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Acute pancreatitis (AP), a life-threatening gastrointestinal emergency, is
characterized by acute onset, rapid clinical deterioration, and high mortality
rates, imposing profound long-term health burdens and socioeconomic
costs on patients and healthcare systems. Current therapeutic strategies
focus on supportive care, as no curative therapies exist to halt AP
progression. Traditional Chinese medicine (TCM), with its multi-target, multi-
component, and multi-pathway pharmacological properties, has emerged
as a promising therapeutic drug against inflammation-driven pathologies,
including AP. This review systematically discussed the assembly, activation,
and pathogenic contributions of the NOD-like receptor family pyrin domain-
containing 3 (NLRP3) inflammasome in AP pathogenesis. Mechanistically,
NLRP3 activation exacerbated pancreatic injury through caspase-1-dependent
maturation of interleukin-1β (IL-1β) and gasdermin D (GSDMD)-mediated
pyroptosis, perpetuating systemic inflammation. We systematically summarized
the research progress of TCM in the treatment of AP by reducing pancreatic
necrosis, neutrophil infiltration, and intestinal barrier dysfunction through
targeting NLRP3 inflammasome, as well as its clinical evidence. Collectively, this
review highlights the translational potential of TCM as an adjunctive therapy for
AP through NLRP3 inflammasome inhibition, offering mechanistic insights and
evidence-based support for its integration into integrative medicine strategies.
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GRAPHICAL ABSTRACT

The functional role and mechanisms of TCM in the prevention and treatment of AP by inactivation of NLRP3 inflammasome. TCM, traditional Chinese
medicine; OS, oxidative stress; TLR4, toll-like receptor 4; MAPK, mitogen-activated protein kinase; JNK, c-Jun N-terminal kinase; ERK, extracellular signal-
regulated kinase; Nrf2, nuclear factor-erythroid factor 2-related factor 2; ARE, antioxidant response element; Keap1, Kelch-like ECH-associated protein 1;
AP, acute pancreatitis.

1 Introduction

Acute pancreatitis (AP) is a life-threatening inflammatory
disorder characterized by premature activation of pancreatic
enzymes, leading to autodigestion, edema, hemorrhage, and
necrosis of pancreatic tissues (Mederos et al., 2021). Epidemiological
data indicated that approximately 20%of patientswithAPdeveloped
severe AP, which was characterized by dysregulated cytokine
storms that exacerbate pancreatic damage and precipitate multi-
organ failure (e.g., pulmonary insufficiency, intestinal barrier
dysfunction) (Garg and Singh, 2019). Global health statistics
revealed that the global incidence and death of AP increased
by 2.75 million and 122,416 in 2021 (Iannuzzi et al., 2022),

which undoubtedly imposed substantial socioeconomic burdens
on patients, families, and healthcare systems. Current management
paradigms remain predominantly supportive, prioritizing aggressive
fluid resuscitation, opioid-sparing analgesia, and enteral nutrition to
mitigate systemic complications (Petrov and Yadav, 2019). Invasive
procedures were reserved exclusively for managing refractory
complications, such as infected necrotizing pancreatitis or persistent
pseudocyst-related symptoms (Gardner et al., 2020). These clinical
challenges underscored the urgent need to unravel AP pathogenesis
and developed effective preventive and therapeutic strategies.

A critical driver of AP pathogenesis was the dysregulated
activation of the nucleotide oligomerization domain (NOD)-
like receptor family pyrin domain-containing 3 (NLRP3)
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inflammasome, a cytosolic multiprotein complex that orchestrates
caspase-1-mediated maturation of pro-inflammatory cytokines
interleukin-1β (IL-1β) and IL-18, as well as gasderminD (GSDMD)-
dependent pyroptotic cell death (Ferrero-Andrés et al., 2020).
NLRP3 inflammasome was a group of multi-protein complexes that
participate in innate immunity processes through the activation
of pro-inflammatory caspases (Martinon et al., 2002). In AP,
damage-associated molecular patterns (DAMPs) released from
necrotic acinar cells, such as mitochondrial DNA, extracellular
ATP, and reactive oxygen species (ROS), which activated NLRP3
inflammasome and resulted in perpetuating a vicious cycle of
inflammation, pancreatic necrosis, and systemic inflammatory
response syndrome (Papantoniou et al., 2024). This inflammatory
cascade was further amplified by infiltrating immune cells,
including macrophages and neutrophils, which secreted additional
inflammatory cytokines and chemokines, exacerbating tissue injury
(Wan et al., 2020). Numerous studies have proved that activation
of the NLRP3 inflammasome was associated with the severity of
AP (Jia et al., 2020; Sendler et al., 2020). Preclinical studies have
demonstrated that targeted inactivation of NLRP3 inflammasome
[such as indomethacin (Lu G. et al., 2017), INT-777 (Li B. et al.,
2018), apocynin (Jin et al., 2019), T-614 (Hou et al., 2019), and
MCC950 (Sendler et al., 2020)] alleviated AP progression and
associated organ injury by suppressing inflammation and pancreatic
acinar cell apoptosis. Meanwhile, the inflammatory cytokines
IL-18 and IL-1β may serve as the markers of the severity of
AP patients (Janiak et al., 2015). Current therapeutic strategies,
however, remain largely palliative, underscoring the urgent need for
mechanistically targeted interventions to disrupt NLRP3-driven AP
progression.

Traditional Chinese Medicine (TCM) is one of the ancient and
most accepted alternative medicinal systems in the world for the
treatment of health ailments, especially when Western medicine
is not very effective (Luo et al., 2019). For hundreds of years,
medicinal herbs have been used with apparent safety and efficacy
for alleviating and treating AP in China. TCM, with its multi-
component, multi-target, and multi-pathway pharmacological
profiles, has emerged as a promising approach to modulating
NLRP3 inflammasome activity in inflammation-associated diseases
(Xue et al., 2023). Unlike synthetic inhibitors such as MCC950,
a potent NLRP3 antagonist with clinical limitations due to
off-target effects and pharmacokinetic challenges, TCM exerts
pleiotropic pharmacological effects with low toxicity, including
anti-inflammatory, antioxidant, antitumor, and immunomodulatory
properties (Li and Zhang, 2013). For instance, Chaihuang Qingfu
pill prevented severe AP-induced lung injury by inhibiting NLRP3-
mediated macrophage pyroptosis (Xiao et al., 2025). Chlorogenic
acid attenuated the development of severe AP by inhibiting NLRP3
inflammation activation and activating the Nrf2/HO-1 pathway
(Ye et al., 2025). Psidium guajava flavonoids exerted a protective
role in severe AP by inactivation of NLRP3 inflammasome
(Zhang G. et al., 2021). Of note, clinical studies have also confirmed
that TCM formulas were given to slow down the progression of
AP (Zhang et al., 2008), as well as improve immune function
(Jiang et al., 2016) and gastrointestinal function (Miao et al., 2018).
Moreover, combined treatment of TCM and Western medicine
contributed to reducing inflammation and improving immune
dysfunction compared with Western medicine alone for patients

with AP (Liu et al., 2011; Chen et al., 2021). Deng et al. (2024)
showed that integrated TCM and Western medicine treatment
reduced the risks of mortality and organ failure and achieved better
economic effectiveness in patients with AP than Western medicine
alone treatment. These results indicated that TCM prescriptions,
monomers, and extracts possessed an inhibitory effect on NLRP3
inflammation, which could benefit the treatment of AP. However,
there is still a lack of comprehensive review on TCM regulation of
NLRP3 inflammasome-associated pathways in the treatment of AP.

Herein, we discussed the NLRP3 and its functional role in the
development and progression of AP. Moreover, we summarized the
therapeutic effect of TCM (prescriptions, extracts, and monomer
compounds) on AP by targeting NLRP3 inflammasome-associated
pathways. Furthermore, we analyzed the efficacy and safety of
TCM for the treatment of AP in clinical trials, and discussed their
challenges and future development directions.

2 Research methodology

This review article was conducted using electronic databases
such as PubMed, Google Scholar, Springer Link, Science
Direct, Cochrane Library, Embase, Web of Science, and Scopus.
All published data till the year 2025 have been taken into
consideration. The following search keywords were used in
the search of materials for this study: “acute pancreatitis”,
“NLRP3 inflammasome”, “inflammasome”, “medicinal plants”,
“TCM prescription/decoction/formula”, “herbal extract”, “TCM
extract”, “bioactive compounds”, “active ingredients”, “polyphenols”,
“flavonoids”, “alkaloids”, “terpenes”, “anthraquinones”, “shikonin”,
“polysaccharide”, “biological activity”, “pharmacological activities”,
and other similar keywords in combination with words such as
traditional Chinese medicine, Clinical trials, botanical description,
toxicity, human health, and nutritional composition. All articles
addressing these principal keywordswere consideredwhen available
in the English language, and in peer-reviewed journals, whether
published as review or research articles. Papers were reviewed in
their entirety if their abstract mentioned that the article presented
any potential relevance to the inclusion criteria. Articles were
excluded based on title, abstract, or full text because of their lack
of pertinence to the issue concerned. Articles were excluded if they
were letters, comments, or not available for access to full article.

3 Overview of NLRP3 inflammasome

Innate immunity serves as the host’s primary defense barrier,
wherein pattern recognition receptors (PRRs) on immune cells
detect pathogen-associated molecular patterns (PAMPs), such as
viral nucleic acids, bacterial lipopolysaccharides, and flagellin,
or endogenous DAMPs released from damaged or dying cells.
This recognition initiates innate immune responses and activates
downstream inflammatory pathways to eliminate microbial
infections and promote tissue repair (Kelley et al., 2019; Fu and
Wu, 2023). In 2002, a novel class of PRR termed the inflammasome
was identified as a critical signal transduction platform in innate
immunity (Martinon et al., 2002). Certain members of the NOD-
like receptor (NLR) family assemble into multiprotein complexes,
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forming a subset of inflammasomes (Toldo et al., 2022). To date,
at least 22 inflammasome subtypes have been characterized,
with the NLRP3 inflammasome being the most extensively
studied (Zhuang et al., 2021). Under physiological conditions,
NLRP3 inflammasome activation is essential for host defense
against pathogens and homeostatic maintenance. However, its
dysregulated activation drives excessive inflammatory responses
and host tissue damage, contributing to autoimmune disorders
such as AP (Papantoniou et al., 2024).

3.1 Structure of NLRP3 inflammasome

TheNLRP3 inflammasome is composed of a sensor (NLRP3), an
adaptor (ASC; also known as PYCARD), and an effector (Caspase-
1) (Huang Y. et al., 2021). NLRP3, a trimeric protein, encompasses
three functional domains: (1) the C-terminal leucine-rich repeat
(LRR), which is crucial for ligand sensing; (2) the central nucleotide-
binding and oligomerization (NACHT) domain, and (3) the
amino-terminal pyrin domain (PYD) that mediates protein-protein
interactions (Unterberger et al., 2021). Upon stimulation by PAMPs
orDAMPs, NLRP3 oligomerizes homotypically through its NACHT
domain. The oligomerized NLRP3 then recruits the apoptosis-
associated speck-like protein containing a CARD (ASC) via PYD-
PYD interactions. Subsequently, ASC facilitates the assembly of
the NLRP3-ASC-pro-caspase-1 complex (the canonical NLRP3
inflammasome) by binding pro-caspase-1 through CARD-CARD
interactions. Activation of the NLRP3 inflammasome triggers
autoproteolytic cleavage of pro-caspase-1 into enzymatically active
caspase-1, which catalyzes the maturation of pro-inflammatory
cytokines IL-1β and IL-18 (Lechtenberg et al., 2014). These
cytokines, in turn, amplify immune responses through downstream
signaling cascades. Concurrently, active caspase-1 cleaves GSDMD
to generate N-terminal fragments that form plasma membrane
pores, inducing a lytic programmed cell death pathway associated
with inflammatory cytokine release (Li L. et al., 2024).

3.2 Mechanism of NLRP3 inflammasome
activation

Currently, NLRP3 inflammasome activation pathways are
broadly categorized into canonical, noncanonical, and alternative
pathways (Figure 1), with classification criteria predicated on
stimulus specificity (e.g., PAMP vs. damage-associated signals) and
cell type (e.g., immune vs. non-immune cell types) (Seoane et al.,
2020). The canonical NLRP3 inflammasome activation requires
two sequential priming and activation steps. The priming phase is
initiated when DAMPs or PAMPs engage receptors such as toll-
like receptors (TLRs) or cytokine receptors, triggering the NF-κB
pathway to increase mRNA levels of NLRP3, pro-IL-1β, and pro-IL-
18 (Zahid et al., 2019). Beyond transcriptional priming, this phase
also orchestrates NLRP3 post-translational modifications (PTMs),
including phosphorylation, ubiquitination, and SUMOylation,
which play an important role in NLRP3 activation (Paik et al.,
2021; Xu et al., 2022). The activation phase, the second step in
the canonical pathway, is driven by diverse stimuli such as K+

efflux, ROS overproduction, lysosomal rupture,mitochondrial DNA

(mtDNA) leakage, and organelle dysfunction (e.g., mitochondria,
Golgi apparatus, endoplasmic reticulum) (Akbal et al., 2022).
These events promoted NLRP3 inflammasome activation. In the
noncanonical pathway, NLRP3 inflammasome activation is induced
by lipopolysaccharide (LPS) internalization into the cytosol by
transfection or infection (Santos et al., 2018), which can be
recognized by caspase-11 (the mouse homolog of human caspase-
4/5). Then, activated caspase 4/5/11 causes pyroptosis by cleaving
GSDMD, and also triggers the assembly of NLRP3 inflammasome.
Cross-talk between non-canonical and canonical inflammasome
activation pathways, such as the activation of pannexin-1 by
caspase-11 and subsequent release of ATP and activation of P2X7R
to induce K+ efflux and thus canonical NLRP3 assembly, has
also been suggested (Downs et al., 2020). Distinct from the
above pathways, the alternative pathway of NLRP3 inflammasome
activation bypasses pyroptosis, ASC polymerization, and K+ efflux,
which has been exclusively characterized in primary human and
porcine monocytes. Mechanistically, LPS directly activated NLRP3
inflammasome through the TLR4-TRIF-MyD88-RIPK1-FADD-
CASP8 axis without eliciting pyroptotic cell death (He et al., 2016).

4 NLRP3 inflammasome in the
pathogenesis of AP

AP is an inflammatory disorder characterized by excessive
activation of pancreatic enzymes due to diverse etiological factors,
leading to autodigestion, edema, hemorrhage, and necrosis of
pancreatic parenchyma and adjacent tissues. A clinical study
has confirmed elevated expression of NLRP3 inflammasome
components in serum samples from pancreatitis patients compared
to healthy controls, with NLRP3 activation correlating positively
with disease severity (Algaba-Chueca et al., 2017). Sendler et al.
(2020) reported that increased levels of proinflammatory cytokines
(IL-1β and IL-18) and ASC were detected in serum samples
from patients with severe AP. Hoque et al. (2011) further
identified that NLRP3 inflammasome activation was a driver of
disease progression through amplification of initial inflammatory
cascades. Functionally, NLRP3 inflammasome were commonly
activated by DAMPs (e.g., HMGB1 and HSP70) or PAMPs
stimulation, which further promoted pancreatic inflammation
and tissue injury, eventually advancing AP (Hoque et al.,
2011). Meanwhile, LPS-stimulated-caspase-4/5/11 further triggers
GSDMD driven pancreatic cell death and tissue injury, leading
to the course of the pathogenesis of AP (Yi, 2020). In addition,
ROS-mediated TXNIP and the activation of P2X7 trigger the
NLRP3 inflammasome (Zhang et al., 2017). In mouse models
of AP, NLRP3 deficiency ameliorated pancreatic inflammation
and associated complications by reducing neutrophil infiltration
(Fu et al., 2018). Another study showed that NLRP3 inflammasome
activation promoted lung dysfunction by triggering alveolar
macrophage pyroptosis in pancreatitis progression (Wu et al.,
2020). In a recent study, pharmacological inhibition of NLRP3
inflammasome by MCC950 improved pathological damage and
reduced inflammatory response in experimental pancreatitis
(Shen et al., 2022). Mechanistically, the inflammation mediated
by the Caspase-1/NLRP3, TLR4/NLRP3, MAPK/NF-κB/NLRP3,
and Nrf2/HO-1/NLRP3 pathways have been implicated in the
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FIGURE 1
Mechanisms of NLRP3 inflammasome activation pathways. PAMPs, pathogen-associated molecular patterns; DAMPs, damage-associated molecular
patterns; NF-κB, nuclear factor kappa-B; NLRP3, NOD-like receptor family pyrin domain-containing 3; ASC, apoptosis-associated speck-like protein
containing a caspase recruitment domain; ROS, reactive oxygen species; mtDNA, mitochondrial DNA; IL, interleukin; GSDMD, gasdermin D; LPS,
lipopolysaccharide; TRIF, TIR-domain-containing adapter-inducing interferon-β; RIPK1, receptor-interacting protein kinase 1; FADD, FAS-associated
death domain; CASP8, caspase-8.

pathogenesis and progression of AP (Papantoniou et al., 2024),
highlighting their potential as therapeutic targets. Collectively, these
findings indicated that inhibition of NLRP3 inflammation may be a
promising therapeutic strategy for AP management.

5 TCM used to relieve AP by targeting
NLRP3

In Chinese medicine (CM), AP is classified under abdominal
pain (Futong), spleen-heart pain (Pi Xintong), and pancreatic
inflammation (Yi Dan) (Li et al., 2019a). Etiological factors in
CM theory include gallstone obstruction, dietary irregularities (e.g.,
excessive greasy food), emotional disturbances (Gan Yu), trauma,
and invasion of exogenous pathogens (Liu Yin) (Wu, 2002), all of
whichmay exacerbate the progression of AP. Pathophysiologically, it
manifests as root deficiency (Ben Xu) with branch excess (Biao Shi),

predominantly presenting as interior excess-heat syndrome (Li Shi
Re Zheng) (Mao et al., 2003). CM therapeutic strategies emphasize
heat-clearing and bowel-unblocking methods (Qing Re Tong Fu
Fa), integrating root-cause treatment (Zhi Ben) with symptomatic
management (Zhi Biao) (Li et al., 2019a). Emerging pharmacological
evidence has demonstrated that TCM prescription, extract, and
active ingredient mitigated AP progression by suppressing NLRP3
inflammasome activation and downstream pyroptosis pathways
(Jiang et al., 2021; Zeng et al., 2024; An et al., 2025). Moreover, the
functional role of TCM in AP by regulating NLRP3 inflammation is
summarized in Table 1 and 2.

5.1 TCM prescriptions for AP treatment

TCM prescriptions have been utilized in China for preventing
and managing AP for a long time. Preclinical studies have
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TABLE 1 Summary of TCM prescriptions and extracts in the prevention and treatment of AP by modulating inflammation in the last 5 years.

Prescription Composition (botanical
name)

Model and dose Effects Ref.

Da Cheng Qi decoction Rheum palmatum L. 12 g,
Na2SO4⋅10H2O 7.5 g, Fructus
Aurantii Immaturus 9 g, Houpoea
officinalis 9 g

Model
①Carulein plus LPS-induced SAP
②Carulein plus LPS-induced
AR42J cells
Dose
①7 g/kg BW
②10 mg/L

↓Levels of amylase, LDH, IL-6,
IL-1β, TNF-α, HMGB1, ROS,
NOX2
↑GPX4 expression
↓Cell ferroptosis

Chen et al. (2025)

Qingyi decoction Radix et Rhizoma Rhei 15 g,
Bupleuri Radix 15 g, Aucklandiae
Radix 10 g, Corydalis Rhizoma
10 g, Paeoniae Radix Alba 15 g,
Scutellariae Radix 10 g, Coptidis
Rhizoma 10 g

Model: Caerulein plus
LPS-induced SAP-ALI
Dose: 6, 12, and 24 g/kg BW

↓Cytokine storm, pancreas edema,
and serum amylase
↓Levels of TNF-α, IL-1β, and IL-6
↓NLRP3/Caspase-1/GSDMD
pathway

An et al. (2025)

Dachaihu decoction Bupleurum chinense DC. 15 g,
Scutellaria baicalensis Georgi 9 g,
Citrus × aurantium L. 9 g, Paeonia
lactiflora Pall. 9 g, Pinellia
pedatisecta Schott 9 g, Rheum
palmatum L. 6 g, Zingiber officinale
Roscoe 15 g, Ziziphus abyssinica
Hochst 20 g

Model: Caerulein-induced AP
Dose: 5.5, 11, and 22 g/kg BW

↓The pathological scores for
edema, inflammatory infiltration,
fibrosis, and acinar atrophy
↓Expression of COL1A1, α-SMA,
IL-6, MCP-1, and TNF-α
↓MAPK pathway

Li et al. (2025)

Qingjie Huagong decoction Bupleuri radix 12 g, Scutellariae
radix 10 g,Magnoliae officinalis
cortex 8 g, Salviae miltiorrhizae
radix et rhizoma 9 g, Rhei radix et
rhizoma 6 g, Aurantii fructus
immaturus 10 g, and Glycyrrhizae
radix et rhizome 5 g

Model: Caerulein-induced AP
Dose: 6.5, 13, and 26 g/kg BW

↓Levels of IL-1β, IL-6, IL-8, IL-18,
and TNF-α
↓Expression of NLRP3, TLR4,
MyD88, NF-κBp65

Feng et al. (2024)

Rhizoma Alismatis decoction Alisma orientalis 5 g and
Atractylodes macrocephala 2 g

Model: Caerulein-induced AP
Dose: 4 and 36 g/kg BW

↓Pancreas injury
↓Levels of IL-6, TNF-α, IL-1β, and
IL-18
↓Mitochondrial oxidative damage
and dysfunction
↓Apoptosis of acinar cells
↓NLRP3 inflammasome activation

Zhang et al. (2024b)

Qing Xia Jie Yi formula Rheum palmetu m L. 15 g, Citrus ×
aurantium L. 12 g, Sargentodoxa
cuneata (Oliv.) 30 g, Gardenia
jasminoides J.Ellis 9 g, Bupleurum
marginatumWall. ex DC. 9 g,
Corydalis yanhusuo 12 g, Salvia
miltiorrhiza Bunge 15 g, Paeonia
lactiflora Pall. 15 g

Model: Caerulein-induced AP
Dose: 4.8 mg/g for 3 times at 3 h,
5 h and 7 h after the first caerulein
injection

↓Pancreas injury
↓The infiltration of F4/80+

macrophage and Ly6G+

neutrophils in the pancreas
↓The serum levels of TNF-α, IL1β,
and IL6
↓M1 macrophages polarization

Han et al. (2024)

Qingyi decoction Rhubarb 20 g, Radix Bupleuri 15 g,
Radix Aucklandiae 15 g, Paeoniae
Radix Alba 15 g, Natrii Sulfas 10 g,
Rhizome Corydalis 15 g, Gardenia
jasminoides 15 g and Scutellaria
baicalensis Georgi 12 g

Model: Caerulein plus
LPS-induced SAP-ALI
Dose: 7.6 g/kg BW

↓Levels of MPO, α-amylase, IL-1β,
IL-6, and TNF-α
↑The relative abundance of
SCFAs-producing bacteria
↓Intestinal permeability
↓AMPK/NF-κB/NLRP3 pathway

Wang et al. (2023)

Chaiqin chengqi decoction Rheum palmetu m L. 20 g,
Gardeniajasminoides J.Ellis 20 g,
Bupleurum marginatumWall. ex
DC. 15 g,Magnolia officinalis
Rehder and E.H.Wilson 15 g,
Citrus × aurantium L. 15 g,
Scutellaria baicalensis Georgi 15 g,
Artemisia capillarisThunb. 15 g,
Sodium sulfate 20 g

Model: Caerulein-induced AP
Dose: 1, 5, and 10 g/kg BW

↓Pancreatic injury and systemic
inflammation
↓Serum amylase, serum lipase,
MPO, and F4/80
↓GSDMDmediated pyroptosis
↓Levels of NLRP3, GSDMD, and
cleaved caspase-1

Cao et al. (2024)

(Continued on the following page)
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TABLE 1 (Continued) Summary of TCM prescriptions and extracts in the prevention and treatment of AP by modulating inflammation in the last 5 years.

Prescription Composition (botanical
name)

Model and dose Effects Ref.

Model: Caerulein-induced AP
Dose: 5, 10, and 20 g/kg BW

↓Pancreatic injury and systemic
inflammation
↓Necrotic cell death
↓TLR4/NLRP3 pathway

Wen et al. (2020)

Xiaochaihu decoction Radix Bupleuri 24 g, Arum ternatum
Thunb 9 g, Scutellariae Radix 9 g,
Zingiber officinale Roscoe 9 g, Panax
ginseng C. A. Mey. 9 g, licorice 9 g,
Jujubae Fructus 12 g

Model: LPS-induced AR42J cells
Dose: 12.5, 25, 50, and 100 μM

↑Cell viability
↓Levels of IL-1β, IL-6, and TNF-α
↓MAPK3 and TP53

Zhan et al. (2021)

Yue-Bi-Tang Ephedrae herba 18 g, Zingiber officinale
Roscoe 9 g, CaSO4·2H2O 24 g, Ziziphus
jujubaMill. 9 g, Glycyrrhiza uralensis
Fisch. 6 g

Model: NaT-induced SAP
Dose: 5.63 g/kg BW

↑Serum levels of IL-10 and ↓TNF-α
↓Necrosis and interstitial edema
↓Contents of MDA

Hu et al. (2020)

Extract Model and dose Effects Ref.

Free total rhubarb anthraquinones Model: NaT-induced SAP
Dose: 22.5, 45, and 90 mg/kg BW

↓Damaged intestine and pancreas
↑Expression of intestinal epithelial junction
proteins
↓Levels of DAO, IL-1β, IL-18, HMGB1, and
LDH
↓NLRP3-Caspase-1-GSDMD and
TLR-4-NF-κB pathways

Zeng et al. (2024)

Psidium guajava flavonoids Model: Caerulein-induced AP
Dose: 0.186 and 0.372 g/kg BW

↓The degrees of acinar atrophy, fibrosis, and
inflammatory cell infiltrate
↓Expression of Collagen Ⅰ andⅢ and α-SMA
↓Expression of IL-1β and IL-18
↓NLRP3/Caspase-1

Zhang et al. (2021a)

Total flavonoids of Chrysanthemum indicum L Model: Caerulein-induced AP
Dose: 300 mg/kg BW

↓Serum amylase, water content of pancreatic
tissues, and MPO
↓Levels of IL-6, TNF-α, IL-1β, COX-2, MCP-1,
and CXCL16
↓NF-κB pathway

Yang et al. (2023a)

Aqueous extraction from dachengqi formula Model: Caerulein-induced AP
Dose: 0.6, 1.2, and 2.4 g/kg BW

↓Pancreas edema inflammation, and necrosis
↓MPO and inflammatory cytokines (IL-1β,
IL-6, and TNF-α)
↓p38MAPK/NF-κB pathway

Ma et al. (2020)

Note: LPS, lipopolysaccharide; SAP-ALI, severe acute pancreatitis (AP)-associated acute lung injury (ALI); MPO, myeloperoxidase; BW, body weight; MDA, malondialdehyde; LDH, lactate
dehydrogenase; IL, interleukin; TNF-α, tumor necrosis factor alpha; HMGB1, high mobility group box 1; ROS, reactive oxygen species; NOX2, NADPH, oxidase 2; GPX4, glutathione
peroxidase 4; NLRP3, NOD-like receptor family pyrin domain-containing 3; GSDMD, gasdermin D; MCP-1, monocyte chemoattractant protein-1; α-SMA, alpha -smooth muscle actin;
MAPK, mitogen-activated protein kinase; TLR4, toll-like receptor 4; MyD88, myeloid differentiation primary response 88; NF-κB, nuclear factor-kappaB; SCFAs, short-chain fatty acids;
AMPK, AMP-activated protein kinase; DAO, diamine oxidase; CXCL16, CXC, motif chemokine ligand 16.

identifiedmany TCM formulations with therapeutic efficacy against
AP, including Chaiqin chengqi decoction, Dahuangfuzi decoction,
Chengqi-series decoction, Qingyi decoction, Qingxiajieyi formula,
Dachengqi decoction, Dachaihu decoction, and Chaiqinchengqi
decoction (Yang et al., 2021; Lin et al., 2023; Han et al., 2024;
Wen et al., 2024). Moreover, previous studies have demonstrated
that AP-associated multi-organ dysfunction (e.g., lung, kidney,
liver) can be improved by TCM prescription treatment, such
as Dachengqi decoction (Liu et al., 2023), Yinchenhao decoction
(Zhao et al., 2024), and Chaiqin Chengqi decoction (Yang X. et al.,
2020). Functionally, the main compounds (emodin, rhein, baicalin,
and chrysin) from Chaiqin chengqi decoction diminished pancreatic
acinar cell necrosis and systemic inflammation by inhibiting the
TLR4/NLRP3 pathway (Wen et al., 2020). Qingyi decoction and its

active ingredients (e.g., Wogonoside) alleviated pancreatic injury
and systemic inflammation in AP by inactivation of the NF-
κB/NLRP3/Caspase-1 pathway (An et al., 2025). Another study by
Zhang R. et al. (2024) reported that Rhizoma Alismatis decoction
alleviated AP by restoration of autophagy flux and mitochondrial
homeostasis, leading to downregulation of NLRP3 and IL-1β in the
pancreas. Other studies have proved that Chaiqin Chengqi decoction
(Cao et al., 2024), Chaihuang Qingfu pill (Xiao et al., 2025), and
Qingjie Huagong decoction (Feng et al., 2024) inhibited NLRP3
inflammasome and GSDMD activation-mediated pyroptosis and
systemic inflammation in AP models. The above preclinical studies
have confirmed the efficacy of TCM prescriptions in treating AP,
but are hindered by methodological limitations (e.g., small sample
sizes, non-standardized animal models, and lack of randomized
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TABLE 2 Summary of active components of TCM in the prevention and treatment of AP in the last 5 years.

Compound Model and dose Effect Ref.

Chlorogenic acid Model
①Caerulein plus LPS-induced SAP
②Cerulein-treated AR42J cells
Dose
①20 and 40 mg/kg BW
②50 μM for 24 h

↓The expression of serum lipase and
amylase
↓Mild edema, inflammatory cell
infiltration, and vacuolation of
glandular cells
↓Expression of IL-1β, IL-6, and TNF-α
↓Activation of NLRP3 inflammasome
↓NF-κB pathway and ↑Nrf2/HO-1
pathway

Ye et al. (2025)

Kinsenoside Model: Caerulein plus LPS-induced AP
Dose: 2.5, 5, and 10 mg/kg BW

↓Serum amylase, lipase, edema score,
inflammation score, necrosis score
↓Number CDD45+ cells, macrophage
infiltration, M1 macrophage
polarization
↓Levels of IL-β and TNF-α
↓TLR4/STAT1 pathway

Wang et al. (2025b)

Bufalin Model: NaT-induced SAP
Dose: 0.1 and 0.2 mg/kg BW

↓Serum amylase and lipase, edema
score, inflammation score, necrosis
score
↓Serum levels of TNF-α, IL-6, IL-1β,
and MDA
↑Serum SOD and GSH
↑Keap1/Nrf2/HO-1 pathway and
↓NF-κB pathway

Niu et al. (2024)

Brusatol Model: Caerulein-induced SAP
Dose: 1.50 mg/kg BW

↓Levels of α-SMA, IL-6, IL-1β, TNF-α,
amylase, and lipase
↓NLRP3 inflammasome activation

Zhang et al. (2024a)

Baicalein Model: NaT-induced SAP
Dose: 200 mg/kg BW

↓Serum amylase and pathological score
of pancreas and lung
↓Levels of IL-6, IL-1β, TNF-α, and ROS
↓TLR4/NF-κB pathway

Yang et al. (2024)

Saikosaponin D Model: Caerulein-induced AR42J cells
Dose: 10, 20, and 30 μM

↑Cell viability
↓Activities of amylase and lipase, levels
of IL-1β, CRP, and IL-18
↓Oxidative stress and mitochondrial
damage
↓NLRP3/caspase-1 pathway

Chen et al. (2024)

Emodin Model: NaT-induced SAP
Dose: 10 mg/kg BW

↓Lipase and amylase levels
↓Pancreas and lung tissue injury
↓CD68+ macrophage counts and levels
of MPO and TNF-α
↓NF-κB pathway

Hu et al. (2022)

Pachymic acid Model: Caerulein-induced AP
Dose: 20 mg/kg

↓MCP-1 levels, α-SMA, and collagen Ⅰ
↑Pancreas weight
↓Expression of NLRP3, Caspase-1,
IL-1β, and IL-18

Li et al. (2022)

Emodin Model: NaT-induced SAP
Dose: 5 and 10 mg/kg BW

↓Pathological score of pancreases and
lung
↓Levels of amylase and lipase
↓Levels of IL-6, IL-1β, TNF-α, and
MPO
↓Alveolar macrophage pyroptosis and
NLRP3-Caspase1-GSDMD pathway

Wu et al. (2022)

(Continued on the following page)
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TABLE 2 (Continued) Summary of active components of TCM in the prevention and treatment of AP in the last 5 years.

Compound Model and dose Effect Ref.

Emodin Model: NaT-induced SAP
Dose: 40 mg/kg BW

↓Serum amylase, pathological score of
pancreases and lung
↓Activation of the NLRP3
inflammasome and neutrophil
recruitment

Jiang et al. (2021)

Borneol Model: Caerulein-induced AP
Dose: 100 and 300 mg/kg BW

↓Pancreas weight, lipase levels, amylase
levels, ALT
↓Levels of MDA, MPO, IL-1β, and IL-6
↓NF-κB pathway

Bansod et al. (2021)

Baicalin Model: Caerulein-induced AP
Dose: 100 mg/kg BW

↓Pancreatic injury and fibrosis,
pancreatic stellate cells activation, and
macrophage infiltration
↓Expression of Collagen Ⅰ and MCP-1
↓NF-κB pathway

Fan et al. (2020)

Quercetin Model
①Caerulein-induced AR42J cells
②Caerulein-induced AP
Dose
①10, 20, 30, and 40 μM
②40 mg/kg BW

↑Cell proliferation
↓Levels of TNF-α and IL-6
↓p38MAPK pathway

Sheng et al. (2021)

Mogroside IIE Model
①Caerulein plus LPS-induced
AR42J cells
②Caerulein plus LPS-induced SAP
Dose
①20 μM
②10 mg/kg BW

↑Cell viability
↓Serum levels of amylase and lipase
↓Levels of TNF-α, IL-6, IL-9, and
MCP-1
↓IL-9/IL-9 receptor pathway

Xiao et al. (2020)

Urolithin A Model: NaT-induced SAP
Dose: 30 mg/kg BW

↓Levels of TNF-α and IL-6
↓Mitochondrial dysfunction and
pancreatic necroptosis

Kang et al. (2024)

Note: NaT, sodium taurocholate; Keap1, Nrf2 and Kelch-like ECH-associated protein 1; Nrf2, Nuclear factor-erythroid 2-related factor 2; TNF-α, tumor necrosis factor-α; COX-2,
cyclooxygenase-2; NF-κB, nuclear factor Kappa-B; MCP-1, monocyte chemotactic protein-1.

controls) and insufficient mechanistic insights (e.g., unclear active
ingredients, incomplete safety evaluations, and absence of long-term
follow-up data), thus impeding translational validation and clinical
implementation.

5.2 Herbal extracts in the treatment of AP

In addition to the aforementioned TCM formulas, herbal
extracts have shown therapeutic efficacy against AP. For example,
free total rhubarb anthraquinones ameliorated intestinal and
pancreatic damage in AP rats while reducing inflammation
and pyroptosis by inactivation of the NLRP3/caspase-1/GSDMD
pathway (Zeng et al., 2024). Meanwhile, rhubarb anthraquinones
treatment enhanced intestinal immunity by modulating Treg/Th17
balance (Chen et al., 2016). Xiong et al. (2019) showed that
Lycium barbarum polysaccharides exhibited anti-inflammatory and
antioxidant effects in cerulein-induced AP mice, as evidenced by
reduced levels of serum amylase, TNF-α, and IL-1β. Another study
reported thatP. guajava flavonoids reduced pancreatic inflammation
and fibrosis by inhibition of NLRP3 inflammasome activation in AP
(Zhang G. et al., 2021). Moreover, Lonicera japonica flower extracts

(Ruan et al., 2019) and Salvia miltiorrhiza extracts (Yang et al.,
2019) ameliorated AP progression by suppressing the ROS-NLRP3
inflammasome axis and reducing the expression of IL-1β and IL-18.
Collectively, these findings highlight the potential of herbal extracts
to mitigate AP pathogenesis by targeting the NLRP3 inflammasome
and modulating inflammatory cascades.

5.3 Monomer components isolated from
TCM for the treatment of AP

A wide range of bioactive compounds, including polyphenols,
flavonoids, alkaloids, and terpenes, have been isolated and purified
from TCM. Pharmacological studies have demonstrated that these
TCM-derived compounds exhibited therapeutic potential against
AP by suppressing inflammatory response (Lu et al., 2021). The
functional roles of these bioactive components in the treatment of
AP by targeting NLRP3 are summarized in Table 2.

5.3.1 Polyphenols
Polyphenols, recognized for their anti-inflammatory and

antioxidant properties, have shown efficacy in mitigating chronic
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diseases due to their versatile biological activities (e.g., anti-
inflammatory and anti-oxidation) (Vivarelli et al., 2023), which
contributed to the treatment of AP. Meanwhile, targeting the
inflammasome pathway by polyphenols may be an effective
therapeutic strategy for AP (Nani and Tehami, 2023). Resveratrol,
a natural polyphenolic compound, has been proven to improve the
pathophysiology of AP by reducing inflammation, cell apoptosis,
pancreatic damage, blocking calcium overload, and improving
microcirculation (Agah et al., 2021; Cai et al., 2025). Recently,
resveratrol (Wu S. K. et al., 2024) and epigallocatechin-3-gallate
(Luo et al., 2021) exhibited protective effects on severe AP
by inactivation of NLRP3 inflammasome. Similarly, paeonol
ameliorated AP by promotingM2macrophage polarization through
inactivation of NLRP3 inflammasome (Yuan et al., 2022). Another
study found that rosmarinic acid has been shown to reduce
inflammation by inhibition of the NF-κB pathway in the murine
model of AP (Fan et al., 2015). In addition, scopoletin attenuated
AP-induced organ injury (lung and intestine) by blocking the
TLR4/NF-κB/NLRP3 pathway (Leema and Tamizhselvi, 2018).
Further study highlights the protective effects of urolithin A
against AP through suppression of apoptosis and mitochondrial
dysfunction (Yang Y. et al., 2023).

5.3.2 Flavonoids
Flavonoids have attracted increasing attention as promising

candidates for the modulation of inflammation due to their
dual anti-inflammatory and immunomodulatory properties (Al-
Khayri et al., 2022). Intriguingly, flavonoids exerted protective effects
against AP by targeting key pathogenic processes, including NLRP3
inflammasome activation, oxidative stress, and cytokine storm.
For example, baicalein (Wang et al., 2021), rutin (Aruna et al.,
2014), naringenin (Li Y. et al., 2018), and luteolin (Rajapriya
and Geetha, 2021) have been shown to inhibit the assembly
of NLRP3 inflammasome complexes, thereby reducing caspase-
1 activation and subsequent IL-1β maturation in AP models.
Other studies have proved that proanthocyanidins (Sheng et al.,
2023) and baicalein (Wang X. et al., 2025) ameliorated AP
by promoting macrophage M2 polarization through suppressing
NLRP3 inflammasome activation. Moreover, naringenin improved
AP-associated intestinal injury by inhibiting NLRP3 inflammasome
activation (Yan et al., 2023). Other flavonoids such as apigenin
(Charalabopoulos et al., 2019), biochanin A (Pan et al., 2023), and
luteolin (Xiong et al., 2017) alleviated AP by inhibition of the
TLR4/NF-κB pathway-mediated inflammation. Zhou et al. (2024)
showed that administration of tectoridin inhibited pancreatic injury
in AP by triggering macrophage M2 polarization. Another study
showed that isorhamnetin alleviated mitochondrial injury and
inhibited ROS generation in severe AP (Li X. et al., 2024).

5.3.3 Alkaloids
Alkaloids have emerged as pivotal therapeutic agents in modern

medicine due to their broad-spectrum anti-inflammatory and
antibacterial properties (Bai et al., 2021). Berberine (BBR), a natural
alkaloid extracted from medicinal plants, exhibited multifunctional
pharmacological activities (Zhang Y. et al., 2021), including anti-
inflammatory, anti-tumor, lipid-lowering, hypoglycemic, and anti-
osteoarthritic activities in preclinical studies. Numerous studies
have demonstrated that BBR attenuated AP by inhibition of

AMPK-mediated inflammation and M2 macrophage polarization
(Bansod et al., 2020; Bansod et al., 2025).Meanwhile, BBR treatment
improved histological damage to the pancreas, lungs, and intestinal
by blocking the NF-κB pathway (Liang et al., 2014; Choi et al.,
2017). Li Z. et al. (2020) reported that anisodamine pretreatment
mitigated lipopolysaccharide-induced apoptosis and inflammation
of pancreatic acinar cells by inactivating the NLRP3 inflammasome
and blocking the NF-κB pathway. Moreover, other alkaloids [e.g.,
castanospermine (Hong et al., 2016), ellipticine (Li X. et al., 2020),
rutaecarpine (Huang H. et al., 2021), colchicine (Zhang et al., 2022),
matrine (Jin et al., 2023), oxymatrine (Lu M. et al., 2017), nicotine
(Zheng et al., 2015)] have been shown to combatAP andAP-induced
organ injury by inhibiting the inflammatory response. A recent
study showed that galantamine exhibited an anti-inflammatory
effect against AP (Thompson et al., 2023), which was an FDA-
approved acetylcholinesterase inhibitor for Alzheimer’s disease in
clinical trials.

5.3.4 Terpenes
Terpenes represent a structurally diverse class of natural

compounds with potent anti-inflammatory and immunomodulatory
activities, holding promise for treating inflammation-associated
diseases (Chang and Xiong, 2020). Currently, many terpenes (e.g.,
micheliolide (Wu C. Y. et al., 2024), artesunate (Liu et al., 2025),
nimbolide (Bansod and Godugu, 2021), betulinic acid (Zhou et al.,
2021), triptolide (Yang et al., 2022), irisin (Han et al., 2023), etc.)
attenuated AP progression by reducing inflammatory response and
inhibiting neutrophil extracellular traps formation. Mechanistically,
treatment with ganoderic acid A (Zhang et al., 2025), DGA (Yue et al.,
2024), and pachymic acid (Li et al., 2022) improved intestinal
dysfunction, macrophage pyroptosis, and pancreatic fibrosis in AP by
repressingNLRP3inflammasomeactivation.Moreover,otherterpenes
were found to effectively inhibit necroptosis/apoptosis/ferroptosis
and conferr protection against AP, such as celastrol (Liang et al.,
2023), crocetin (Zhu and He, 2022), and glycyrrhizin (Cui et al.,
2024). Of note, both terpenes [limonin (Xia et al., 2021) and
astaxanthin (Kwak et al., 2021)] exert pancreatic protection by
suppressing JAK2/STAT3 hyperactivation, thereby reducing pro-
inflammatory cytokine production.

5.3.5 Others
Beyond the aforementioned phytochemicals, additional

medicinal plant-derived compounds exhibit targeted therapeutic
potential against AP. Cordycepin, a nucleoside derivative extracted
from Cordyceps militaris, inhibited pancreatic inflammation
and injury by blocking the NF-κB/NLRP3 inflammasome
pathway (Yang J. et al., 2020). Anthraquinones (e.g., emodin)
exerted pleiotropic effects on inflammation and pancreatic
tissue repair via the inactivation of NLRP3 inflammasome
(Zhang et al., 2019). Shikonin (Xiong et al., 2013) and Astragalus
polysaccharides (Wang Q. et al., 2025) mitigated AP progression
by inhibiting NF-κB pathway-mediated inflammation. Moreover,
the protective effect of notoginsenoside R1 (He et al., 2022) and
protocatechuic acid (Abdelmageed et al., 2021) on AP-induced lung
injury by blocking the HMGB1/TLR4/NF-κB pathway. Collectively,
these findings underscored that bioactive compounds derived
from TCM counteract AP pathogenesis by targeting inflammatory
pathways, including NF-κB, MAPK, and NLRP3 inflammasome.
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TABLE 3 Clinical trials of TCM in AP.

Category Year of registration Enrollment Sponsor Recruiting status Clinical trial ID

Dachaihu decoction 2023 306 Fifth Affiliated Hospital,
Sun Yat-Sen University,
China

Not yet recruiting NCT04990336

Qingyi granule 2007 300 Tianjin Nankai Hospital,
China

Unknown status NCT00508729

Qingyi Jiangzhi decoction 2024 100 The First People’s Hospital
of Lianyungang, China

Not yet recruiting ChiCTR2400094917

Liuhe Dan ointment 2024 240 West China Hospital of
Sichuan University, China

Not yet recruiting ChiCTR2400085136

Qingyi Jiangzhi decoction 2024 100 The First People’s Hospital
of Lianyungang, China

Not yet recruiting ChiCTR2400094917

Daxianxiong decoction 2024 108 Chongqing Hospital of
Traditional Chinese
Medicine, China

Recruiting ChiCTR2300076885

Qing Yi Dao Xie decoction 2023 90 Changsha Hospital of
Traditional Chinese
Medicine (Changsha Eighth
Hospital), China

Recruiting ChiCTR2300078065

Qingyi granule 2022 340 The First Affiliated Hospital
of Dalian Medical
University, China

Recruiting ChiCTR2200061929

Rhubarb decoction 2021 112 The First Affiliated Hospital
of Chongqing Medical
University, China

Recruiting ChiCTR2100046548

Chaiqin Chengqi decoction 2020 248 West China Hospital of
Sichuan University, China

Completed ChiCTR2000034325

Qing Yi decoction 2015 120 The First Affiliated Hospital
of Guangxi Medical
University, China

Completed ChiCTR-OIR-15007512

Radix paeoniae rubra 2014 60 Shanghai Changhai
Hospital, China

Completed ChiCTR-TRC-14004664

Emodin 2014 250 First Affiliated Hospital,
Dalian Medical University,
China

Completed ChiCTR-TRC-14004653

Rhubarb 2013 300 The first affiliated hospital of
Nanchang University, China

Completed ChiCTR-TRC-13003573

Da-Cheng-Qi decoction 2012 21 The First Affiliated Hospital
of Wenzhou Medical
University, China

Completed ChiCTR-ONRC-12002792

6 Clinical study of TCM for the
prevention and treatment of AP

Preclinical studies have confirmed that TCM possesses
significant therapeutic potential against AP. Notably, randomized
controlled trials have revealed that TCM interventions reduced
mortality rates, shortened hospitalization duration, and mitigated
postoperative complications in AP patients compared to

conventional therapies (Qiong et al., 2005). For instance, among
the included 248 patients with AP (124 patients in each group),
Chaiqinchengqi decoction treatment reduced the duration of 28-
day respiratory failure (median: 1.0 days, 95% confidence interval:
−2.0 to 0.0) and improve 6-month clinical outcomes in AP patients
compared with the placebo (Deng et al., 2025). Similarly, Dachengqi
decoction, as adjunctive therapy, reducedmultiple organ dysfunction
syndrome incidence by 40% and pancreatic infection risk by
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5% in severe AP patients (Chen et al., 2010). Tongfu powder
treatment alleviated gastrointestinal dysfunction in AP cohorts
(Miao et al., 2018). Moreover, integrative approaches combining
TCM with Western medicine exhibited synergistic benefits,
including decreased organ failure risk (4.1% vs. 5.9%), reduced
hospitalization costs ($2,157/patient vs. $2,895/patient) and overall
mortality rate (1.7% vs. 3.4%) (Deng et al., 2024). Notably, Guo
qing yi tang decoction treatment enhanced intestinal barrier integrity
(serum DAO and MFG-8↓, p < 0.05) and reduced inflammatory
cytokines (TNF-α, IL-6, and IL-8↓, p < 0.05), APACHE II scores
(7.84, p < 0.001), and hospital stay after 1 week in a total of 38
AP patients compared with the control group (cluster therapy
alone, 70 patients) (Chen et al., 2021). These findings contrast with
the limitations of conventional Western medications, including
high costs and adverse effects. Herein, ongoing national clinical
trials evaluating TCM safety and efficacy in AP are summarized
in Table 3. Meanwhile, some preclinical and clinical studies have
proved that no significant adverse effects were observed during the
TCM treatment period (Wan et al., 2011; Lu et al., 2014). However,
TCM formulas may cause mild gastrointestinal discomfort, such
as nausea or diarrhea (Tan et al., 2020). Other TCM herbs may
interact with antiplatelet or anticoagulant drugs, increasing the risk
of bleeding (Li et al., 2019b).

Despite these promising results, translating preclinical TCM
research into clinical practice faces multifaceted challenges.
A primary hurdle involves securing regulatory approval for
commercialization due to resource limitations and difficulties
in semi-synthetic production or medicinal plant engineering
of bioactive compounds. This dependency on natural resources
raises ethical concerns, particularly given reports of over 20,000
medicinal plant species at risk of extinction. Additionally,
critical gaps remain in mechanistic understanding and robust
clinical data. Other challenges include poor solubility/absorption
profiles, intellectual property issues, and limitations in drug-
likeness and purity of TCM-derived compounds. Of note,
integrating TCM into standard care was constrained by
methodological limitations (e.g., small sample sizes, non-
RCT designs), mechanistic ambiguity, and quality control
issues, necessitating large-scale randomized trials, ingredient
standardization, and safety evaluations to facilitate evidence-based
implementation.

7 Conclusion and perspectives

Recent advances in elucidating the pathogenesis of AP
have coincided with the growing recognition of TCM as a
promising therapeutic strategy. Accumulating evidence highlights
TCM’s remarkable therapeutic efficacy in AP management
through multi-target modulation, particularly its capacity to
regulate NLRP3 inflammasome activation and downstream
inflammatory cascades. This review systematically summarized
current knowledge on TCM-derived compounds targeting NLRP3-
mediated pathways in AP, while critically addressing persisting
challenges in translational applications. Key limitations hindering
clinical translation include: (1) Formula standardization gaps:
Current research predominantly focuses on empirical or self-
formulated TCM prescriptions, with insufficient validation of

classical prescriptions through randomized controlled trials; (2)
Bioavailability challenges: Many active ingredients of TCM exhibited
suboptimal pharmacokinetic profiles due to structural instability,
rapid oxidation, and poor membrane permeability, advanced
delivery systems (e.g., lipid-based encapsulation, nanoparticle
carriers) can be considered; (3) Safety and metabolism uncertainties:
Comprehensive characterization of TCM pharmacokinetics, tissue
distribution, and long-term toxicity in AP-specific contexts remains
imperative; (4) Mechanistic complexity: The polypharmacological
nature of TCM necessitates integrative multi-omics approaches,
including metabolomics, network pharmacology, proteomics,
immunomics, and gutmetagenomics, to decode its regulatory effects
on NLRP3 inflammasome; (5) Standardized protocols in TCM
research are essential to ensure reproducibility, validate therapeutic
efficacy, and facilitate regulatory acceptance for broader clinical
implementation.

In summary, NLRP3 inflammasome inhibition represented a
strategic diagnostic and therapeutic nexus in AP. TCM served as
a reservoir of NLRP3 inflammasome-modulating agents with the
potential to restrict AP progression. Of note, this review provided a
framework for evidence-based optimization of TCM to combat AP,
advocating for the integration of systems biology and advanced drug
delivery platforms to bridge traditional knowledge with modern
precision medicine paradigms.
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