3A). We used a soft-thresholding power (β)
to highlight strong gene correlations and reduce weak ones. The β
value was set to 5. At this value, the scale-free topology fitting index
R2 reached 0.90, which ensured a scale-free network (Figure 3B).
We set the cut-off height to 0.25. This gave us seven modules for
further analysis (Figures 3C,D). Among these, the yellow module
showed the strongest link to uveitis.This was seen in themodule–trait
correlationheatmap(Figure 3E).Wealsoplotted thescatterplotofgene
significance (GS) for uveitis against module membership (MM) in
the yellow module (Figure 3F). This module included 120 genes. The
correlationwith uveitiswas strong (r = 0.72, p = 1.8 × 10−5).This result
remained significant after FDR correction (FDR <0.05).The other six
modules showedweaker or no significant correlations. Based on these
results, we selected the yellow module for further analysis.

3.7 Identification of cross-referencing
immune-related overlapped hub genes

The Venn diagram was used to intersect the putative targets of
QHRGF, DEGs, and yellow module genes. In total, 12 overlapping
genes were retained in this study (Figure 4A). PCA was performed to
further examine the distinct distribution between uveitis and control
samples using the expression profile of 12 overlapping genes. The
samples tended to be sorted into two sections.The distributionmodel
of uveitis samples was significantly different from that of control
samples (Figure 4B). In the STRING database, the PPI network of the
12 overlapping genes was constructed. These 12 overlapping targets
exhibited high confidence scores (confidence score ≥0.4). In the PPI
network, the disconnected nodes were hidden, indicating their strong
interactions. As shown in Figure 4C, the networks were generated
using the Cytoscape plug-in CytoHubba to calculate and identify the
importance degree of overlapped targets.
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FIGURE 2
Network construction. (A) The Venn diagram of uveitis targets from the GSE7850 dataset and Qinghuo Rougan Formula (QHRGF) targets. (B)
Construction of the “QHRGF-compound-target-uveitis” network. Green diamonds and circles represent herbs in QHRGF and active compounds,
respectively. Yellow nodes represent target proteins. (C) The process of topological screening for constructing the protein-protein interaction (PPI)
network. The network includes 18 overlapping targets that were shared between differentially expressed genes (DEGs) and QHRGF-predicted targets. It
does not include 8 additional immune-related genes that were identified later during functional enrichment analysis. These were added in downstream
analysis for pathway interpretation but are not part of the primary intersection used in network construction.

3.8 Prediction of potential biomarkers
using the LASSO model

Theexpression profiles of 12 overlapping genes were extracted to
construct the LASSO model (Figures 5A,B). Based on LASSO Cox
regression analysis, 6 genes (CDKN1A, VCAM1, NFKBIA, ICAM1,
IRF1, and CXCL10) were retained to construct the model index.
The gene-based model index was calculated as follows: model index
= (CDKN1A × −4.5978674) + (VCAM1 × 2.4030104) + (NFKBIA
× 12.5086637) + (ICAM1 × −0.2771247) + (IRF1 × 3.3248412) +
(CXCL10 × −1.0133916). ROC curve analysis was performed to
evaluate the potential diagnostic performance of the constructed
prognostic model and AUC value was 0.900 (Figure 5C). The
box diagram revealed that the model index values in the uveitis
samples were higher than those in the control samples (Figure 5D).

Furthermore, the expression levels of 6 genes in uveitis samples
were higher than those in control samples (Figure 5E). These results
suggest that the selected genes and the model index are highly
correlated with uveitis. The cross-validated model demonstrated
strong classification performance, indicating its potential value as a
predictive signature.

3.9 GSEA

GSEA revealed that compared with those in the CDKN1A-low
group, the KEGG pathways, such as the MAPK, T-cell receptor,
chemokine, and apoptosis signaling pathways were significantly
enriched in the CDKN1A-high group (Supplementary Figure S4).
Meanwhile, the KEGG pathways, such as the MAPK and
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FIGURE 3
Identification of modules associated with uveitis in the GSE7850 dataset. (A) Sample dendrogram and trait indicator. Sample clustering did not indicate
outliers. (B) Analysis of the scale-free fit index and the mean connectivity for various soft-thresholding powers (β). (C) Clustering of module
eigengenes. The red line indicates the cut-off height (0.25). (D) The cluster dendrogram of the common differentially expressed genes based on the
1-topological overlap matrix (TOM). Each module assigned with a unique color indicates a cluster of co-expressed genes. (E) Heatmap of the
correlation between module eigengenes and clinical traits of uveitis. (F) Scatter plot of module eigengenes in the yellow module.

T-cell receptor signaling pathways in the VCAM1-high, ICAM1-
high, NFKBIA-high, IRF1-high, and CXCL10-high groups were
significantly enriched when compared with those in the VCAM1-
low, ICAM1-low, NFKBIA-low, IRF1-low, and CXCL10-low groups
(Supplementary Figure S4; Supplementary Figure S5).

3.10 Molecular docking

To clarify the mechanism of the selected six hub genes
and their corresponding compounds at the molecular level, the
compounds were docked to the corresponding active pockets of

the target proteins. Five compounds docked to the active pockets
of CDKN1A. The specific data and theory combination model
are shown in Figure 6. The interaction between the protein target
and the small molecule compound was mediated predominantly
by hydrogen bonds. These interactions enabled the protein and the
compound to form a stable complex.

3.11 Ocular inflammation

The eye tissues of the NC group (Figure 7A) did not exhibit
distension and engorgement of the iris vessels. Ocular inflammation
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FIGURE 4
Identification of hub genes. (A) Twelve overlapped targets from the GSE7850 dataset, QRF, and GeneCards and weighted gene co-expression network
analysis (WGCNA). (B) Principal component analysis revealed differential gene expression between uveitis and control samples. (C) The protein-protein
interaction network of the 12 overlapping genes. The red nodes represent the big key nodes, followed by the orange and yellow nodes.

in the EAU and QHRGF groups peaked on day 13 post-
immunization. Inflammation was characterized by dilated blood
vessels in the iris, fibrin-like exudate in anterior chamber, abnormal
pupil contraction, and other symptoms. The severity of ocular
inflammation was remarkably attenuated in the QHRGF group
when compared with the EAU group (Figures 7B,D). Meanwhile,
on day 17 post-immunization, the severity of inflammation
was significantly mitigated in the EAU and QHRGF groups
(Figures 7C,E). The clinical scores of rats in the EAU and QHRGF
groups were recorded based on the clinical features at different
time points (Figure 7F).

3.12 Histopathological analysis

Histopathological examination revealed distinct inflammatory
changes across ocular tissues. In the ciliary body and iris, the
EAU group showed marked immune cell infiltration, edema,
and structural disorganization compared to the NC group,
which exhibited normal tissue architecture with no obvious
infiltration (Figures 7G,H). QHRGF treatment markedly alleviated
inflammatory responses in these regions, with reduced cell
infiltration and preserved morphology (Figure 7I). In the retina,
a semi-quantitative histological scoring system was applied to
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FIGURE 5
A model for predicting uveitis and verification of the expression of the model-related genes. (A) The optimal penalty parameter (λ) is selected using
five-fold cross-validation with minimum criteria. (B) Least absolute shrinkage and selection operator coefficient profiles of the 12 hub genes. (C) The
area under the curve (AUC) was 0.900. (D) The model index value in the uveitis samples was higher than that in the control samples. (E) The expression
levels of the model-related genes in uveitis samples relative to those in the control samples.

assess inflammatory infiltration and structural damage, following
previously published criteria (Agarwal et al., 2012). Rats in
the NC group displayed normal retinal layering and no signs
of inflammation (mean score: 0.3 ± 0.1), whereas the EAU
group exhibited extensive infiltration, retinal disorganization,
and tissue swelling (mean score: 3.2 ± 0.2; Figure 7H). Notably,
QHRGF administration significantly reduced retinal pathology,
preserving retinal structure with limited cellular infiltration (mean
score: 1.5 ± 0.3; Figure 7I). Statistical analysis confirmed a significant
difference between the EAU and QHRGF groups (P < 0.05).

3.13 The mRNA and protein levels of IL-10,
IL-4, IL-17, and IFN-γ

Results showed, using q-PCR, that the mRNA levels of IFN-
γ, IL-17, IL-4, and IL-10 in the liver tissues of the rats in the
EAU group were significantly associated with the progression of
uveitis (Figure 8A). On day 13 post-immunization, the QHRGF
treatment caused a significant increase in the mRNA levels of

IL-10, in comparison to the EAU and control groups. A similar
inverse trend was also observed in IL4 levels. As for the mRNA
levels of IL-17 and IFN-γ, the expression levels were significantly
reduced in the QHRGF treatment group compared with the EAU
group. Furthermore, the protein levels of IFN-γ, IL-17, IL-4, and IL-
10 in spleen, lymph nodes and eye tissues were consistent with those
of mRNA expression (Figure 8B).

4 Discussion

Chinese herbal formulations can significantly reduce the
recurrence rate of uveitis and alleviate the side effects caused by
corticosteroids or immunosuppressive agents. The identification of
immune-related biomarkers is an important step in the diagnosis,
prognosis, and prevention of uveitis. Additionally, the correlation
and interaction between these biomarkers must be elucidated.
Previously, we reported that QHRGF significantly inhibited uveitis
by regulating natural killer T cells and inhibiting the MAPK
signaling pathways in vivo (Jing et al., 2019). However, the
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FIGURE 6
Evaluation of the binding mode of screened drugs to their targets using molecular docking. (A–E) Binding mode of luteolin, quercetin, wogonin,
diosgenin, and acacetin to CDKN1A. (a) A schematic showing the overlay of the crystal structures of small molecule compounds and their targets was
illustrated using the Molecule of the Month feature. (b) Three-dimensional structures of the binding pockets were visualized using the PyMOL software.
(c) Two-dimensional interactions of compounds and their targets. All docking poses shown represent the top-ranked conformations with the lowest
binding energy (kcal/mol) for each compound–target pair.

Frontiers in Molecular Biosciences 12 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1632027
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Jing et al. 10.3389/fmolb.2025.1632027

FIGURE 7
Evaluation of clinical symptoms. (A) The representative images of intraocular inflammation in the healthy control (NC) groups were captured using a
Genesis-D camera. (B–E) The representative images of intraocular inflammation in the experimental autoimmune uveitis (EAU) and Qinghuo Rougan
Formula (QHRGF) groups were captured using a Genesis-D camera on days 13 and 17 post-immunization. (F) Changes in the clinical scores of the
three groups at different time points after immunization. The clinical scores are presented as mean ± standard deviation.

∗
P < 0.05, compared with the

NC group; #P < 0.05 compared with the EAU group. (G–I) Histopathological alterations in the ciliary body, iris, and retina of the three groups after
immunization. The sections were subjected to hematoxylin and eosin staining. Scale bar = 50 μm. Data are shown as mean ± SD. Each group included
3 rats (n = 3).

underlying molecular mechanisms and biomarkers were not
elucidated. Based on the findings of our previous study, this study
performed a comprehensive network pharmacological analysis of
QHRGF. The GEO dataset was examined using WGCNA. The
overlapping hub genes obtained from the analysis can be potential
novel biomarkers with increased specificity for the early diagnosis
of uveitis.

In this study, network pharmacology methods were used
to identify bioactive compounds in QHRGF and their target
proteins. Next, GO and KEGG pathway enrichment analyses were
performed with the 18 immune-related common targets based
on the constructed QHRGF-compound-target-uveitis network.
Several compounds in QHRGF have demonstrated favorable
pharmacokinetic and safety characteristics. For example, baicalin
and luteolin, two of the major flavonoids in the formulation,
have shown moderate oral bioavailability and low systemic toxicity
in preclinical studies (Hu et al., 2022; Zhang and Ma, 2024).
These findings support the potential for clinical development
of QHRGF-based therapies. Nonetheless, we acknowledge that
additional pharmacokinetic profiling and toxicological evaluations
are required to fully assess the safety and efficacy of QHRGF
in a clinical setting. Functional enrichment analysis revealed that
modules with a strong correlation with uveitis, including the TNF,

malaria, and IL-17 signaling pathways, were consistent with the
findings of our previous study. WGCNA, a systems biology method,
determines the correlation between the clinical traits and modules
using the optimal soft-threshold power (Qian et al., 2020).Weighted
network methods are useful for identifying consensus modules as
they enable the calibration of individual networks (Horvath et al.,
2012). In the present study, WGCNA of the uveitis dataset
(GSE7850) revealed seven functional modules. The yellow module
was highly correlated with uveitis. After intersection, 12 cross-
referencing overlapped genes with high functional significance
in the QHRGF-compound-target-uveitis network and the yellow
weighted network module were obtained. In the PPI network, the
level of importance of these overlapping genes was determined and
visualized using ‘Cytohubba.’The top 3 genes were IL6,VCAM1, and
ICAM1.

CDKN1A, VCAM1, NFKBIA, ICAM1, IRF1, and CXCL10 were
then identified with non-zero regression coefficients in the LASSO
model. LASSO regression was selected over other machine learning
methods, such as Random Forest or XGBoost, due to its strength
in producing interpretable models with a minimal set of non-zero
predictors. In contrast to ensemble methods, LASSO offers direct
insights into the contribution of individual genes to the model
(Tibshirani, 1996). ROC curve analysis demonstrated the LASSO
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FIGURE 8
Expression of Notch1, DLL4, IL-10, and IL-17A mRNA in spleen, lymph nodes, and eye tissues from the rats in NC, EAU and LXD groups at 13 days after
immunization. (A) mRNA levels of IFN-γ, IL-17, IL-4, and IL-10. (B) Protein levels of IFN-γ, IL-17, IL-4, and IL-10.

∗
P < 0.05, compared with the NC group;

#P < 0.05 compared with the EAU group. Data are shown as mean ± SD. Each group included 3 rats (n = 3).
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model represented a high AUC value (AUC = 0.9), suggesting that
this model may act as a biomarker for uveitis. The most important
hub genes were similar in topology analysis of the 18 common
targets, the PPI network, and the constructed LASSO model. This
finding is consistent with that of Becker. et al. (Becker et al.,
2012) who reported that multi-clustered proteins are central in the
network, contain increased numbers of domains, and are involved
in several regulatory processes. These features are considered
hallmarks of multifunctional proteins. Notably, several genes in the
panel are known to be expressed in peripheral immune cells and
detectable in blood or aqueous humor during ocular inflammation.
This raises the possibility that the model could be further developed
for non-invasive clinical applications, such as early diagnosis or
disease monitoring of uveitis.

Functionally, these six hub genes converge on key inflammatory
and immune pathways implicated in uveitis, including NF-κB,
MAPK, TNF, and chemokine signaling. CDKN1A is a cyclin-
dependent kinase inhibitor and direct transcriptional target of
NF-κB and p53. It mediates cell cycle arrest in response to stress
and inflammation, and has been shown to suppress T cell- and
macrophage-mediated inflammatory responses via MAPK pathway
modulation (Perkins, 2007; Seo et al., 2011). VCAM1 encodes
a vascular adhesion molecule upregulated by TNF-α and IL-
1β, facilitating leukocyte adhesion and transmigration across
the endothelium. It has been strongly associated with retinal
vascular inflammation and uveitis pathogenesis (Yousef et al., 2019).
NFKBIA encodes IκBα, which inhibits nuclear translocation of
NF-κB. Its degradation releases NF-κB, promoting transcription
of inflammatory mediators such as cytokines, chemokines, and
adhesion molecules including ICAM1 (Hoffmann et al., 2002).
ICAM1 is another adhesion molecule induced by inflammatory
stimuli. Its upregulation in retinal endothelial cells has been linked
to blood-retinal barrier dysfunction and leukocyte infiltration in
autoimmune eye diseases (He et al., 2014). IRF1 is a transcription
factor activated downstream of type I/II interferon and Toll-like
receptor pathways. It enhances expression of proinflammatory
genes including CXCL10 and has been implicated in Th1-
dominant autoimmune inflammation (Taniguchi et al., 2001).
CXCL10 is a chemokine that attracts activated T cells via
CXCR3. Elevated levels have been observed in aqueous humor of
uveitis patients and in experimental autoimmune uveitis (EAU)
models, where it contributes to CD4+ T cell recruitment and
tissue damage (Curnow et al., 2005). These functional roles are
in agreement with our GSEA findings, where the six genes were
enriched in MAPK, chemokine, and T-cell receptor signaling
pathways. The overlap between transcriptomic, network, and
machine learning analyses supports the robustness of these genes
as key inflammatory mediators in uveitis. Given their mechanistic
relevance and potential detectability in body fluids (e.g., CXCL10,
ICAM1), this panel may serve as a basis for future diagnostic or
therapeutic exploration.

Molecular docking simulation has important applications in the
field of computer-aided drug design and is often used to explain
potential intermolecular interactions (Xue et al., 2020). This study
demonstrated that five compounds dock to CDKN1A, indicating
the advantages of QHRGF with multiple components and multiple
targets in treating uveitis. Molecular docking study provided a
reasonable explanation for the interaction between proteins and

compounds and further confirmed the effectiveness and specificity
of QHRGF in the treatment of uveitis. This study used network
pharmacology analysis because the final targets identified using this
method can not only act as markers for the early diagnosis of uveitis
but also as therapeutic targets.

In conclusion, this study assessed the targets of QHRGF
involved in its therapeutic effects on uveitis using systems biology
methods, including WGCNA and network pharmacology. This
study identified six significantly upregulated genes (CDKN1A,
VCAM1, NFKBIA, ICAM1, IRF1, and CXCL10) and demonstrated
that QHRGF exerts therapeutic effects on uveitis using in
vivo experiments. However, future studies must examine the
contribution of the regulatory effects of these six hub genes to uveitis
development.
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