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Estrogen, menopause, and
Alzheimer’s disease:
understanding the link to
cognitive decline in women
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Background: Women face a significantly higher lifetime risk of developing
Alzheimer’s disease (AD) than men. This disparity is often attributed to
longer female longevity, but growing evidence suggests a multifactorial
origin, including hormonal, vascular, and immunologic contributions. Estrogen
plays a critical neuroprotective role across multiple systems implicated in
AD pathogenesis, including synaptic plasticity, mitochondrial function, and
cerebrovascular integrity. However, clinical trials investigating hormone therapy
(HT) for AD prevention have yielded mixed results, in part due to variability in
study populations, timing of intervention, and formulation of hormones.

Aims/methods: This review examines the biological rationale for estrogen’s
role in cognitive aging, synthesizes clinical and translational data on hormone
therapy and AD risk, and highlights the importance of vascular comorbidity,
including cerebral small vessel disease, in mediating AD pathology.

Conclusion:We propose that estrogen’s neuroprotective potential may be best
realized in personalized treatment frameworks that account for age, timing,
APOE genotype, and vascular burden. Interpretation of estrogen’s role in AD is
further complicated by variability in diagnostic criteria, which may contribute to
conflicting findings across studies. Recognition of menopause-related cognitive
impairment as an early, hormonally modulated risk state may offer additional
opportunity for timely intervention. Addressing this complexity is essential to
refining AD prevention strategies in midlife women.

KEYWORDS

APOE genotype and dementia risk in women, precision medicine in women’s cognitive
aging, hormone therapy and brain health, menopause related cognitive impairment,
estrogen and Alzheimer’s disease

1 Introduction

Alzheimer’s disease (AD) disproportionately affects women, with nearly two-
thirds of all diagnosed cases occurring in females. Biological, hormonal, and
sociocultural factors are likely the primary drivers of the sex disparity in
risk and clinical presentation, rather than increased longevity as previously
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believed (Beam et al., 2018; Jett et al., 2022; Vila-Castelar et al.,
2023). Women not only exhibit a higher incidence and prevalence
of AD but also tend to show faster cognitive decline and greater
pathological burden once diagnosed (Lin et al., 2015).

Emerging research suggests that female-specific risk
factors—especially those tied to hormonal transitions such
as menopause—may critically influence brain aging and AD
vulnerability (Toran-Allerand et al., 1999; Sherwin, 2009;
Henderson and Sherwin, 2007). Estrogen, in particular, has
garnered attention for its pleiotropic effects on neuronal resilience,
cerebral perfusion, and immune modulation (Toran-Allerand et al.,
1999). The perimenopausal and postmenopausal brain may thus
experience a compound loss of estrogen’s protective influence
at the very time when age-related neurodegeneration begins
to accelerate (Henderson and Sherwin, 2007; Henderson and
Rocca, 2012; Henderson et al., 2016). Interpretation of these
findings is further complicated by inconsistencies in how AD is
defined across the three major diagnostic frameworks, a factor
that may obscure true associations between estrogen exposure and
disease risk (Bieger et al., 2024).

Compounding this complex picture is the frequent co-
occurrence of other primary brain co-pathology in aging women
(Devi, 2023). AD almost never occurs in isolation. In fact,
neuropathologic studies show that from 66% to 100% of AD cases
exhibit coexisting primary brain pathologies—including vascular
brain injury and Lewy body disease (Spina et al., 2021; Karanth et al.,
2020). Mixed pathology is the norm, rather than the exception.

In addition to these structural and molecular risks, the
menopausal transition itself is associated with measurable cognitive
changes in a substantial proportion of women (Weber et al., 2014;
Davis et al., 2015). Multiple longitudinal cohort studies demonstrate
that up to 60% of midlife women report difficulties with memory,
attention, and verbal fluency during perimenopause (Henderson
and Sherwin, 2007; Weber et al., 2014; Davis et al., 2015). Objective
testing confirms declines in verbal memory, working memory, and
executive function, often correlating with fluctuations in estradiol
and follicle-stimulating hormone (Davis et al., 2015).These changes,
although subtle, can significantly impact quality of life and may be
mistaken for early signs of dementia. Recognizing the menopausal
origin of these symptoms is crucial for timely and appropriate
management.

Menopause-related cognitive impairment (MeRCI), a recently
defined clinical entity, describes the emergence of cognitive
symptoms, including objective evidence of language, executive
function and/or memory impairment, during the menopausal
transition in the absence of other medical or psychiatric conditions
(Devi, 2018; Maki and Henderson, 2012). MeRCI reflects the
estrogen-sensitive cognitive phenotype often underrecognized in
midlifewomen andmay represent amodifiable early risk statewithin
the Alzheimer’s disease continuum.

This review synthesizes current evidence on estrogen’s
neuroprotective mechanisms, evaluates clinical trial data on
hormone therapy and AD risk, and emphasizes the need to consider
vascular comorbidity in both mechanistic understanding and
therapeutic planning. By reframing AD as a spectrum disorder
influenced by sex-specific biology and comorbid pathologies,
we advocate for a precision medicine approach to prevention in
midlife women.

2 Discussion

We begin by examining the multiple mechanisms through
which estrogenmay support neuronal health, including its influence
on neuroplasticity, neurotransmitter regulation, oxidative stress,
amyloid and tau pathology, neuroimmune function, and the
integrity of the blood-brain barrier. Many of these areas have been
extensively reviewed elsewhere and therefore will be summarized in
this review.

We then discuss how the diagnostic criteria used in making
a diagnosis of AD may significantly alter results of data.
We review current evidence on estrogen’s role in cognitive
impairment, drawing from both observational studies and
randomized controlled trials. This includes an analysis of the
specific estrogen formulations used, the cognitive effects of
progestins, and the importance of the critical window for initiating
hormone therapy.

Next, we explore the significant overlap between vascular and
neurodegenerative pathology in women with Alzheimer’s disease
and the potential modulatory role of estrogen in this context.
We highlight the emerging clinical entity of menopause-related
cognitive impairment, which may reflect a unique intersection of
hormonal and neurodegenerative changes.

Finally, we discuss the clinical implications of these findings
and consider how hormone therapy might be integrated into
personalized treatment paradigms for women at risk of or
experiencing cognitive decline.

2.1 Estrogen and the female brain:
mechanisms of neuroprotection

Estrogen exerts extensive influence on the central nervous
system (CNS), affecting not only reproductive regulation but also
cognition, affect, and neuroprotection. Its effects are mediated
through estrogen receptors—ERα and ERβ—widely distributed
throughout the brain, including the hippocampus, prefrontal
cortex, amygdala, and basal forebrain (McEwen et al., 2001;
McEwen et al., 2012; Mitterling et al., 2010). These receptors
facilitate both genomic transcriptional regulation and rapid
non-genomic signaling, engaging intracellular cascades that
impact brain aging and resilience to neurodegenerative stressors
(McEwen, 2012; Ma et al., 2016).

2.1.1 Synaptic plasticity, neurogenesis, and
cognitive performance

Estrogen enhances synaptic connectivity through promotion of
long-term potentiation (LTP), increased dendritic spine density,
and heightened expression of synaptic proteins important for
synaptic plasticity (Toran-Allerand et al., 1999; Henderson et al.,
2016; Smejkalova and Woolley, 2010). These effects are especially
pronounced in the hippocampus and prefrontal cortex—regions
integral to working memory, spatial navigation, and executive
function (Shanmugan and Epperson, 2014). Estradiol also
stimulates adult neurogenesis in the dentate gyrus, a capacity
that declines with age and estrogen deprivation (Barha and
Galea, 2010; Grodstein et al., 2003). These synaptic and
neurogenic effects underlie the cognitive advantages observed
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in premenopausal women and in animal models treated with
estradiol (Mishra et al., 2023).

In mouse models, early ovarian failure during perimenopause
enhances astrocyte activation and regional amyloid accumulation
in the hippocampus during early-stage cerebral amyloid angiopathy,
suggesting emerging neurovascular dysfunction, which is often
correlated with the development of dementia (Platholi et al.,
2023). Another mouse model study found that chemically induced
perimenopause in mice with early-stage Alzheimer’s pathology
increased amyloid-beta accumulation and heightened astrocyte and
microglial activation in specific hippocampal subregions, although
cognitive deficits were not yet apparent. These results support
the idea that perimenopause represents a critical window of
emerging vulnerability to Alzheimer’s-related brain changes where
intervention may be beneficial (Marongiu et al., 2025).

2.1.2 Neurotransmitter systems: acetylcholine,
serotonin, dopamine, and norepinephrine

Estrogen exerts widespread influence on neurotransmitter
systems critical to cognition, mood regulation, and behavioral
flexibility—many of which are vulnerable to age-related decline and
prominently implicated in AD. Estrogen receptors are expressed
not only in cortical and hippocampal neurons but also in
neurons producing acetylcholine and monoamines, including
serotonin, dopamine, and norepinephrine (Ma et al., 2016; Ross and
Van Bockstaele, 2021).

• Acetylcholine: Estrogen upregulates choline acetyltransferase,
the enzyme responsible for acetylcholine synthesis, and
enhances muscarinic receptor density in the basal forebrain
and hippocampus. It also supports the integrity of
cholinergic projections—among the earliest to deteriorate in
AD—thereby preserving attention and memory processes.
This cholinergic support underpins estrogen’s role in
attention and memory (Russell et al., 2019; Newhouse
and Dumas, 2015). The loss of this estrogenic support
during perimenopause may compromise cholinergic tone
and contribute to the early cognitive symptoms observed in
prodromal AD (Kwakowsky et al., 2016).

• Serotonin: Estrogen modulates serotonergic function by
increasing tryptophan hydroxylase expression—the rate-
limiting enzyme in serotonin synthesis—and by regulating
serotonin receptor subtypes, particularly 5-HT1A and 5-
HT2A (MCEWEN Harold and Milliken, 2001; Amin et al.,
2005; Bendis et al., 2024). These effects are associated
with improvements in mood and affect and may explain
the increased risk of depression during the menopausal
transition (MCEWEN Harold and Milliken, 2001; Amin et al.,
2005). Estrogen’s serotonergic actions are central to its role
in maintaining emotional resilience and are increasingly
recognized as part of its broader neuroprotective profile.

• Dopamine: Estrogen influences dopaminergic signaling by
enhancing dopamine synthesis and turnover, and regulates
D1 and D2 receptor expression, particularly in the prefrontal
cortex, striatum, and nucleus accumbens. These regions
govern executive function, working memory, motivation,
and reward processing—domains commonly impaired
in early AD (Almey et al., 2015). Membrane-associated

estrogen receptors localized on dopaminergic neurons further
modulate dopamine receptor expression and sensitivity
(Bendis et al., 2024; Almey et al., 2015; Almey et al., 2012).These
mechanisms underpin sex differences in dopamine-mediated
cognition and highlight estrogen’s critical role in modulating
frontostriatal function.

• Norepinephrine: Estrogen also modulates the locus coeruleus
(LC) –norepinephrine system, which is involved in
arousal, attention, vigilance, and stress regulation. Estrogen
receptors are expressed in LC neurons, where estrogen
preserves structural integrity and promotes norepinephrine
synthesis and release. Notably, LC degeneration is one
of the earliest pathologic changes in AD and contributes
to neuroinflammatory priming and influences amyloid
processing. Estrogen-mediated preservation of locus coeruleus
function may be critical given its early degeneration in
AD (Russell et al., 2019; Bangasser et al., 2016). Estrogen
modulation of LC activity suggests another potential
mechanism by which hormonal decline during perimenopause
could amplify AD risk through disrupted arousal and
neuroimmune regulation (Ross and Van Bockstaele, 2021).

Through this multifaceted support of key neurotransmitter
systems, estrogen maintains the neurochemical infrastructure
essential for cognitive and emotional regulation. The loss of
estrogenic signaling during perimenopause may destabilize these
systems, creating a period of heightened vulnerability to the
neuropathological processes underlying Alzheimer’s disease.

2.1.3 Mitochondrial function and oxidative stress
Mitochondria are central to neuronal metabolism, and their

dysfunction is a key feature of aging and Alzheimer’s disease
(McGill Percy et al., 2025). Estrogen enhances mitochondrial
biogenesis, increases ATP production, and reduces oxidative stress
through upregulation of antioxidant enzymes such as superoxide
dismutase and glutathione peroxidase (Lejri et al., 2018; Velarde,
2013). This contributes to reduced accumulation of reactive oxygen
species, which are implicated in both amyloid aggregation and tau
hyperphosphorylation.

2.1.4 Amyloid and tau pathophysiology
Estrogen influences amyloid precursor protein processing

by promoting α-secretase activity and suppressing β-secretase,
thereby favoring the non-amyloidogenic pathway (Cole and
Vassar, 2007). In vivo models show that estrogen administration
reduces Aβ levels and plaque formation and may reduce
tau formation in post-menopausal women (Wang et al.,
2024a; Henderson, 2014). Additionally, estrogen modulates
kinases involved in tau phosphorylation, thereby mitigating
neurofibrillary tangle development (Kantarci et al., 2016;
Wang et al., 2024b; Depypere et al., 2023).

2.1.5 Cerebrovascular and blood-brain barrier
(BBB) integrity

Estrogen has vasoprotective effects, including the promotion
of nitric oxide synthesis, improved endothelial function,
and preservation of cerebral autoregulation (McNeill et al.,
2002). It also maintains blood-brain barrier integrity, reducing
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TABLE 1 Comparison of Alzheimer’s disease (AD) diagnostic frameworks.

Framework Definition of AD Are clinical symptoms
required?

Biomarkers used

Alzheimer’s Association (2024 criteria) AD is defined biologically based on
abnormal Core biomarkers of AD

No Core 1: Amyloid PET, CSF Aβ42,
plasma p-tau217
Core 2: Tau PET, CSF p-tau

International Working Group criteria AD is a clinical-biological syndrome
requiring both a compatible phenotype
and biomarker confirmation

Yes CSF Aβ42, CSF total/p-tau, amyloid
PET
Supportive: hippocampal atrophy on
MRI, FDG-PET

National Institute of Aging-Alzheimer’s
Association ATN Framework
(2011–2018)

AD defined by abnormal biomarkers:
AT(N) with, or without symptoms

No for diagnosis
Yes for clinical syndrome

A: Amyloid PET, CSF Aβ42
T: Tau PET, CSF p-tau
N: FDG-PET, structural MRI, CSF total
tau

CSF: cerebrospinal fluid. PET, positron emission tomography. FDG, fluorodeoxyglucose. ATN, amyloid tau neurodegeneration.

permeability and neuroinflammatory infiltration (Maggioli et al.,
2016). With estrogen loss, particularly during the menopausal
transition, cerebral perfusion diminishes and the BBB
becomes more vulnerable—conditions that may synergize with
amyloid and vascular pathology to accelerate cognitive decline
(Russell et al., 2019; Maggioli et al., 2016).

2.1.6 Neuroimmune modulation
Microglia and astrocytes express estrogen receptors and

are directly modulated by hormonal signaling (Mor et al.,
1999). Estrogen promotes an anti-inflammatory glial phenotype,
downregulates pro-inflammatory cytokines (e.g., IL-1β, IL-6, and
TNF-α), and restrains chronic neuroinflammation—a hallmark
of aging and AD (Mor et al., 1999; Villa et al., 2016). Estrogen
deprivation in menopause may shift this balance toward a pro-
inflammatory state, thereby exacerbating neuronal injury and
synaptic loss (Villa et al., 2016).

2.2 Diagnostic criteria discordance and
implications for research in HT and AD

Differences in Alzheimer’s disease diagnostic frameworks—
particularly between the two biomarker-only National Institute
on Aging–Alzheimer’s Association (NIA-AA) and the Alzheimer’s
Association (AA) criterion, and the clinico-biological International
Working Group (IWG) criteria—have important implications for
estrogen research (Table 1) (Villain and Paretsky, 2024).

The IWG requires both clinical symptoms and biomarker
evidence for diagnosis (Dubois et al., 2021). In contrast, the
NIA-AA and the AA frameworks permit a biological diagnosis
based solely on amyloid, tau, and neurodegeneration biomarkers
(AT [N]), even in asymptomatic individuals (Brum et al., 2022;
Jack et al., 2018). A third approach, endorsed by an Alzheimer’s
Association-led working group, allows for diagnosis based on a
single abnormal biomarker (Ja et al., 2024). When applied to
the same cohort, these frameworks yielded a 42% discrepancy
in diagnoses, especially in individuals with only one abnormal
biomarker (Bieger et al., 2024). Notably, among individuals with

isolated amyloid-beta abnormalities, 65% remained cognitively
intact (Bieger et al., 2024; Villain and Paretsky, 2024).

For estrogen studies that rely on AD diagnosis as an outcome
or grouping variable, such variability can distort associations,
especially among cognitively normal, biomarker-positive midlife
women. Researchers should therefore clearly specify which
diagnostic criteria are used and consider those that integrate both
clinical and biological features to improve relevance for sex-specific
risk and treatment response.

2.3 The timing hypothesis and clinical trials
of hormone therapy in Alzheimer’s disease

The “timing hypothesis” posits that the neuroprotective
effects of estrogen are contingent upon when HT is initiated in
relation to the onset of menopause. Specifically, estrogen may
confer cognitive and structural brain benefits when administered
during the critical window of perimenopause or early post-
menopause, whereas delayed initiation—often a decade or
more after menopause—may yield no benefit or even harm
(Sherwin, 2009; Henderson and Rocca, 2012; Erickson et al., 2010;
Lord et al., 2008).

2.3.1 Observational evidence and the critical
window

Early observational studies suggested a strong protective
association between estrogen use and reducedAD risk. For example,
data from the Cache County Study, which included persons aged
65 years or older, and the Baltimore Longitudinal Study on Aging,
which included postmenopausal women ages 65 and older, indicated
that women who used HT near the time of menopause had a
lower incidence of AD (Shao et al., 2012; Nerattini et al., 2023).
However, these studies were limited by healthy-user bias and lack
of randomization.

The critical window hypothesis emerged from such findings,
suggesting that the brain may retain estrogen sensitivity during
a finite period following ovarian hormone withdrawal (Sherwin,
2009). Beyond this window, estrogen receptors may downregulate,
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TABLE 2 Major clinical trials evaluating hormone therapy and cognitive outcomes in postmenopausal women.

Study Population Intervention Key findings Conclusion

WHIMS Women ≥65 years CEE ± MPA Increased dementia risk Late HT may be harmful

KEEPS-Cog Women 42–58 years Oral CEE or transdermal E2 +
progesterone

No cognitive benefit HT in early menopause may be
neutral

ELITE Women <6 vs. >10 years
postmenopause

Oral estradiol ± vaginal
progesterone

No cognitive benefit or harm Supports timing hypothesis

WHIMSY Women 50–55 years (WHI
subset)

CEE vs placebo No cognitive harm after
10 years

Early HT appears safe

KEEPS Follow-up Post-KEEPS cohort ∼10 years
later

CEE or E2 vs placebo No long-term cognitive benefit
or harm

HT may be neutral

CEE, conjugated equine estrogen. E2, estradiol. ELITE, early versus late intervention trial with estradiol. KEEPS-Cog, Kronos Early Estrogen Prevention Study -Cognitive Study. MPA,
medroxyprogesterone acetate. WHI, women’s health initiative. WHIMS, Women’s Health Initiative Memory Study. WHIMSY, Women’s Health Initiative Memory Study of Younger Women.

and the brain may enter a pro-inflammatory, vulnerable state that
does not respond favorably to exogenous hormones.

2.3.2 Randomized controlled trials: mixed results
Randomized controlled trials have yielded mixed results and

are briefly summarized in Table 2. The Women’s Health Initiative
Memory Study (WHIMS) remains the most widely cited trial
in the field Espeland et al. (2024). In this large, randomized
controlled trial (RCT) of women aged 65 and older, conjugated
equine estrogen (CEE) with or without medroxyprogesterone
acetate (MPA) increased the risk of dementia and cognitive
decline. However, this trial enrolled women well beyond the
menopausal transition (mean age 69), raising questions about
generalizability to midlife populations. Additionally, while there
was an increased risk of all-cause dementia (including normal
pressure hydrocephalus, for example,), there was NOT an increased
risk for AD (Nerattini et al., 2023).

Subsequent RCTs have painted a more nuanced picture:

• The KEEPS-Cog trial studied younger postmenopausal women
(ages 42–58) and found no adverse cognitive effects of
transdermal estradiol over 4 years, although it was not powered
to detect AD incidence (Gleason et al., 2015).

• The ELITE study stratified women by time since menopause
and found that estradiol improved carotid artery intima-media
thickness in recently menopausal women (<6 years) but not in
those further out (>10 years), indirectly supporting the timing
hypothesis for vascular aging (Hodis et al., 2016).

• The WHIMSY trial, a follow-up to WHI, evaluated cognition
in women who had received CEE between ages 50 and 55.
It found no increased risk of cognitive impairment over
10 years of follow-up, suggesting that early use of estrogen
may be neutral or beneficial Espeland et al. (2024); Maki and
Henderson, 2012; Shumaker et al., 2004).

2.3.3 Formulation, route, and progestin effects
Not all estrogens or regimens are equivalent. The

WHIMS trial employed oral CEE, a formulation derived
from pregnant mare’s urine, along with MPA, a synthetic

progestin Espeland et al. (2024); Shumaker et al., 2004). In
contrast, bioidentical 17β-estradiol—particularly via transdermal
routes—may have more favorable effects on cognition
and cardiovascular health. Oral estrogens undergo first-
pass hepatic metabolism, increasing coagulation factors and
inflammatory markers, whereas transdermal estradiol bypasses
the liver and maintains a more physiologic estrogen profile
(Kantarci et al., 2016; Wharton et al., 2011).

Progestin co-administration further complicates interpretation.
While necessary for endometrial protection in women with a
uterus, synthetic progestins like MPA may attenuate estrogen’s
beneficial effects (Stanczyk et al., 2013). Natural micronized
progesterone appears to have a more favorable safety and
neurocognitive profile but has not been extensively studied in
long-term AD prevention trials.

These differences were directly explored in the Kronos Early
Estrogen Prevention Study (KEEPS), which randomized healthy
recently postmenopausal women (median age 42–58 years old;
within 3 years of menopause) to either oral CEE, transdermal
17β-estradiol, or placebo, all with cyclic micronized progesterone
(Gleason et al., 2015; Gleason et al., 2024). The KEEPS-Cog sub-
study evaluated cognitive outcomes over 4 years and found no
cognitive benefit from either formulation compared to placebo.
Although neither route caused harm, the anticipated cognitive
enhancement—particularly from transdermal estradiol—was
not observed, challenging assumptions that bioidentical
transdermal therapy would outperform CEE in preserving
cognitive function (Gleason et al., 2024).

A long-term follow-up study of theKEEPS cohort approximately
10 years after cessation of therapy similarly found no lasting
benefit or harm on cognitive outcomes from either hormone
regimen. These findings suggest that in healthy, low-risk women,
even early HT initiation may be cognitively neutral, and that
timing, formulation, and population risk profile all influence
therapeutic outcomes (Gleason et al., 2024).

This nuanced evidence underscores the importance of tailoring
hormone therapy—not only in terms of age and timing, but
also formulation, route, and individual risk factors, including
cardiovascular and genetic vulnerability.
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2.3.4 Limitations and remaining questions
Despite promising mechanistic data, current clinical trials

remain underpowered, short in duration, and heterogeneous in
design. Most have not targeted women at the highest risk—those
with metabolic syndrome, cerebrovascular pathology, or APOE-
ε4 genotype (Saleh et al., 2023). Furthermore, outcomes have
focused on global cognition rather than sensitive biomarkers such as
amyloid PET imaging, tau load, whitematter hyperintensity volume,
or regional perfusion.

Another prospective cohort of women tracked from midlife to
late life, early initiation of hormone therapy—particularly within
5 years ofmenopause—was associatedwith reduced risk of cognitive
impairment and dementia. Notably, the protective association was
strongest in APOE-ε4 non-carriers, whereas APOE-ε4 carriers did
not appear to benefit and, in some cases, showed potential harmwith
later or prolonged hormone use (Taxier et al., 2022a).

This study reinforces both the critical window hypothesis and
the need for genotype-informed HT decision-making, aligning
with other studies showing that APOE-ε4 carriers may have
heightened sensitivity to hormonal and metabolic stressors.
These findings argue for tailoring both timing and duration of
hormone therapy to genetic and vascular risk (Saleh et al., 2023;
Taxier et al., 2022a).

Such observational data, while subject to confounding factors,
offer valuable direction for future trials and underscore the need for
stratified prevention strategies.

2.4 The overlap of vascular and
neurodegenerative pathology in women
with Alzheimer’s disease

Alzheimer’s disease is almost never a pure neuropathological
entity (Devi, 2023). Recent studies, including large autopsy
series and biomarker-based analyses, confirm that nearly all
cases of AD have coexisting primary brain pathology. Common
vascular comorbities include cerebral small vessel disease (SVD),
microinfarcts, white matter hyperintensities (WMHs), and
arteriolosclerosis (Hodis et al., 2016; Simpkins et al., 2009). Vascular
comorbidities are particularly prevalent in women, amplifying
cognitive impairment and complicating diagnostic and therapeutic
strategies.

2.4.1 Vascular aging and estrogen loss
Estrogen plays a central role in maintaining cerebrovascular

health through its effects on endothelial function, nitric oxide
production, arterial compliance, and blood-brain barrier (BBB)
integrity (Maggioli et al., 2016).With themenopausal transition, the
decline in estrogen leads to increased arterial stiffness, endothelial
dysfunction, and enhanced vulnerability to ischemic injury. These
vascular changes may precede or exacerbate neurodegenerative
processes, particularly in women with underlying metabolic or
hypertensive risk (Hodis et al., 2016).

Women also appear to have greater WMH burden than
men for a given vascular risk profile, and WMHs are a well-
established predictor of cognitive decline, especially executive
dysfunction and processing speed—domains often affected early in
women with AD (Hodis et al., 2016).

2.4.2 Interaction between vascular pathology
and amyloid-tau cascade

Vascular dysfunction may synergize with amyloid and tau
pathology to accelerate neurodegeneration. Chronic hypoperfusion
impairs glymphatic clearance of Aβ, while blood-brain barrier
breakdown facilitates neuroinflammation and toxic protein
accumulation. Additionally, microvascular disease may sensitize
neurons to injury from tau hyperphosphorylation.

In women, this interplay may be intensified by estrogen
loss. For example, animal models of ovariectomy show increased
cerebrovascular inflammation, reduced perfusion, and enhanced
Aβ deposition—effects partially reversed by estrogen replacement
(Hodis et al., 2016; Simpkins et al., 2009; Attems et al., 2014). These
models suggest that estrogen’s protective role includes dampening
the vascular contributions to AD pathology.

2.4.3 Cerebrovascular burden as a modifier of
hormone therapy response

Vascular burden may also modulate the cognitive response
to hormone therapy. Subgroup analyses from the WHIMS-
MRI study revealed that older women on hormone therapy
had increased WMH volume, particularly those with preexisting
vascular risk factors (Coker et al., 2009). This has raised concern
that in the presence of significant SVD, exogenous estrogen may
exacerbate white matter injury, particularly when initiated late.

Conversely, studies in younger women with lower vascular
burden suggest more neutral or even beneficial effects on brain
perfusion and connectivity. These findings support a precision-
medicine approach in which vascular status—assessed via imaging
or biomarkers—guides HT candidacy and regimen.

2.4.4 Racial and metabolic disparities
It is important to recognize that vascular risk and estrogen

deficiency intersect with social determinants of health, leading to
disproportionate burden in Black and Hispanic women, who have
higher rates of hypertension, diabetes, and stroke (Chinn et al.,
2020). These populations are underrepresented in clinical trials, yet
their risk profiles may make them more susceptible to both the
benefits and harms of HT.

Incorporating vascular screening and risk stratification—particularly
in midlife—may identify women most likely to benefit from early
estrogen intervention and those in whom non-hormonal vascular
risk management should take precedence.

2.5 Menopause-related cognitive
impairment (MeRCI): a distinct clinical
entity

Menopause-related cognitive impairment (MeRCI) is a
recognized syndrome describing cognitive deficits that emerge
during the perimenopausal and early postmenopausal transition,
often in otherwise healthy women. Symptoms commonly include
reduced verbal fluency, memory lapses, and executive dysfunction,
often occurring in the absence of mood disorders or clear structural
brain abnormalities (Devi, 2018).

Studies show that 34%–62% of midlife women report memory
changes during menopause (Devi et al., 2005; Drogos et al., 2013).
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TABLE 3 Diagnostic criteria for menopause-related cognitive
impairment (MeRCI).

• Subjective change in cognition reported by the patient
• Occurs during the menopausal transition, defined by persistent change in
frequency and quality of menses for ≥12 months

• Not attributable to other medical conditions, medications, psychiatric illness, or
dementia

• Objective evidence of decline in one or more cognitive domains (e.g., memory,
verbal fluency, executive function), beyond age-expected norms

• Laboratory evidence of perimenopause (e.g., elevated Follicle Stimulating
Hormone) may support the diagnosis but is not required

These subjective complaints correlate with objective reductions
in verbal memory and fluency on neuropsychological testing
(Sherwin, 2009; Henderson and Sherwin, 2007). Critically, these
deficits canmimic early signs of neurodegenerative disease—leading
to misdiagnoses such as Alzheimer’s disease or frontotemporal
dementia (Henderson and Sherwin, 2007; Weber et al., 2014;
Devi, 2018; Leblanc et al., 2002).

Diagnostic criteria for MeRCI include subjective and objective
cognitive changes, as noted in Table 3, temporal association with
menstrual irregularity, and exclusion of other medical or psychiatric
causes (Devi, 2018). Brain imaging is often unremarkable, and
symptoms may stabilize or improve with short-term hormone
therapy or cognitive remediation strategies (Devi, 2018).

Because MeRCI is underrecognized in routine neurological and
gynecological evaluations, many affected women receive incorrect
diagnoses or unnecessary treatment. Routine screening for cognitive
changes during menopause should be incorporated into clinical
practice, particularly in women reporting difficulty with language,
memory, ormultitasking. Early recognition can prevent stigmatizing
misdiagnoses and facilitate appropriate interventions.

2.6 Integrating hormone therapy into
Alzheimer’s prevention: future directions
and clinical considerations

While the neuroprotective potential of estrogen is well-
supported by preclinical data, translation into effective clinical
prevention of Alzheimer’s disease has proven complex. Disparate
trial results reflect the challenges of a “one-size-fits-all” approach to
hormone therapy and underscore the need for precision targeting
based on age, timing, genotype, vascular health, and formulation.

2.6.1 The need for risk-stratified prevention
frameworks

Future prevention strategies should be individualized, not only
by menopausal timing but also by risk phenotype. For example,
a recently postmenopausal woman with a strong family history of
AD, APOE-ε4 positivity, and minimal vascular burden may derive
benefit from early transdermal estradiol, particularly if initiated
within 5 years of menopause (Kantarci et al., 2016). In contrast, an
older woman with metabolic syndrome, hypertension, and white
matter hyperintensities may be better served by aggressive vascular
risk reduction rather than hormone therapy.

This approach requires integrating biomarkers into decision-
making, such as:

• Neuroimaging markers: hippocampal atrophy, cerebral
perfusion, PET tau and amyloid (Coughlan et al., 2022;
Coughlan et al., 2023; Coughlan et al., 2025).

• Plasma or CSF biomarkers: Aβ42/40, phosphorylated tau,
neurofilament light (Coughlan et al., 2025).

• Genetic markers: Apolipoprotein E genotype and other
AD risk polymorphisms (Saleh et al., 2023; Wang and
Brinton, 2016; Taxier et al., 2022b).

2.6.2 Opportunities for combination and
sequential therapies

Estrogen’s failure to show consistent benefit in isolation may
reflect a need for combination strategies. Potential synergistic
approaches include:

• HT + lifestyle intervention: Exercise, Mediterranean diet, and
cognitive training may amplify HT effects on brain plasticity.

• HT + anti-hypertensive or anti-diabetic agents: Addressing
vascular risk may unmask the cognitive benefits of HT.

• Sequential or cycling therapy: Intermittent HT may retain
efficacy while minimizing long-term exposure risks.

Such strategies should be tested in next-generation trials that
use brain biomarkers as primary outcomes and recruit enriched
populations at midlife.

2.6.3 Clinical counseling: communicating nuance
For clinicians, translating this nuanced landscape into practice

requires transparent, individualized risk-benefit counseling. Core
principles include:

• Timing matters: Benefits are more likely when HT is initiated
close to menopause onset (Hodis et al., 2016).

• Formulation matters: Transdermal estradiol and micronized
progesterone are preferable to oral CEE and synthetic
progestins (MŠ et al., 2023).

• Personal risk profile matters: APOE-ε4 status, vascular
comorbidities, and cognitive symptoms must inform
decisions (Riedel et al., 2016).

Hormone therapy should not be universally recommended
for AD prevention, but neither should it be categorically
dismissed—particularly in healthywomen atmidlife (Wharton et al.,
2011). Reframing the conversation from binary risk to
contextual, individualized potential empowers women to make
informed choices.

2.6.4 Research priorities
Key directions for future investigation include:

• Large, long-duration trials of transdermal estradiol in
at-risk midlife women, stratified by APOE status and
vascular health

• Integration of neuroimaging and fluid biomarkers
into HT studies
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• Inclusion of diverse populations, especially underrepresented
racial and ethnic groups

• Evaluation of brain outcomes beyond global cognition, such
as hippocampal volume, WMHs, network connectivity, and
centiloid clearance

Only through such refined approaches can we resolve the
longstanding ambiguity around estrogen and AD and deliver truly
personalized prevention to the women most at risk.

3 Conclusion

Alzheimer’s disease in women is not simply a consequence of
living longer—it is a reflection of complex, sex-specific biological,
vascular, and hormonal interactions that begin decades before
clinical onset. The abrupt decline in estrogen during menopause
appears to be a pivotal inflection point in this trajectory, contributing
to measurable cognitive changes, modulation of neurotransmitter
systems, vascular vulnerability, and the acceleration of AD-related
pathology.

Yet, estrogen’s therapeutic potential has been obscured by
inconsistencies in study design, population selection, and timing
of intervention. Evidence suggests that hormone therapy may
offer cognitive benefits—particularly when initiated early in
the menopausal transition, using bioidentical formulations and
appropriate delivery routes. Conversely, delayed or inappropriate
hormone use may fail to protect or may even harm, especially in the
context of existing vascular disease or APOE-ε4 carrier status.

Future studies should clearly define the diagnostic criteria used
for AD, as differences in classification frameworks may significantly
affect both participant selection and interpretation of estrogen-
related outcomes.

Recognition of menopause-related cognitive impairment as a
distinct clinical entity offers a valuable framework for identifying
estrogen-sensitive cognitive decline and avoiding misdiagnosis.
Integrating vascular risk profiling, neuroimaging, genotype
information, and menopausal timing into cognitive assessments
will allow clinicians to tailor better interventions.

Hormone therapy should not be universally recommended
for Alzheimer’s prevention, but neither should it be uniformly
dismissed. A nuanced, precision medicine approach—targeting the

right women, at the right time, with the right formulation—holds
promise for altering the course of cognitive aging in women. The
next-generation of trials must rise to this complexity, and clinical
practice must evolve to reflect it.
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