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Background: The clinical differentiation between obstetric antiphospholipid
syndrome (OAPS) and undifferentiated connective tissue disease (UCTD)
presents significant diagnostic challenges. This study employs metabolomics to
investigate metabolic reprogramming patterns in OAPS and UCTD, aiming to
identify potential biomarkers for early diagnosis.

Methods: Using LC-MS-based metabolomics, we analyzed serum profiles from
40 OAPS patients (B1), 30 OAPS + UCTD patients (B2), 27 UCTD patients (B3),
and 30 healthy controls (A1). Multivariate PLS-DA modeling, combined with
KEGG pathway and Gene Set Enrichment Analysis (GSEA), was applied to identify
disease-specific metabolic signatures.

Results: Metabolomic profiling detected 1,227 metabolites, including 412
in negative ion mode and 815 in positive ion mode. The two ionization
modes exhibited distinct chemical profiles, with PLS-DA analysis demonstrating
superior group discrimination in positive ion mode. B1 vs B2 (Negative ion
mode): nine metabolites were upregulated (notably 17(S)-HpDHA, showing
the largest fold-change as a potential biomarker), and one metabolite
was downregulated (5-sulfosalicylic acid). B1 vs B2 (Positive ion mode):
17 metabolites were upregulated (including 4-methyl-5-thiazoleethanol, a
promising biomarker), and eight were downregulated. B1 vs B3 (Negative ion
mode): 14metabolites were upregulated (highlighted by 3-hydroxybenzoic acid,
the most significantly altered candidate), and four were downregulated. B1 vs
B3 (Positive ion mode): 30 metabolites were upregulated (again featuring 4-
methyl-5-thiazoleethanol), and 32 were downregulated. B2 vs B3 (Negative
ion mode): 15 metabolites were upregulated (e.g., chlortetracycline), and
15 were downregulated (notably 6α-prostaglandin I1). B2 vs B3 (Positive
ion mode): 29 metabolites were upregulated (e.g., senecionine), and 64
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were downregulated (e.g., SM 9:1 2O/16:4). These metabolites represent robust
candidates for group discrimination. Enrichment analysis revealed that distinct
metabolic pathways were significantly associated with different groups and
ionization modes, suggesting divergent underlying metabolic mechanisms.

Conclusion: This study systematically characterizes the metabolic
reprogramming in OAPS, UCTD, and their comorbid states, identifying potential
diagnostic biomarkers. Differential metabolites and pathway analyses highlight
the critical role of immunity, contributing to a theoretical framework for
“metabolism-immunity-vascular” interactions.

KEYWORDS

obstetric antiphospholipid syndrome, undifferentiated connective tissue disease,
metabolomics, untargeted, metabolic biomarkers

Introduction

Autoimmune connective tissue diseases (CTDs) exhibit
significant gender disparities, with an incidence rate approximately
9–10 times higher in women of childbearing age than in men
(Marder et al., 2016; Arese et al., 2019). The interaction between
these diseases and the reproductive system is bidirectional: (1)
CTDs can cause reproductive dysfunction, including infertility
and recurrent miscarriage, and (2) immune remodeling during
pregnancy may modify disease progression, with the nature and
extent of this effect varying by disease subtype (Cervera and Balasch,
2008; Mecacci et al., 2007; Østensen et al., 2015). Among CTDs,
obstetric antiphospholipid syndrome (OAPS) and undifferentiated
connective tissue disease (UCTD) are of particular interest due to
their distinct clinical features.

OAPS is serologically characterized by persistent
antiphospholipid antibody positivity, with its core pathology
involving dysregulated immune-coagulation crosstalk
(Sammaritano, 2020; Valesini andAlessandri, 2005). Clinical studies
show that approximately 35% of OAPS patients develop severe
pregnancy complications, such as preeclampsia and fetal growth
restriction (Ruiz-Irastorza et al., 2010; Ceccarelli et al., 2012).
While complement activation and thrombosis are established
drivers of disease progression, the metabolic reprogramming
underlying these pathological changes remains poorly understood.
Current research primarily examines isolated system abnormalities,
lacking a comprehensive exploration of the immune-metabolic-
coagulation axis (Ceccar et al., 2022).

In contrast, UCTD—a heterogeneous clinical syndrome—lacks
standardized diagnostic criteria. Patients often present with
“subclinical” manifestations, such as Raynaud’s phenomenon,
arthralgia, and nonspecific autoantibody positivity, leading to
misdiagnosis as other rheumatic diseases in approximately
40% of early-stage cases (Hysa et al., 2023; Marwa and
Anjum, 2025; Antunes et al., 2019). This diagnostic uncertainty not
only delays treatment but also complicates molecular pathogenesis
research. Thus, identifying objective biomarkers to distinguish
UCTD from other CTDs is critical unmet clinical need.

Advances in multi-omics technologies have highlighted the
unique value of, metabolomics, given its “phenotype-proximal”
nature. Unlike the static data from genomics or transcriptomics, the
metabolome dynamically captures the body’s real-time response to

pathological stimuli (Skirycz and Dickinson, 2023). Untargeted
metabolomics, in particular, enables unbiased detection of
thousands ofmetabolites and has been successfully applied to classic
CTDs like systemic lupus erythematosus, revealing disruptions in
tryptophan metabolism and fatty acid oxidation (Ferreira et al.,
2019; Fernández-Ochoa et al., 2019; Bengtsson et al., 2016; Li J. et al.,
2018). However, research on OAPS and UCTD—especially
regarding metabolic profiles in comorbid cases—remains limited.

To address this gap, our study employs high-resolution
mass spectrometry to conduct the first systematic metabolomic
analysis of three characteristic populations (OAPS patients, UCTD
patients, and OAPS–UCTD comorbid patients). Our objectives
are to: (1) define disease-associated metabolic signatures; (2)
uncover pathogenic metabolic pathways, and (3) identify potential
biomarkers for accurate differentiation among OAPS, UCTD, and
healthy controls.

Materials and methods

Study design and patients

This study enrolled 127 female participants divided into four
groups: (1) B1 (n = 40): OAPS patients meeting both revised Sydney
International Antiphospholipid Syndrome (APS) Classification
Criteria (2006) and the definition of non-standard OAPS from the
“Expert Consensus on the Diagnosis and Management of Obstetric
Antiphospholipid Syndrome”; (2) B2 (n = 30): OAPS + UCTD
comorbidity patients; (3) B3 (n = 27): UCTD-only patients; and (4)
A1 (n = 30): healthy controls. UCTD diagnosis required: ≥1 CTD-
related clinicalmanifestation; serological evidence of autoimmunity;
failure to meet classification criteria for defined CTDs (Mosca et al.,
2008). OAPS diagnostic criteria included: Revised Sydney APS
Classification Criteria (2006) (Miyakis et al., 2006); Non-standard
OAPS per expert consensus, encompassing: Atypical laboratory
findings with typical clinical manifestations (e.g., aPL positive
twice within <12 weeks; aCL/β2GPI titers 20–39 GPL/MPL), or
Atypical clinical presentations with laboratory-confirmed APS (e.g.,
≥2 unexplained miscarriages, late-onset preeclampsia). Participant
ages were well-matched across groups (30.15–32.78 years), with
detailed characteristics presented in Table 1.
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TABLE 1 The baseline characteristics of included patients.

Variables OAPS (n = 40) OAPS complicated by
UCTD (n = 30)

UCTD (n = 27) Healthy control (n = 30)

Age (years) 31.175 ± 4.587 31.379 ± 4.986 32.778 ± 3.975 29.920 ± 3.346

Number of miscarriages 2.200 ± 1.054 1.185 ± 1.055 1.389 ± 0.678 -

Abortion within 10 weeks 1.275 ± 1.323 0.667 ± 1.164 1.308 ± 0.722 -

Abortion after 10 weeks 0.925 ± 0.721 0.500 ± 0.719 0.148 ± 0.355 -

Eclampsia 1 (2.5%) 0 (0.0%) 0 (0.0%) -

Intrauterine growth retardation 1 (2.5%) 1 (3.3%) 1 (3.7%) -

Fluid accumulation around the
gestational sac

3 (7.5%) 1 (3.3%) 3 (11.1%) -

premature birth 4 (10.0%) 4 (13.3%) 0 (0.0%) -

Sample collection and metabolomic
profiling

Morning fasting blood samples (5 mL) were collected from all
participants using standardized protocols. Following centrifugation
at 3,000 rpm for 10 min, serum aliquots were stored at −80 °C until
analysis. For LC-MS analysis, samples underwent methanol-based
protein precipitation followed by dual centrifugation (15,000 rpm,
20 min at 4 °C) to ensure optimal metabolite recovery. Quality
control measures included preparation of pooled QC samples
and methanol blanks to monitor system stability and background
interference throughout the analytical batches.

Metabolite identification and data
processing

High-resolution mass spectrometry data were processed
separately for positive and negative ionization modes using rigorous
quality filters, including CV <30% in QC samples and retention
time alignment (CV <10%). Metabolite identification followed
a tiered confidence approach: Level 1 identifications (12%) used
authentic standards; Level 2 (68%) relied on GNPS library matching
(cosine similarity >0.8); and Level 3 (20%) employed accurate mass
matching (<5 ppm) against HMDB/METLIN/LipidMaps. Missing
values were imputed using a k-nearest neighbors algorithm (k
= 10% group size) with Euclidean distance metrics to preserve
biological patterns.

Differential metabolite screening and
classification

Samples were divided into three comparison groups
corresponding to patients with OAPS, patients with OAPS
complicated by UCTD, and patients with UCTD. Multivariate
statistical analyses were then conducted, beginning with

unsupervised principal component analysis (PCA). PCA was
used to summarize and reduce the dimensionality of sample
features without considering group labels. It enabled visualization
of overall sample distribution, identification of clustering or
dispersion trends, and assessment of analytical stability, including
detection of outliers or unstable factors that could impact
further analysis.

Following PCA, partial least squares discriminant analysis (PLS-
DA) was performed on the full sample set using the Scikit-
learn library in Python 3.5.0. For PLS-DA modeling, 5-fold
cross-validation was implemented to optimize model parameters
(number of latent variables), with performance evaluated via
the Q2 metric to avoid overfitting. Given the moderate sample
sizes across groups (minimum n = 27 in B3) and minimal class
imbalance (maximum ratio 1.5:1 between groups), data balancing
techniques (e.g., SMOTE) were not required, as validated by stable
cross-validation performance (SD of Q2 < 0.05 across folds).
A PLS-DA scatter plot was subsequently generated to visually
display the separation of samples across groups, illustrating their
positions within feature space and further clarifying the differences
between groups.

Pathway enrichment and gene set
enrichment analysis

To further explore the biological significance of the identified
differential metabolites, a series of analyses was conducted. First,
the differential metabolites were annotated using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database. Based
on this annotation, pathway enrichment analysis was performed
to identify the metabolic pathways in which these differential
metabolites were significantly enriched and to clarify the biological
processes they may be involved in.

After identifying the key metabolic pathways, the decision tree
method was used to screen for differential metabolites involved in
these pathways from the complete set of differential metabolites.
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These analyses—including pathway enrichment and decision tree
screening—were conducted using R software and relevant packages,
specifically clusterProfiler, org.Hs.e.g.,.db, enrichplot, and ggplot2.

To further elucidate the functional dynamics and pathway
alterations across sample groups, Gene Set Enrichment Analysis
(GSEA) was performed. GSEA identifies functionally related gene
sets and associated pathway changes. Through quantitative scoring
and visual representation, it highlights active biological processes
and pathways across different risk stratifications, offering a broader
understanding of biological differences among samples from a
macroscopic perspective.

Statistical analysis

All statistical analyses were performed using version-controlled
computational environments. Python 3.5.0 was used with SciPy
v1.2.1 for hypothesis testing and scikit-learn v0.19.1 for data
preprocessing. R 3.4.3 was used for pathway analysis (clusterProfiler
v3.6.0), gene annotation (org.Hs.e.g.,.db v3.5.0), visualization
(enrichplot v1.6.0), and graphics (ggplot2 v2.2.1). Gene Set
Enrichment Analysis was conducted using GSEA v3.0 (Broad
Institute).

Differential metabolites were identified using the following
thresholds: (1) fold change (FC) ≥ 1.2 or ≤0.83 (equivalent to
log2FC ≥ 0.263 or ≤ −0.263) to ensure biologically meaningful
changes; (2) false discovery rate (FDR)-adjusted p-value <0.05
(Benjamini–Hochberg method) for statistical significance. Data
normality was assessed using the Shapiro-Wilk test (α = 0.05)
with Bonferroni correction applied for multiple comparisons. For
features meeting normality and homoscedasticity assumptions
(Levene’s test, p > 0.05), Hotelling’s T2 test was used to
assess multivariate group differences. For features violating
these assumptions, the Mann-Whitney U test with continuity
correction was applied, and the Benjamini–Hochberg false
discovery rate (FDR) method was used for multiple testing
correction (q < 0.05).

Results

Metabolite identification results

Following rigorous quality control procedures, a total of 1,227
metabolites were reliably identified across both ionization modes.
Ionization polarity significantly influenced metabolite detection:
412 metabolites were detected in negative ion mode (NEG), and 815
in positive ion mode (POS).

Superclass characterization revealed distinct chemical profiles.

• NEG mode: Predominantly lipids and lipid-like
molecules (56.46%), organic acids and derivatives
(14.63%), and benzenoids (9.18%), with additional
representation from organohalogen compounds (8.16%) and
phenylpropanoids/polyketides (4.08%).

• POS mode: Enriched in lipids and lipid-like molecules
(41.73%), organic acids and derivatives (21.37%), and
organohalogen compounds (17.81%), with further

representation from benzenoids (5.60%) and organic nitrogen
compounds (4.33%) (Figure 1A).

Multivariate analysis revealed ionization-dependent metabolic
variation.

• NEG mode: PC1 = 19.51%, PC3 = 7.64%
• POS mode: PC1 = 15.55%, PC3 = 6.14% (Figure 1B)

Key mass features contributing to PC1–PC2 separation
exhibited strong correlations (|r| > 0.7) within superclass
clusters, particularly lipid species in NEG mode and
alkaloids in POS mode (Figure 1C). Cross-modal correlation
analysis also demonstrated significant inter-mode metabolite
associations (Figure 1D).

Metabolite annotation

Metabolite annotation was conducted using three
complementary classification systems, with database-specific
biological insights illustrated in Figure 2.

• KEGG annotation categorized metabolites into functional
groups, including:

o Core metabolic processes: Metabolism
o Regulatory systems: Genetic information processing,

Environmental information processing
o Higher-order functions: Cellular processes,

Organismal systems
o Pathological associations: Human diseases (Figure 2A)

• HMDB classification revealed chemical superclass
distributions, identifying:

o Dominant classes: Lipids and lipid-likemolecules, organic
acids and derivatives, organoheterocyclic compounds

o Specialized metabolites: Benzenoids
o Functional molecules: Nucleoside/nucleotide analogues,

organic nitrogen compounds (Figure 2B)

Ionization mode-dependent lipid profiling included primarily
fatty acyls, glycerophospholipids, and sterol lipids (Figure 2C).

Differential metabolite screening results

The PLS-DA score plots systematically compare inter-group
metabolic disparities across three contrasts (B1 vs. B2; B1 vs. B3;
B2 vs. B3) in both ionization modes. This approach provides a
comprehensive overview of how metabolic profiles differ among
the groups.

In the negative ionization mode, PC1 accounted for
4.98%–7.99% of the variance (with a permutation p-value <0.01),
and PC2 accounted for 6.63%–10.45%. In positive ion mode,
the permutation p-values for these comparisons were also <0.01,
confirming the reliability of group separation in both ionization
modes. PC1 explained 4.29%–16.52% of the variance, while PC2
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FIGURE 1
Metabolite identification results. (A)Pie chart showing the primary classification of metabolites; (B)Total PCA plot of QC and all metabolic samples;
(C)Loading plot corresponding to the total PCA plot of QC and all metabolic samples; (D)Correlation analysis results of QC samples. ∗Left panels
represent negative ion mode; right panels represent positive ion mode. neg: negative ion mode; pos: positive ion mode.
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FIGURE 2
Metabolite annotation results. (A) Statistical chart of KEGG annotation results; (B) Statistical chart of HMDB classification annotation results; (C)
Statistical chart of LipidMaps classification annotation results. ∗Left panels represent negative ion mode; right panels represent positive ion mode.

accounted for 4.84%–7.15%. Notably, the positive ionization mode
exhibited superior group separation, as evidenced by the Q2 values
(Q2 = 0.01–0.31 in the positive mode compared to −0.21–0.19 in
the negative mode) (Figure 3). This indicates that the positive mode

is more effective in distinguishing metabolic differences between
the groups.

A volcano plot was used to visually represent the
distribution of differentially expressed metabolites when
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FIGURE 3
Differential metabolite screening results. (A) PLS-DA score comparison between Group B1 and Group B2; (B) PLS-DA score comparison between
Group B1 and Group B3; (C) PLS-DA score comparison between Group B2 and Group B3. ∗Left panels represent negative ion mode; right panels
represent positive ion mode.

comparing groups under both negative and positive ion modes
(Figure 4 and Supplementary File 1).

1. Comparison of B1 and B2:
o Negative ion mode: nine metabolites were upregulated

(log2FC ≥ 0.263, FDR <0.05) and one was downregulated

(log2FC ≤ −0.263, FDR <0.05). Among them, 17(S)-
HpDHA with a fold change of 4.57, showing the largest
fold-change as a potential biomarker, suggesting its
potential as a biomarker for distinguishing between B1
and B2, and one metabolite was downregulated (5-
sulfosalicylic acid).
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o Positive ion mode: 17 metabolites met the upregulation
criteria (e.g., 4-methyl-5-thiazoleethanol, log2FC = 0.62,
FDR = 0.012) and eight met the downregulation criteria.

2. Comparison of B1 and B3:
o Negative ion mode: 14 upregulated metabolites (e.g., 3-

hydroxybenzoic acid, log2FC=0.58, FDR=0.008) and four
downregulated metabolites (log2FC ≤ −0.263, FDR <0.05)
were identified.

o Positive ion mode: 30 upregulated (including 4-methyl-
5-thiazoleethanol, log2FC = 0.71, FDR = 0.005) and 32
downregulated metabolites passed the filtering criteria.

3. Comparison of B2 and B3:
o Negative ion mode: 15 upregulated (e.g., chlortetracycline,

log2FC = 0.49, FDR = 0.015) and 15 downregulated
(e.g., 6α-prostaglandin I1, log2FC = −0.32, FDR = 0.021)
metabolites were detected.

o Positive ion mode: 29 upregulated (e.g., senecionine,
log2FC = 0.55, FDR = 0.009) and 64 downregulated (e.g.,
SM 9:1 2O/16:4, log2FC = −0.41, FDR = 0.018) metabolites
met the thresholds.

Further analysis was conducted to identify overlapping
metabolites between the positive and negative ion modes across
all three group comparisons. The results are presented in Figure 5.
In the negative ion mode, there were 10 differential metabolites
between B1 and B2, 18 between B1 and B3, and 30 between B2 and
B3. In the positive ion mode, there were 25 between B1 and B2, 62
between B1 and B3, and 93 between B2 and B3.

Finally, Supplementary File 2 provides a comprehensive analysis
of the diagnostic capabilities of differentially expressed metabolites
across all group comparisons, including ROC curve analyses and
key metrics. Notably, several metabolites exhibited robust and
consistent discriminative power across both ionization modes, with
AUC values >0.8 in at least one group comparison, reinforcing
their potential as reliable biomarkers. These include: (1) In the
B1 vs. B3 comparison: 3-hydroxybenzoic acid (Negative Ion
Mode), demonstrated strong discriminative ability with an AUC
of 0.829. As highlighted earlier, this metabolite is a key candidate
biomarker in negative ion mode for distinguishing B1 from
B3 and is involved in pathways related to oxidative stress and
inflammation, which are central to OAPS pathogenesis; 4-methyl-5-
thiazoleethanol (Positive Ion Mode): exhibited a high AUC of 0.898,
consistent with its repeated identification as a prominent differential
metabolite in positive ion mode for B1 vs. B3. Its upregulation
aligns with enriched pathways such as choline metabolism, linking
it to immune-metabolic crosstalk in OAPS; Additional positive
ion mode metabolites with notable AUC values for B1 vs. B3
include senecionine (AUC: 0.857) and a sphingolipid derivative
(SM 9:1 2O/16:4, AUC: 0.839), both of which map to lipid
metabolism pathways (sphingolipid metabolism and linoleic acid
metabolism, respectively) that are significantly enriched in this
comparison. (2) In the B2 vs. B3 comparison: Chlortetracycline
(Negative Ion Mode): showed strong discriminative power with
an AUC of 0.888, consistent with its marked upregulation in
B2 vs. B3 and its association with perturbed microbial-immune
interactions in comorbid states; 6α-prostaglandin I1 (Negative Ion
Mode): exhibited an AUC of 0.810, aligning with its consistent
downregulation in B2 vs. B3 and its role in vascular smooth muscle

contraction pathways, which are dysregulated in the comorbid
state; In positive ion mode, SM 9:1 2O/16:4 (AUC: 0.847) and
5,557 (a linoleic acid derivative, AUC: 0.803) further supported the
relevance of sphingolipid and polyunsaturated fatty acidmetabolism
in distinguishing B2 from B3. These metabolites, by virtue of
their cross-modal consistency and association with disease-specific
pathways, form a cohesive biomarker panel that enhances the
reliability of distinguishing OAPS, UCTD, and their comorbid state.

Metabolic pathway enrichment analysis

Enrichment analysis was used to identify significantly enriched
pathways across different groups under both negative and positive
ion modes (Figure 6). Specifically.

1. B1 vs. B2 comparison:
o Negative ion mode: Pathways such as general metabolic

pathways and arachidonic acid metabolism were
significantly enriched.

o Positive ion mode: The caffeine metabolism pathway was
significantly enriched (Figure 6A).

2. B1 vs. B3 comparison:
o Negative ion mode: Significantly enriched pathways

included metabolic pathways, arginine and proline
metabolism, and ABC transporters.

o Positive ion mode: Pathways such as retrograde
endocannabinoid signaling, linoleic acid metabolism,
glycerophospholipid metabolism, choline metabolism in
cancer, arachidonic acid metabolism, and alpha-linolenic
acid metabolism were enriched (Figure 6B).

3. B2 vs. B3 comparison:
o Negative ionmode: Enriched pathways includedmetabolic

pathways, arginine and proline metabolism, and vascular
smooth muscle contraction.

o Positive ion mode: Enriched pathways included retrograde
endocannabinoid signaling, arachidonic acid metabolism,
sphingolipid metabolism, linoleic acid metabolism,
choline metabolism in cancer, and alpha-linolenic acid
metabolism (Figure 6C).

Notably, the metabolic pathway was enriched across all three
group comparisons under the negative ion mode, suggesting that it
may serve a foundational or universal role in themetabolic processes
of these conditions. Additionally, retrograde endocannabinoid
signaling, linoleic acid metabolism, and choline metabolism in
cancer were enriched in both the B1–B3 and B2–B3 comparisons.
This implies that these pathways may be critically involved
in the physiological or pathological differences represented by
these groups.

The results of the GSEA are available in Supplementary File 3,
including glycerophospholipid_metabolism, metabolic_pathways,
choline_metabolism_in_ cancer, steroid_hormone_biosynthesis,
arachidonic_acid_metabolism, alpha-linolenic _acid_metabolism,
and retrograde_endocannabinoid_signaling. With respect to
enrichment changes in functionally related metabolic pathways
across disease backgrounds, the findings suggest that no single
metabolic pathway exhibited dominant activity or consistent
alteration during disease progression.
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FIGURE 4
Volcano plots and bar charts of differential metabolites. (A) Volcano and bar charts for the comparison between Group B1 and Group B2; (B) Volcano
and bar charts for the comparison between Group B1 and Group B3; (C) Volcano and bar charts for the comparison between Group B2 and Group
B3. ∗Left panels represent negative ion mode; right panels represent positive ion mode.

Discussion

This study employed untargeted metabolomics coupled
with PLS-DA modeling to systematically characterize metabolic
alterations in OAPS, UCTD, and their comorbid state. Our
multi-modal approach identified distinct metabolic signatures
and dysregulated pathways that differentiate these clinical
conditions, overcoming limitations of current diagnostic methods
that rely on single-modal biomarkers or clinical criteria
alone (Mosca et al., 2008; Miyakis et al., 2006). Notably, our
model demonstrated particular value in distinguishing the
clinically challenging OAPS + UCTD comorbidity subgroup
(B2), where conventional diagnostic criteria often lack
specificity.

It is worth noting that previous large-scale metabolomics
studies on seven systemic autoimmune diseases have confirmed
that metabolite profiles involving unsaturated fatty acids,

acylglycines, acylcarnitines, and amino acids possess strong
disease-discriminating power (Fernández-Ochoa et al.,
2020). However, in the field of female-specific immune
disorders—particularly in studies investigatingmetabolic regulatory
mechanisms and biomarkers of OAPS, UCTD, and their comorbid
states—significant research gaps remain.The innovative value of this
study lies in its multi-dimensional metabolomics analysis, which
systematically elucidated the specific metabolic reprogramming
patterns of the three disease groups. The identified differential
metabolites and their associated pathways not only offer a new
perspective for understanding the comorbidity mechanisms of
OAPS and UCTD but also demonstrate translational potential
as auxiliary diagnostic markers, providing a theoretical basis for
developing novel diagnostic biomarkers.

This study revealed metabolic differences between patients with
OAPS and those with OAPS complicated by UCTD. In the negative
ion mode, nine metabolites were significantly upregulated and one
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FIGURE 5
Venn diagram and Z-score diagram of differential metabolites. (A) Results in negative ion mode; (B) Results in positive ion mode.

was downregulated. These differential metabolites were mainly
enriched in the general metabolic pathway and the arachidonic
acid metabolism pathway. Mechanistic analysis suggests that
activation of the arachidonic acid metabolism pathway may result
from a cascade reaction triggered by immune dysregulation
in the comorbid UCTD state (Zhu et al., 2024). Specifically,
increased activities of phospholipase A2 (PLA2) and cyclooxygenase
(COX) could promote the rapid conversion of arachidonic
acid—released from membrane phospholipids—into prostaglandin
H2 precursors, which are subsequently converted into various
prostaglandin subtypes by downstream isomerases (Collu et al.,
2020). The observed downregulation of 5-sulfosalicylic acid
indicates possible compensatory changes in secondary metabolic
pathways. Resource diversion within the main metabolic
pathway may hinder the synthesis or breakdown of this
metabolite via substrate competition or metabolic feedback
mechanisms.

In the positive ion mode, 17 metabolites were upregulated and
eight were downregulated, with the caffeine metabolism pathway
showing the most significant enrichment. The increased activity
of CYP1A2, a key enzyme in the N-demethylation of caffeine,
may accelerate the conversion of caffeine into metabolites such
as 1,7-dimethylxanthine and 1-methylxanthine. This phenomenon
may be linked to the chronic inflammatory state of patients with
comorbid conditions, as inflammatory cytokines are known to
regulate cytochrome P450 enzyme system expression (Lang and
Rettie, 2000). These findings suggest a characteristic metabolic
reprogramming pattern in patients with OAPS complicated
by UCTD: against a background of persistent immune-
inflammatory axis activation, the body intensifies the inflammatory
response via the arachidonic acid–prostaglandin cascade, while
abnormal activation of the caffeine metabolism pathway may
reflect a compensatory upregulation of hepatic detoxification
functions.
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FIGURE 6
Bubble charts of KEGG pathway enrichment. (A) Bubble chart of KEGG enrichment for the comparison between Group B1 and Group B2; (B) Bubble
chart of KEGG enrichment for the comparison between Group B1 and Group B3; (C) Bubble chart of KEGG enrichment for the comparison between
Group B2 and Group B3. ∗Left panels represent negative ion mode; right panels represent positive ion mode. neg: negative ion mode; pos:
positive ion mode.
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The significantly upregulated or downregulated metabolites
identified in the comparison between OAPS and OAPS +
UCTD may also have relevance as biomarkers in other immune-
mediated diseases. For instance, 17(S)-HpDHA—significantly
upregulated in the negative ion mode in patients with OAPS
+ UCTD compared to those with OAPS—has been associated
with inflammatory responses in previous studies (Butovich et al.,
2006). In autoimmune diseases such as rheumatoid arthritis,
similar metabolites within the arachidonic acid metabolism
pathway have been proposed as potential biomarkers, highlighting
the importance of 17(S)-HpDHA in immune-related processes
(Butovich et al., 2005).

Additionally, 4-Methyl-5-thiazoleethanol, which showed
marked upregulation in the positive ion mode, has not been
widely studied as a biomarker in immune diseases. However,
its significant differential expression in our study suggests it
could represent a novel biomarker candidate—not only for
distinguishing OAPS from OAPS + UCTD but also potentially
for other immune-mediated conditions. Further investigation into
its role in immune regulation may uncover new diagnostic and
therapeutic targets.

This study revealed that, under the negative ion mode,
compared with the UCTD group, the OAPS group had 14
significantly upregulated metabolites and four downregulated
metabolites. The differential molecules were mainly enriched in
the general metabolic pathway, arginine and proline metabolism,
and the ABC transporters pathway. In patients with OAPS,
hormonal dysregulation and immune homeostasis imbalance
drive an overall increase in metabolic activity (Miyara and
Sakaguchi, 2011). Extensive activation of the primary pathway
may lead to characteristic reallocation of metabolic resources
in certain secondary pathways through substrate competition
and metabolic feedback mechanisms. The upregulation of
metabolites related to arginine and proline metabolism is closely
associated with the dual demands of the pathological state
(Li B. et al., 2024).

The enrichment of differential metabolites in the ABC
transporters pathway indicates altered activity in the membrane
transport system. This pathway primarily contributes to the
regulation of cell membrane homeostasis by modulating
mechanisms such as drug efflux and the transport of inflammatory
mediators, and may be associated with the development
of drug tolerance during the clinical treatment of patients
with OAPS (Lu et al., 2014).

The upregulated and downregulated metabolites identified in
the comparison between OAPS and UCTD also hold implications
for biomarker discovery in immune-related diseases. For example,
3-Hydroxybenzoic acid, which was significantly upregulated in
OAPS compared to UCTD under the negative ion mode, has
been associated with oxidative stress and inflammation—key
processes in many immune-mediated diseases (Gonthier et al.,
2003). In systemic lupus erythematosus, metabolites related to
oxidative stress pathways have been proposed as biomarkers,
suggesting that 3-Hydroxybenzoic acid could serve not only as a
biomarker for OAPS but also for other immune-related conditions.
4-Methyl-5-thiazoleethanol, which again showed differential
expression under the positive ion mode, further underscores its
potential as a biomarker. Its consistent and significant variation

across comparisons suggests it may be a key metabolite for
distinguishing OAPS from UCTD and could also play a role in
the pathophysiology of other, yet-to-be-identified immune diseases
(Yang et al., 2024).

Under the positive ion mode, a total of 30 metabolites were
upregulated and 32metaboliteswere downregulated.Thedifferential
pathways involved six core metabolic pathways, including
retrograde endocannabinoid signaling, linoleic acid metabolism,
and others. Alterations in the retrograde endocannabinoid
signaling pathway may reflect imbalances in central–peripheral
immune regulation (Li F. et al., 2024). The endocannabinoid
system may contribute to the regulation of OAPS-related
neuroinflammation through retrograde signaling mediated by
CB1/CB2 receptors (Baldassarr et al., 2008). Abnormalities in
linoleic acid and α-linolenic acid metabolism suggest a disrupted
ω-6/ω-3 polyunsaturated fatty acid ratio, which may promote
the production of pro-inflammatory mediators (Taylor et al.,
2022). The accumulation of glycerophospholipid metabolites
is associated with membrane phospholipid remodeling and
abnormal sphingolipid signal transduction (Jana and Pahan,
2010). Enrichment of the choline metabolism in cancer pathway
implies a possible link between disordered phospholipid
metabolism and abnormal regulation of cell proliferation under
pathological conditions (Sonkar et al., 2019). Reactivation of the
arachidonic acid metabolism pathway further confirms excessive
immune cell activation (Tu et al., 2023). The prostaglandins
and leukotrienes produced through the COX/LOX dual
pathway may form a pro-inflammatory positive feedback loop
(Liu et al., 2019).

By integrating data from both ion modes, this study found
that metabolic abnormalities in OAPS exhibit multi-dimensional
interactive characteristics: (1) Remodeling of lipid metabolism
(arachidonic acid/linoleic acid pathways) and inflammatory
responses form a bidirectional regulatory system; (2) ABC
transporters and choline metabolism collectively constitute
a membrane homeostasis regulatory network; (3) Arginine
metabolism is linked to vascular endothelial dysfunction via
the NO synthesis pathway. This coordinated imbalance across
multiple pathways may serve as an important metabolic signature
distinguishing OAPS from UCTD.

Through comparative analysis of the metabolomic
characteristics of patients with OAPS complicated by UCTD
and patients with UCTD alone, it was found that under the
negative ion mode, 15 metabolites were upregulated and 15
were downregulated. The differential metabolites were mainly
enriched in the general metabolic pathway (metabolic pathways),
arginine and proline metabolism, and the vascular smooth muscle
contraction pathway. Hormonal dysregulation and immune-
inflammatory cascade reactions triggered by the comorbid
disease state drive the remodeling of the cellular metabolic
network, resulting in the disruption of metabolic homeostasis
(Chen et al., 2024).

The significant enrichment of the arginine and proline
metabolism pathway suggests a biphasic regulatory mechanism.
Arginine is rapidly converted to NO via the inducible nitric
oxide synthase (iNOS) pathway, participating in the regulation of
vascular tone and the activation of immune cells (Bouzin et al.,
2007). Enhanced proline synthesis may reflect a response to
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tissue damage caused by chronic inflammation, as proline serves
as a critical precursor for collagen synthesis, particularly in
skin and vascular lesions (Mahout et al., 2024). The abnormal
enrichment of the vascular smooth muscle contraction pathway
is highly consistent with clinical phenotypes (Jiang et al., 2021).
Differential metabolites in this pathway may contribute to vascular
vasomotor dysfunction by influencing calcium channel activity or
altering the balance of vasoactive substances, offering a metabolic
explanation for the increased thrombotic risk in patients with OAPS
complicated by UCTD.

In the comparison between OAPS + UCTD and UCTD,
the differentially expressed metabolites also have relevance to
biomarker research in other immune diseases. Chlortetracycline,
which was upregulated under the negative ion mode in patients
with OAPS + UCTD, possesses known antibacterial and anti-
inflammatory properties. In several chronic inflammatory diseases,
antibiotics and their metabolites have been explored as potential
biomarkers due to their interactions with the immune system. This
suggests that chlortetracycline could serve as a relevant biomarker
not only for distinguishing OAPS + UCTD from UCTD but
also for understanding immune-microbial interactions in other
immune-related conditions (Li et al., 2023). 6α-Prostaglandin
I1, which was downregulated, plays a role in regulating platelet
function and inflammation. In diseases such as atherosclerosis,
which involves immune-inflammatory components, similar
prostaglandin-related metabolites have been investigated as
biomarkers. This underscores the importance of 6α-Prostaglandin
I1 in immune-related processes and its potential utility as a
biomarker across multiple immune-mediated diseases. Under the
positive ion mode, 29 metabolites were found to be upregulated,
and 64 were downregulated. The differential pathways involved
six core pathways, including endocannabinoid signaling and
polyunsaturated fatty acid metabolism. Endocannabinoids are
known to exacerbate autoimmune responses by altering neuronal
synaptic plasticity via CB1 receptors and disrupting macrophage
polarization throughCB2 receptor signaling (Chiurchiù et al., 2018).

Additionally, the synchronous activation of arachidonic acid,
linoleic acid, and α-linolenic acid metabolism constitutes a “triad”
of pro-inflammatory lipid mediators.

(1) the COX/LOX dual pathways promote the excessive
production of inflammatory mediators such as PGE2 and
LTB4 (Marcouiller et al., 2005); (2) an imbalanced ω-6/ω-
3 polyunsaturated fatty acid ratio alters cell membrane
phospholipid composition, affecting immune cell reactivity
(Robinson et al., 2001); (3) insufficient synthesis of
inflammation-resolving mediators such as lipoxins impairs
the resolution phase of inflammation (Jackson et al.,
2023). Co-occurring abnormalities in sphingolipid and
choline metabolism further reveal disruptions in membrane
homeostasis mechanisms: (1) alterations in the sphingosine-1-
phosphate (S1P) gradient may impair lymphocyte migration
(Lee et al., 2024); (2) disruptions in choline metabolism
can affect the integrity of lipid rafts and interfere with
Toll-like receptor signaling by altering phosphatidylcholine
synthesis (Sanchez-Lopez et al., 2019).

Notably, two pathways—steroid hormone biosynthesis and
retrograde endocannabinoid signaling—emerged as consistently

enriched across multiple group comparisons, suggesting they
represent conserved metabolic shifts in OAPS, UCTD, and their
comorbid state. These pathways hold significant translational
potential: (1) Steroid hormone biosynthesis: Enriched in B1 vs.
B3 and B2 vs. B3 (both ion modes), this pathway links to the
well-established hormonal dysregulation in autoimmune diseases
(Ye et al., 2023). Key metabolites in this pathway showed AUC
values >0.8 in ROC analyses, supporting their utility as part of a
multi-marker panel. Clinically, steroid hormonesmodulate immune
cell function and vascular reactivity (Santos et al., 2022), making
this pathway a candidate for targeted therapies to balance immune-
vascular crosstalk in OAPS; (2) Retrograde endocannabinoid
signaling: Consistently enriched in B1 vs. B3 and B2 vs. B3 (positive
ion mode), this pathway regulates immune cell migration and
neuroinflammatory responses via CB1/CB2 receptors (Li X. et al.,
2018). Metabolites such as anandamide could serve as biomarkers,
while targeting this pathway with CB2 agonists might suppress
pro-inflammatory cytokine release without central nervous system
side effects (Osorio-Perez et al., 2025). These conserved pathways,
by bridging metabolism, immunity, and vascular function, offer
both diagnostic and therapeutic opportunities to improve clinical
management of these challenging conditions.

Clinically, the AI-guided metabolic classifier holds promise
for two key applications: (1) Early diagnosis of ambiguous cases,
particularly the comorbid B2 subgroup, where overlapping clinical
features often delay classification—our model’s AUC of 0.89 for
B2 vs. B1/B3 surpasses standard serological tests. (2) Stratified
treatment, as enriched pathways point to targeted interventions for
inflammation-driven B2 cases, versus vascular-focused therapies for
lipid metabolism-dominant B1.

A key limitation is the potential for false positives or
unresolved isomers in metabolite identification. While our tiered
approach (MS/MS similarity >0.8, mass error <5 ppm) reduces
this risk, structural isomers may be conflated due to overlapping
MS/MS spectra. Additionally, low-abundance metabolites (Level
3 annotations) carry higher false discovery risk. Future studies
should integrate authentic standards for Level 1 validation and ion
mobility spectrometry to resolve isomeric ambiguity, enhancing
the specificity of identified metabolic signatures. Moreover,
the small sample size and single-center design, may restrict
generalizability—multi-center validation with larger cohorts is
needed. Additionally, metabolic profiles may be confounded by
concurrent medications, highlighting the need for prospective
studies controlling for such variables. Future multi-center studies
with larger cohorts will incorporate multivariate regression models
to adjust for these variables, further validating the stability of
the identified metabolic signatures. Furthermore, the detailed
epidemiological variables such as body mass index, smoking status,
and dietary habits were not systematically recorded. These factors
could potentially confound metabolic profiles, as they are known to
influence lipid and amino acid metabolism—pathways enriched
in our analysis. Finally, our cohort exclusively included female
participants, reflecting the strong association ofOAPSwith obstetric
outcomes and the higher prevalence of UCTD in reproductive-
aged women. However, this excludes the possibility of exploring
gender-specific metabolic differences, particularly in UCTD, where
male patients may exhibit distinct pathophysiological features.
Future studies will incorporate comprehensive epidemiological
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data collection and include male participants to address these gaps,
enhancing the generalizability of our findings.

Conclusion

This study, through multi-level metabolomics analysis,
systematically characterized the metabolic reprogramming features
of OAPS, UCTD, and their comorbid state, providing essential
molecular insights into their pathophysiological mechanisms. The
identification of differential metabolites and related pathways
not only revealed potential biomarker clusters but also helped
establish a theoretical framework for the interactive regulation of the
“metabolism–immunity–vascular system,” laying the groundwork
for developing early diagnosticmodels and individualized treatment
strategies based on metabolic interventions.

However, several aspects require further investigation.

(1) The broad-spectrum detection capabilities of untargeted
metabolomics may introduce identification bias for low-
abundance metabolites. Future studies should integrate
targeted validation methods (e.g., LC-MS/MS quantification)
and spatial metabolomics techniques (e.g., MALDI-IM-MS)
to enhance detection accuracy.

(2) Disease subtype heterogeneity (e.g., variations in
antiphospholipid antibody profiles) and treatment-related
confounding factors (e.g., use of heparin or hormones) may
affect the specificity ofmetabolic signatures. It is recommended
to expand sample sizes through multi-center cohort studies
and implement stratified analysis to control for these variables.

(3) Current analyses remain correlative in nature. To
determine causality, disease animal models should be
developed, and the functional relevance of key metabolic
pathways should be validated using interventions such as
metabolic enzyme inhibitors or isotope-labeled metabolic
flux analysis.
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