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Objectives: This study aims to segment intra-tumoral subregions of breast
cancer based on kinetic heterogeneity using dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI). It also aims to construct a radiomics
model of the whole tumor and washout region to predict molecular subtypes
and human epidermal growth factor receptor 2 (HER2) status.

Methods: A total of 124 patients with biopsy-confirmed breast cancer were
randomly divided into training and test sets in a 7:3 ratio. Quantitative analysis
of breast cancer kinetic heterogeneity parameters based on DCE-MRI data was
performed, dividing tumors into three subregions (Persistent, Washout, and
Plateau) according to the type of voxel-level contrast enhancement. Radiomics
features of the washout region and the whole tumor were extracted from the
first phase of DCE-MRI enhancement. The area under the receiver operating
characteristic curve (AUC) and decision curve analysis (DCA) were used to
evaluate the performance of the model.

Results: The radiomics model using tumor subregion (washout region) features
related to kinetic heterogeneity showed the best performance for differentiating
between patients with Luminal, HER2, and HER2 status, with AUC values in
the train set of 0.924, 0.876, and 0.816, respectively. Exhibiting an AUC value
higher than that obtained with the whole tumor and the kinetic heterogeneity
parameters. DCA curves showed that the washout region model was more
effective in predicting Luminal and HER2-status subtypes, compared to the
whole tumor region model.

Conclusion: Radiomics analysis of washout areas from high-resolution DCE-
MRI breast scans has the potential to better identify molecular subtypes of breast
cancer non-invasively.

KEYWORDS

breast cancer, subregions, kinetic heterogeneity, radiomics, dynamic contrast-
enhanced magnetic resonance imaging
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Highlights

• The tumor is divided into three subregions: persistent, washout,
and plateau.

• The radiomics features of washout regions can predict
molecular subtypes.

• Predicting breast cancer subtypes is more effective from the
washout region.

Introduction

Breast cancer exhibits molecular heterogeneity (Barzaman et al.,
2020; Yeo and Guan, 2017; Liu et al., 2022), encompassing distinct
subtypes such as Luminal A, Luminal B, HER2-enriched, and
Basal-like. Each molecular subtype manifests unique pathological
characteristics, dictating tailored treatment strategies and prognoses
(Cheang et al., 2009; Prat et al., 2015; McCart Reed et al.,
2021; Parker et al., 2009; Bitencourt et al., 2020). Luminal-type
breast cancer demonstrates sensitivity to endocrine therapy but
resistance to chemotherapy. HER2-positive breast cancer exhibits
high invasiveness and recurrence rates, yet displays a favorable
response to chemotherapy. Basal-like breast cancer presents the
highest propensity for recurrence and metastasis, resulting in a
poorer prognosis. Hence, accurate prediction of the molecular
subtypes and HER2 status of breast cancer holds paramount
importance.

Radiomics refers to the high-throughput extraction of
quantitative imaging features that can reveal disease characteristics
invisible to human visual assessment. By converting medical
images into mineable data using advanced computational analysis,
radiomics allows detection of subtle patterns that may correlate
with underlying pathophysiology (Gillies et al., 2016). DCE-
MRI serves as a non-invasive imaging technique that offers
clear delineation of the intricate shape of breast tumors, unveils
dynamic enhancements within the tumor, and elucidates the
characteristics of tumor angiogenesis and heterogeneity (Yu et al.,
2020). Numerous studies have demonstrated the diagnostic efficacy
of the radiomics features within whole tumors derived from T1-
weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-
weighted imaging (DWI), apparent diffusion coefficient (ADC)
maps, and DCE-MRI or their quantitative images in predicting
molecular types (Xie et al., 2019; Leithner et al., 2020; Agner et al.,
2014; Chaudhury et al., 2015; Mazurowski et al., 2014). The interior
of breast cancer exhibits heterogeneity and often showcases a
combination of distinct kinetic dynamics that reflect the diverse

Abbreviations: DCE-MRI, Dynamic contrast-enhanced magnetic resonance
imaging; HER2, Human epidermal growth factor receptor 2; AUC, Area under
the receiver operating characteristic curve; DCA, Decision curve analysis;
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; DWI, Diffusion-
weighted imaging; ADC, Apparent diffusion coefficient; CAD, Computer-
aided diagnosis; ER, Estrogen receptor; PR, Progesterone receptor; GLCM,
Gray level co-occurrence matrix; GLDM, Gray level dependence matrix;
GLRLM, Gray level run length matrix; GLSZM, Gray level size zone matrix;
mRMR, Minimum redundancy maximum relevance; LASSO, Least absolute
shrinkage and selection operator; ROC, Receiver operating characteristic;
PPV, Positive predictive value; NPV, Negative predictive value; PK-DCE,
Pharmacokinetic dynamically-enhanced.

biological behaviors of tumors. However, previous studies often
overlook the intra-tumoral heterogeneity, leading to an inaccurate
reflection of the true degree of heterogeneity within the tumor and
potential deviations in patient follow-up evaluation.

Computer-aided diagnosis (CAD) is an automated software
designed to analyze DCE-MRI images obtained by high
spatial resolution scans, thereby reducing interpretation time
(Lehman et al., 2006; Williams et al., 2007; Meeuwis et al., 2010).
CAD automatically segments the tumor into three distinct color-
coded subregions, corresponding to three kinetic modes: Persistent,
Washout, and Plateau, while concurrently generating quantitative
parameters of kinetic characteristics. Among these, the washout
region is thought to primarily represent angiogenesis and contrast
agent kinetic destruction in the tumor. Jin You Kim et al. observed a
correlation between kinetic heterogeneity determined by CAD and
disease-free survival as well as distant metastasis in breast cancer
patients (Kim et al., 2020; Kim et al., 2017). However, it remains
unclear whether intra-tumoral kinetic heterogeneity derived from
CAD can be utilized for molecular subtype classification and
whether it offers superior effectiveness compared to whole-tumor
region analysis.

Therefore, this study aims to utilize the CAD method and extract
radiomics featuresof thekineticheterogeneity regionsofbreast cancer.
These features will be employed to construct a radiomics model to
explore itsperformance inpredictingbreastcancermolecular subtypes
and HER2 status. Furthermore, these models will be compared with
those constructed using features from the entire tumor.

Materials and methods

Patients

The study received approval from the institutional review
committee. We retrospectively collected data from 269 patients
who had undergone DCE-MRI scans between January 2019 and
December 2021 at two tertiary medical centers (Jiangnan University
Medical Center andXishanPeople’sHospital ofWuxi).The inclusion
and exclusion criteria were as follows:

Inclusion criteria: (1) Preoperative breast DCE-MRI scan; (2)
Pathologically proved to be primary invasive breast cancer; (3)
Clinical and postoperative pathological data are complete; (4) Image
quality meets the diagnostic requirements.

Exclusion criteria: (1) Surgery, radiotherapy, chemotherapy, or
endocrine therapy before MRI examination (N = 65); (2) Difficulty
in determining the outlined area of the lesion (N = 42); (3) Images
generated byCADare not sufficient for analysis (N=16); (4) Patients
with bilateral breast cancer (N = 22). Consequently, a total of 124
females were included (mean age 54.97 ± 12.39 years). Based on
a 7:3 ratio, the patients were randomly divided into two groups: a
training set (N = 87) and a test set (N = 37) for the construction of
the radiomics model. Table 1 contains detailed clinical information.

MRI scan parameters

The breast MRI examination was performed using Siemens
Magnetom Skyra 3.0T and GE SIGNA Architect 3.0T scanners.
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TABLE 1 Magnetic resonance equipment and DCE scanning parameters.

Center MR equipment TR (ms) TE (ms) Reverse angle Slice thickness (mm) Matrix FOV (mm)

CenterA Siemens Magnetom Skyra 3.0T 4.5 1.7 10° 1.6 448 × 314 340 × 340

CenterB GE SIGNA Architect 3.0T 5.2 2.0 15° 1.2 320 × 320 360 × 360

During the examination, patients were positioned prone on a
dedicated breast array coil with the breasts sagging naturally.
The field of view included all breast tissues, bilateral armpits,
and the anterior chest wall. All breast MRI protocols included
a localizing sequence followed by axial T1WI, fat-suppressed
T2WI, DWI, and DCE-MRI. The DCE-MRI based on axial fat-
suppressed T1-weighted three-dimensional fast low-angle shot
sequence was performed before and 8 phases after gadolinium-
based contrast agent (Gd-DTPA, Germany, Bayer Healthcare)
administration. The contrast agent was administered at a dose of
0.1 mmol/kg (0.2 mL/kg), followed by the use of at least 15 mL
of saline solution to flush the tubing. The enhanced phases lasted
approximately 6–8 min, during which the patient was required to
remain stationary. Table 1 shows the DCE-MRI parameters.

Histological evaluation

Tissue samples obtained post-breast biopsy or surgery
underwent collection, followed by immunohistochemical analysis
using streptavidin peroxidase to determine the expression status
of estrogen receptor (ER), progesterone receptor (PR), HER2, and
Ki-67. Based on the expression statuses of ER, PR, Ki-67, andHER2,
breast cancer was classified into four molecular sub-types: Luminal
A, ER/PR positive with high PR expression (≥20%); HER2 negative,
Ki-67was low expression (<14%); Luminal B, ER and/or PR positive,
HER2 negative, Ki-67 high expression (≥14%); HER2-enriched, ER
and PR negative andHER-2 positive; Basal-like, ER/PR negative and
HER-2 negative.

Image processing and tumor segmentation

All images undergo preprocessing, including resampling,
denoising, and enhancement, before being imported into ITK-
SNAP 3.8.0 (www.itksnap.org). Two experienced radiologists
(R.R. and Y.X.) performed 3D semi-automatic segmentation
of the tumor on the enhanced first-phase image. To ensure
segmentation accuracy, the identified tumor area undergoes further
examination and correction by the senior radiologist (Y.C.). In cases
of multiple lesions, only the largest cluster is included for kinetic
heterogeneity analysis.

All images underwent standardized preprocessing, including
resampling to isotropic 1 mm3 voxels using B-spline interpolation.
Intensity normalization using z-score transformation relative
to pectoralis muscle signal intensity. Gray-level discretization
with a fixed bin width of 25 HU. Spatial normalization using
affine registration to a breast MRI template. These steps ensured

consistency in radiomic feature extraction across patients
and scanners.

Kinetic heterogeneity analysis

The process of kinetic heterogeneity analysis and radiomics is
depicted in Figure 1.

The kinetic heterogeneity analysis based on breast DCE MRI
utilizes an in-house CAD program written in MATLAB 8.2.0. DCE
images of phase 1 + 8 and tumor segmentationmasks were imported
and conducted for analysis. Initially, the enhancement areas within
the tumor were identified by comparing the signal intensity changes
at the voxel level between the first phase of enhancement and pre-
enhancement images with areas exhibiting an increase of over 50%.
Subsequently, within the enhancement area, the signal intensity
changes between the last phase of enhancement and the first phase
of enhancement were compared. Voxel enhancement types were
categorized as follows: Persistent, the signal intensity increasedmore
than 10% from the first contrast-enhanced series (visualized in blue);
Washout, the signal intensity at the last contrast-enhanced series
of more than10% decreased from the first contrast-enhanced series
(visualized in red); Plateau, the signal intensity change in either
direction within a 10% range (visualized in yellow).

Based on the previous segmentation, peak enhancement (the
highest signal intensity in the first contrast-enhanced series) and
enhanced volume (the volume of lesions where the pixel value
increased above the 50% threshold) are calculated. Proportions of
delayed enhancement profiles were extracted. For each breast cancer
case, the predominant curve type (single maximum proportion
of washout, plateau, or persistent enhancement, represented by
123, respectively) and worst curve type (single most suspicious
type: washout was most suspicious, followed by plateau and
persistent enhancement) were determined. To quantify the degree
of heterogeneity within the tumor, we used the following equation
to calculate kinetic heterogeneity (a measure of heterogeneity in the
proportion of tumor pixels with washout, plateau, and persistence
components).

KH = −∑k
i=1

Pi logkPi

Pi refers to the proportion of various voxel types, and k is
the number of categorical variables. The KH ranges from 0 to
1, where higher values signify greater degrees of heterogeneity.
A value of 0 indicates homogeneity in the composition of the
delayed enhancement area, meaning the tumor includes only one
component.

The analytical method and kinetic heterogeneity parameters
were similar to those used byMeeuwis et al. (2010), Kim et al. (2020).
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FIGURE 1
The machine learning flowchart. Firstly, high spatial resolution DCE images were acquired, and the tumor edges were manually delineated in the first
phase of enhanced images. Subsequently, the tumor was classified into three sub-regions based on the kinetic heterogeneity of the tumor: persistent,
washout, and plateau, which were represented in blue, red, and yellow, respectively. Finally, the radiomics features of the tumor and the red region in
the tumor were extracted, and the features were downscaled to construct the diagnostic model. Diagnostic performance was calculated by the area
under the receiver operating characteristic curve and decision curve analysis. DCE, Dynamic contrast-enhanced; HER2, Human epidermal growth
factor receptor 2.

Radiomics analysis

Extraction and selection of radiomics features
Feature extraction was carried out separately for tumor regions

and washout regions using Pyradiomics. Radiomics features of the
tumor area (N = 1132), including shape (N = 14), first-order features
(N = 234), and higher-order features (N = 884). Higher-order
features include gray level co-occurrencematrix (GLCM) (N = 286),
gray level dependence matrix (GLDM) (N = 182), gray level run
length matrix (GLRLM) (N = 208), and gray level size zone matrix
(GLSZM) (N = 208).

Radiomics features (N = 1158) of the washout region,
including shape (N = 14), first-order features (N = 234), and
higher-order features (N = 910). Higher-order features include
gray level co-occurrence matrix (GLCM) (N = 312), gray level
dependence matrix (GLDM) (N = 182), gray level run length
matrix (GLRLM) (N = 208), and gray level size zone matrix
(GLSZM) (N = 208).

For LASSO regularization, the optimal λ value was determined
through 10-fold cross-validation in the training set, with the
λ corresponding to the minimum binomial deviance selected
to balance model complexity and performance. To mitigate
overfitting given the high feature-to-sample ratio, we employed strict
separation of training and test sets before any feature selection,
and all model development was conducted exclusively on the
training data (Vallieres et al., 2017). We report both training
and test set performance to demonstrate generalizability, with
test set performance serving as our primary outcome to avoid
overfitting concerns.

Model construction
After feature screening was completed, we used the LASSO

regression classifier to construct a predictionmodel for determining
the validity of these selected radiomics features in predicting
molecular subtypes. Firstly, theRadscorewas computed by summing
the selected features weighted by their coefficients. Subsequently,
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FIGURE 2
Selection flow chart of the study sample.

the Radscore from classes 0 and 1 was compared separately within
the training and test groups. The performance of the model was
evaluated using Receiver Operating Characteristic (ROC) analysis.
Based on the Youden Index, the parameters of sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV),
and accuracy were calculated. Finally, the clinical performance of
the model was assessed using decision curve analysis.

Statistical analysis

The data were randomly divided into a training set (n = 87)
and a test set (n = 37). Normally distributed data are presented
as mean ± standard deviation, and comparisons between the two
groups were conducted using the t-test. Non-normally distributed
data are presented as median (25th-75th percentile) and compared
using theMann-WhitneyU test.TheKruskal-Wallis test was utilized
to evaluate differences between molecular subtypes and HER2
statuses. Due to data imbalance, only Luminal, HER2-enriched,
and HER2-status groups were analyzed. The diagnostic model
was established using optimal features, and the performance of
the test set was evaluated using the AUC. The cutoff value to

maximize the Youden index was determined, and its accuracy,
sensitivity, specificity, PPV, and NPV were calculated. The clinical
efficacy of the model was evaluated using the DCA curve. R
(version 3.6.1) was used for the analysis of variance, chi-squared
test, and Kruskal-Wallis test. P < 0.05 was considered statistically
significant.

Results

Patient characteristics

A total of 269 patients (mean age 54.57 ± 12.39 years)
were collected from two tertiary care centers, with 124 patients
ultimately included in the study (Figure 2). Among these, 86
(69.4%) cases were classified as Luminal, 29 (23.4%) cases as
HER2-enriched and 11 (8.9%) cases as Basal-like subtype. HER2
status was positive in 67 patients and negative in 57 patients.
The mean maximum tumor diameter was 30.27 ± 23.40 mm with
a range from 5 to 79 mm. Premenopausal patients accounted
for 44.35% of the total dataset. Table 2 presents the baseline
characteristics of the patients.
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TABLE 2 Demographic characteristics and dynamic heterogeneity of breast cancer subtypes.

Variable All patients Luminal HER2-enriched Basal-like HER2 status positive

Numbera 124 84 (67.74) 29 (23.39) 11 (8.87) 67 (54.03)

Age (y) mean ± SD 54.57 (12.39) 54.43 (13.21) 55.72 (10.32) 52.56 (10.62) 54.64 (12.27)

Maximum diameter (mm) 30.27 (23.40) 30.90 (18.30) 32.50 (38.90) 22.50 (9.47) 31.76 (29.53)

Menopausal status

Premenopausala 55 (44.35) 39 (70.91) 11 (20.00) 5 (9.09) 32 (58.18)

Postmenopausala 69 (55.65) 45 (65.22) 18 (26.09) 6 (8.70) 35 (50.72)

kinetic heterogeneity parameters

Peak enhancement 21.02 (25.00) 20.45 (24.51) 27.25 (29.33) 9.01 (4.43) 26.44 (28.14)

Enhanced volume 27,785.60 (70,002) 17,741.87 (30,097.17) 60,047.79 (130,892.6) 19,428.36 (28,987.16) 30,945.10 (83,868.02)

Persistent component (%) 41.30 (22.50) 40.90 (22.40) 41.50 (24.50) 43.30 (20.00) 36.40 (22.30)

Plateau component (%) 33.80 (19.80) 33.80 (19.00) 35.90 (24.50) 28.10 (9.00) 37.40 (23.40)

Washout component (%) 24.90 (17.60) 25.30 (17.60) 22.50 (17.50) 28.60 (18.60) 26.20 (18.60)

Kinetic heterogeneity 0.90 (0.24) 0.91 (0.24) 0.85 (0.24) 0.97 (0.16) 0.88 (0.24)

Predominant type 1a 68 (54.84) 43 (51.19) 18 (62.07) 7 (63.64) 32 (47.76)

Predominant type 2a 25 (20.16) 18 (21.43) 6 (20.69) 1 (9.09) 17 (25.37)

Predominant type 3a 31 (25.00) 23 (27.38) 5 (17.24) 3 (27.27) 18 (26.87)

Worst typea 124 (100.000) 84 (100.000) 29 (100.000) 11 (100.000) 67 (100.000)

aData are percentages mean. Unless otherwise noted, numbers in parentheses are values ± standard deviations.
HER2, Human epidermal growth factor receptor 2.

Analysis of kinetic heterogeneity
parameters

Table 2 lists the heterogeneity values of breast cancer subtypes.
The average kinetic heterogeneity of all breast cancers was 0.898 ±
0.235. The ROC analysis results based on the kinetic parameters
are presented in Table 3. In differentiating between Luminal and
HER2-enriched subtypes, the highest AUCs were achieved by
enhanced volume, which were 0.582 and 0.612, respectively. For
identifying HER2 status, peak enhancement yielded the highest
AUC, which was 0.633.

Performance of the prediction model

Two radiomics models were constructed based on features
from the whole-tumor region and the washout region, respectively.
Table 4 and Figure 3 show the AUC values of the machine
learningmodels for predictingmolecular subtypes based on features
extracted from the whole tumor area and the washout region in both
the training set and test set.

For Luminal type prediction, the model performance based on
the washout region (AUC = 0.924, 95% CI: 0.876–0.972) was much

higher than that based on the whole tumor (AUC = 0.775) in the
training set. Similarly, the model performance based on the washout
region (AUC = 0.853, 95% CI: 0.742–0.964) was much higher than
that based on the whole tumor (AUC = 0.687) in the test set.

In terms of HER2-enriched type prediction, the model
performance based on the washout region (AUC = 0.876) was
slightly higher than that based on the entire tumor (AUC
= 0.861) in the training set. However, in the test set, the
performance based on the washout area (AUC = 0.830) was
slightly lower than the performance based on the whole tumor
(AUC = 0.879).

For HER2-status positive type prediction, the model
performance (AUC = 0.816) based on the washout region is higher
than that based on the whole tumor (AUC = 0.722) in the training
set, and the model performance based on the washout region (AUC
= 0.735) is slightly higher than that based on the whole tumor (AUC
= 0.706) in the test set.

DCA for Luminal, HER2-enriched subtypes, and HER2-status
positive is presented in Figure 4. The DCA curve showed that the
clinical efficacy of themodel based on thewashout regionwas higher
than that of the whole-tumor area in predicting Luminal andHER2-
status positive statuses. For predicting HER2-enriched, the clinical
efficacy of the model based on the washout region was higher than
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TABLE 3 ROC curve of dynamic heterogeneity parameters.

Variable Sensitivity Specificity PPV NPV AUC

Luminal

Peak enhancement 0.571 0.55 0.727 0.379 0.497

Enhanced volume 0.821 0.4 0.742 0.516 0.582

Persistent component 0.524 0.6 0.733 0.375 0.513

Plateau component 0.845 0.3 0.717 0.480 0.543

Washout component 0.738 0.4 0.721 0.421 0.522

Kinetic heterogeneity 0.357 0.775 0.769 0.365 0.546

Predominant 0.488 0.625 0.732 0.368 0.559

HER2-enriched

Peak enhancement 0.586 0.695 0.370 0.846 0.546

Enhanced volume 0.482 0.821 0.452 0.839 0.612

Persistent component 0.172 0.926 0.417 0.786 0.505

Plateau component 0.345 0.842 0.400 0.808 0.539

Washout component 0.483 0.758 0.378 0.828 0.556

Kinetic heterogeneity 0.448 0.779 0.382 0.822 0.575

Predominant 1 0 0.234 - 0.442

HER2-Status positive

Peak enhancement 0.507 0.772 0.723 0.571 0.631

Enhanced volume 0.552 0.667 0.661 0.559 0.583

Persistent component 0.493 0.754 0.702 0.558 0.633

Plateau component 0.269 0.930 0.818 0.520 0.540

Washout component 0.597 0.544 0.606 0.534 0.538

Kinetic heterogeneity 0.373 0.772 0.658 0.512 0.557

Predominant 0.522 0.632 0.625 0.529 0.567

HER2, Human epidermal growth factor receptor 2.

that of the whole-tumor region when the high-risk threshold fell
within a certain range.

Discussion

This study introduces a novel approach utilizing kinetic
heterogeneity analysis based onDCE-MRI to segment intra-tumoral
subregions into three distinct categories: persistent enhancement,
washout, and plateau. Subsequently, radiomics models were
developed leveraging features extracted from both the washout

region and the whole tumor region. These models aim to predict
molecular subtypes andHER2 status in breast cancer and assess their
clinical efficacy. Our findings indicate that the diagnostic efficacy of
the radiomics model based on the washout region within the tumor
surpasses that of the whole-tumor model, particularly in predicting
Luminal subtypes. Notably, the diagnostic performance is highest
with an AUC of 0.924 for the training set and 0.853 for the test set.

Previous studies have demonstrated the clinical significance of
radiomics analysis in distinguishing benign and malignant breast
lesions, as well as in differentiating various histopathological types,
grades, and stages of breast tumors (Braman et al., 2017; Li et al.,
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TABLE 4 In the training and test set, the performance of the machine learning model of molecular subtypes is predicted based on the radiomics
features of the washout region and the whole tumor region.

Variable Sensitivity Specificity PPV NPV AUC

Whole-tumor

Luminal AB
Train 0.729 0.750 0.86 0.568 0.775

Test 0.720 0.500 0.75 0.462 0.687

HER2-enriched
Train 0.810 0.806 0.567 0.931 0.861

Test 0.750 0.857 0.600 0.923 0.879

HER2-status positive
Train 0.702 0.750 0.767 0.682 0.722

Test 0.550 0.765 0.733 0.591 0.706

Washout region

Luminal AB
Train 0.814 0.893 0.941 0.694 0.924

Test 0.760 0.833 0.905 0.625 0.853

HER2-enriched
Train 0.857 0.791 0.563 0.946 0.876

Test 0.625 0.786 0.455 0.880 0.803

HER2-status positive
Train 0.702 0.675 0.717 0.659 0.816

Test 0.700 0.588 0.667 0.625 0.735

HER2,Human epidermal growth factor receptor 2; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the working characteristic curve.

2016; Zhou J. et al., 2020; Mao et al., 2020; Ma et al., 2018; Liu et al.,
2019). However, most of these studies focused on constructing
radiomics models using the entire tumor area. In contrast, our
approach involves analyzing the internal tumor heterogeneity and
segmenting tumors based on kinetic heterogeneity. Segmenting
and modeling tumors into sub-regions is crucial for accurately
capturing internal heterogeneity. Breast cancer masses exhibit
high heterogeneity, with various features mixed within the tumor.
Focusing on the entire tumor region dilutes this heterogeneity and
may weaken model performance. In contrast, the washout region,
which best reflects tumor malignancy, allows for a more precise
analysis of tumor heterogeneity.

The washout pattern is strongly associated with tumor
angiogenesis and vascular permeability (Kuhl et al., 1999).
Rapid contrast agent washout reflects immature, leaky tumor
vasculature with high endothelial proliferation, characteristic
of more aggressive tumors (Knopp et al., 1999). From a
microenvironment perspective, washout regions correlate with areas
of hypoxia and extracellular matrix remodeling, which promote
epithelial-mesenchymal transition and metastatic potential (Li and
Padhani, 2012; Pickles et al., 2005). At the molecular level, washout
regions show elevated expression of vascular endothelial growth
factor (VEGF) and other pro-angiogenic factors that drive theHER2
and basal-like phenotypes.

Recently, alternative data-driven methods have been employed
to delineate tumor subregions, such as pharmacokinetic models
and habitat analysis models (Liu et al., 2020; Kim et al., 2016;
Xu et al., 2024). Studies have demonstrated that the Tofts model

can assess pharmacokinetic parameters and analyze the vascular
permeability of tumors (Zhou X. et al., 2020; Mouawad et al., 2020;
Ioannidis et al., 2019). While pharmacokinetic models like the Tofts
model provide quantitative parameters of vascular permeability,
they require high temporal resolution (5–10 s) acquisitions, which
are not routinely available in clinical practice (Sourbron and
Buckley, 2013). Our approach using standard high spatial resolution
DCE-MRI makes the technique more clinically feasible. Zhou X
et al. diagnosed breast cancer and predicted molecular subtypes
using pharmacokinetic dynamically-enhanced (PK-DCE) MRI in
the Tofts model (Zhou X. et al., 2020). They found PK-DCE MRI to
be superior in breast cancer diagnosis but less effective in predicting
molecular subtypes, achievingAUCs of 0.71∼ 0.77 for predicting the
Luminal subtype and 0.61 ∼ 0.68 for predicting the HER2-enriched
subtype. In comparison, our model achieved higher AUCs of 0.924
for Luminal and 0.879 for HER2-enriched subtypes.

In recent years, with the rapid advancement of artificial
intelligence, researchers have explored methods such as habitat
analysis and unsupervised learning to be used in breast cancer
(Sun et al., 2022; Twellmann et al., 2008; Cho et al., 2022). Jia
Wu et al. performed molecular subtype prediction by clustering
analysis of quantitative image features (Wu et al., 2017). Ming
Fan et al. attempted tumor classification based on values of
Time to Peak, Peak Enhancement Ratio, and Kinetic Pattern
Clustering (Fan et al., 2018). They also applied unsupervised
clustering analysis to decompose time series curves at the pixel
level into specific regions for plasma input, fast-flow dynamics, and
slow-flow dynamics (Fan et al., 2019). Their results consistently
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FIGURE 3
Receiver operating characteristic curves derived from the 3D washout region (blue line) related to dynamic kinetic parameters and whole tumor
(yellow line) for (A) Luminal, (B) HER2-enriched, (C) HER2-Status positive. HER2, Human epidermal growth factor receptor 2; AUC, Area under the
working characteristic curve.
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FIGURE 4
Decision curve analysis curves derived from the 3D washout region (blue line) related to dynamic kinetic parameters and whole tumor (gray line) for (A)
Luminal, (B) HER2-enriched, (C) HER2-Status positive. HER2, Human epidermal growth factor receptor 2.

showed that intra-tumor radiomics analysis improves the predictive
performance compared to the whole tumor approaches, with
AUCs ranging from 0.74 to 0.88. Zhang et al. similarly reported
significant diagnostic enhancements, particularly for Luminal
subtype analysis (Zhang et al., 2022), aligning closely with our
findings. These studies suggest that the model based on subregional
radiomics features for predicting the Luminal subtype may serve as
a more valuable imaging marker.

Although unsupervised clustering methods can identify tumor
subregions, the biological interpretation of these clusters may be
ambiguous (Wu et al., 2017; Leithner et al., 2018). Our method’s

clear delineation into three physiologically meaningful regions
(persistent, washout, plateau) provides more clinically intuitive
results. The CAD software used in our study offers automated
quantitative analysis with minimal user intervention, enhancing
reproducibility in clinical settings compared to more complex AI
methods that may require specialized expertise.

Our research has several limitations. Firstly, it is a retrospective
study conducted at two local hospitals, which may introduce
selection bias and geographical limitations in the study population.
To enhance generalizability and interpretability before clinical
application, data should be collected from a prospective multicenter
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standardized database. Secondly, the study did not account for
the effects of the menstrual cycle and hormone levels, nor
did it consider the tumor microenvironment. Thirdly, our study
excluded TNBC cases due to limited sample size, which represents
a significant limitation given the clinical importance of this
aggressive subtype. TNBC typically demonstrates more rapid and
pronounced washout kinetics than other subtypes (Youk et al.,
2012), suggesting our model might perform differently for these
cases. Future studies should specifically evaluate whether washout
region features have particular value in characterizing TNBC,
which could help address the current lack of targeted therapies
for this subtype (Bianchini et al., 2016). Additionally, we aim to
integratemulti-parametric andmulti-modal imagingwith genomics
and genomics analysis to develop higher-dimensional, multi-scale,
and more efficient diagnostic models.

In conclusion, this study explores a novel non-invasive tumor
segmentation method using high spatial resolution DCE-MRI
images. It analyzes tumor kinetic heterogeneity by segmenting
the sub-tumor region into three distinct areas. Features from the
washout region within the tumor were extracted to construct a
radiomics model for predicting molecular subtypes. The findings
indicate that radiomics features of the washout region derived
from kinetic heterogeneity analysis may serve as predictive
markers for molecular subtypes, particularly in predicting Luminal
subtypes. Visualizing tumor heterogeneity in this way could
potentially enhance treatment precision and personalization for
breast cancer patients.
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