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Pioneering contribution of
Professor Bruce Ames to early
development in biochemical
aspects of oxidatively generated
damage to DNA

Jean Cadet* and J. Richard Wagner*

Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences,
Université de Sherbrooke, Sherbrooke, QC, Canada

The first part of the memorial review article is devoted to a retrospective of
selected topics that were the subject of pioneering studies over the period
1985–2025 by Professor Bruce Ames. Major efforts were made to develop
accurate and sensitive assays including HPLC coupled with electrochemical
detection for monitoring the formation of 8-oxo-7,8-dihydroguanine in
isolated cells and animal tissues. Special attention was provided to the
minimization of artefactual oxidation of DNA that occurs during sample
preparation. Complementary information on the biological relevance of 8-
oxo-7,8-dihydroguanine and 5,6-dihydroxy-5,6-dihydrothymine was gained
from the non-invasive measurement of the oxidized bases and nucleosides
in various mammalian fluids. The second part of this review focuses on the
current situation concerning the formation of oxidized bases in cellular DNA
produced under various conditions of oxidative stress and enzymatic ten-eleven
TET-oxidation of 5-methylcytosine. The analysis of DNA base modifications
by LC-MS/MS is the gold standard for the quantitative monitoring of base
oxidation products in both DNA and several body fluids; oxidizing conditions
that may not be suitable for biological studies. Low levels of oxidatively-induced
lesions in cells are difficult to assess by chromatographic and MS methods
because of a significant increase in the yields of oxidized bases/nucleosides
above the background level including a significant contribution of adventitious
oxidation reactions that cannot be totally suppressed. In a complementary way,
the application of modified versions of the comet assay and alkaline elution
techniques that target general classes of DNA lesions provides a more global
account of damage although it gives less structural information about DNA
damage formed under chronic exposure to mild oxidizing conditions.

KEYWORDS

oxidatively generated damage to DNA, reactive oxygen and nitrogen species, hydroxyl
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1 Introduction

Professor Bruce Ames made a major seminal discovery with the report more than
50 years ago of the Salmonella bacterial/microsome ‘Ames test’ (Ames et al., 1973;
McCann et al., 1975), which is a widely applied assay for assessing the genotoxicity and
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mutagenicity of chemicals (Marnett, 2019; Rueff et al., 2019;
Lipsick, 2021; Large et al., 2023). During his career and life,
Pr. Ames also made several other significant contributions in
related domains of research. These include chemical carcinogenesis,
free radical theories of aging, mechanisms of protection against
oxidative stress, and the role and function of dietary micronutrients
(Smith et al., 2021; Ames, 2022). This review article is aimed at
highlighting the pioneering studies of Pr. Bruce Ames and his
associates into the chemical and biochemical aspects of oxidatively
generated damage to DNA. In the second part of the article the
current situation on the formation of oxidatively generated damage
in cellular DNA and the release of oxidized nucleobases/nucleosides
in biological fluids (urine, plasma) as non-invasively measured
biomarkers of oxidative stress is critically reviewed. This includes
a survey of the capabilities and limits of available chromatographic
and enzymatic based methods for the accurate measurement of
DNA oxidation modifications in biological samples.

2 Major contributions of Dr. Ames’s
laboratory

The laboratory of Bruce Ames (the Ames lab) was an exciting
place to do research during post-doctoral studies (1989–1992).
The lab included about 6-8 post-docs, 1-2 graduate students and
technical assistants. Everyone was entitled to 3 feet of lab counter
and 3 feet of office space squeezed in between instruments, and a
common room with computers for those in the stage of writing up
their results. The lab would operate 24 h a day, and if you checked in
late at night, you could see the lights flashing from the instruments
working through overnight analyses. Every week, we would gather
around a conference table on the fourth floor of Barker Hall with
our lunch, which was often with a slice of pizza from Shattuck Av.,
and present our results for timely analysis and discussion.The topics
of the day were very diverse and included, among others: ascorbate
inhibition of lipid peroxidation, in vitro mutagenesis in Salmonella
typhimurium, urinary excretion ofDNA repair products, and others.
When Bruce was away, he would call constantly to check in with
everyone and bring him up to date about the latest results, anxious to
hear about our most recent discoveries. At this time, the lab devoted
enormous effort to develop assays toward the molecular analysis
of oxidatively induced damage in biological contexts, particularly
damage associated with DNA, which constituted a potential source
of mutations in humans.

2.1 Analysis of DNA damage

2.1.1 8-oxo-7,8-dihydro-2′-deoxyguanosine
(8-oxodG)

Early studies in the 1980s–90s used GC-MS to measure
individual DNA base damage, which involved the hydrolysis of
DNA using strong acid and heat followed by derivatization of
the released nucleobases and GC-MS analyses (Dizdaroglu, 1985).
During this time, however, many groups including the Ames lab
turned to a novel assay for 8-oxodG using HPLC coupled to an
electrochemical detector (HPLC-ECD) (Floyd et al., 1988). The
inclusion of enzymatic digestion in these analyses circumvented

the necessity to expose DNA to harsh acid to break it down
into its component monomers. Furthermore, nucleosides and their
modifications are well separated by reversed phaseHPLC in contrast
to nucleobase derivatives. Using this approach, the Ames lab
reported several interesting findings: they reported that 8-oxodG
increased by 1.5-3-fold in the DNA of rat tissues with age from 2
to 24 months old (Fraga et al., 1990). They also reported the ability
of ascorbate to decrease the level of 8-oxodG in human sperm DNA
(Fraga et al., 1991) and marked increases of 8-oxodG in transgenic
mice with chronic active hepatitis (Hagen et al., 1994). However,
there was unappealing concern about the contribution of artifactual
oxidation in the analysis of 8-oxodG in biological samples. The
conclusions of a multicenter study in which the steady state level
of 8-oxodG was measured in mammalian tissue showed enormous
variations by asmuch as three orders ofmagnitude depending on the
method and laboratory of analysis (Collins et al., 2004; Gedik et al.,
2005). The Ames group devoted much time and effort to optimize
the method of DNA extraction and subsequent steps in preparation
for HPLC-ECD analysis (Helbock et al., 1998; Helbock et al., 1999).
Using this method, Helbock et al. reported steady state levels of
8-oxodG in the DNA of rat liver that were more consistent and
gave considerably lower values by about 10-fold compared to those
previously published. Chaotropic salts, such as NaI, disrupt the
hydration shell of DNA and help remove contaminants, such as
potentially damaging metal ions. The use of NaI to precipitate
DNA was later proven to be one of the most effective methods to
reduce artefactual oxidation of DNA during its extraction from cells
(Ravanat et al., 2002; and references in Section 3). The apparent
fold increases of 8-oxodG in rodent tissues with age reported by
the Ames group were later confirmed by using NaI in combination
with HPLC and tandem MS (Gan et al., 2012). An alternative
method was later proposed by Beckman and Ames in which the
base moiety of 8-oxodG was selectively removed from DNA by
treatment with E. coli repair enzyme formamidopyrimidine (Fapy)
DNA glycosylase (Beckman et al., 2000). The modified base was
then quantified by HPLC-EC giving steady state values of 0.4 8-
oxodG/106 dG for the DNA of Hela cells in culture. Although a
comparison with previous method with complete digestion was not
carried out, the selective digestion with Fpg considerable reduced
the observed level of damage. An advantage of the latter method
is that it minimizes the autooxidation of dG to 8-oxodG and
permits the injection of relatively high equivalent amounts of DNA.
Although the problem of artifactual oxidation still exist today, the
gold standard for the analysis of specific modifications of DNA has
becomeHPLC orUPLC coupled to tandemmass spectrometry (LC-
MS/MS) for the analysis of 8-oxodG and other potential markers of
DNA damage.

2.1.2 Uracil
Much effort in the Ames lab was invested toward the analysis of

uracil (Ura) in DNA from biological samples. The basic hypothesis
was that a deficiency in folate and/or Vitamin B6 induces DNA
strand breaks due to an inhibition of thymidylate synthesis and
the incorporation of uracil instead of thymine into DNA. It
should also be noted that Ura is also formed by deamination
of the one-electron oxidation mediated radical cation of cytosine
as shown in model studies (Decarroz et al., 1987). During the
90s, the Ames group developed a novel assay for the analysis of
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Ura in DNA using uracil DNA glycosylase (UDG) to selectively
excise Ura from DNA, followed by derivatization of Ura with
3,5-bis(trifluoromethyl)benzyl bromide and its analysis by GC-MS
(Blount and Ames, 1994). They used this assay to show that Ura
levels in the DNA of RBCs together with micronuclei frequencies
were elevated in folate deficient subjects and reduced in folate
supplementation (Blount et al., 1997).The initial assaywas improved
upon giving a limit of detection in the low fmol range and the
ability to detect Ura in as little as 5 ug of lymphocyte DNA
(Mashiyama et al., 2004; Mashiyama et al., 2008). With the new
assay, this group studied changes of Ura in DNA with folate status
upon supplementation of lymphocytes in culture with folate and/or
nucleosides. More recent studies, using LC-MS/MS with isotopic
dilution, report levels of 0.15 Ura and 0.08 Ura/106 N in the DNA
of mouse embryonic fibroblasts and human lymphoblastoid cell
lines, respectively (Galashevskaya et al., 2013). The widely different
concentrations of reported Ura in DNA may be due to artefacts
during sample preparation and analyses, such as the presence of
trace amounts of cytidine deaminase activities in biological samples.
Using single molecule sequencing, the level of Ura in murine and
human genomes appears to be small even lower than recent LC-
MS/MS analysis. (Liu et al., 2024). These results suggest that the
activity of uracil glycosylases is very efficient for intact cells in vivo.
It is not known whether the same conclusion may be made for
oxidatively-induced DNA damage.

2.2 Analysis of DNA repair products in urine

Early studies in the 1990s provided estimates of thymine
glycol in urine based on a method that converted thymine glycol
into thymine (Cathcart et al., 1984). The method involved initial
purification of thymine and thymidine glycols by phenylboronate
affinity chromatography, conversion of saturated 5,6-glycols to
thymine using hydroiodic acid, followed by reversed phase HPLC
with UV detection. Using this method, the Ames group reported
a correlation between oxygen consumption and the excretion of
thymine and thymidine glycols such that mice excreted 4.5-fold
more than monkeys, which excreted 4-fold more than humans
(Adelman et al., 1988; Ames, 1989). With the availability of a new
sensitive detection method for 8-oxoGua derivatives (HPLC-EC),
the Ames group turned to the analysis of this modification in
urine samples. To help in the analysis of 8-oxoGua in biological
fluids, such as urine, much time and effort was devoted to the
development and characterization of antibodies toward 8-oxoGua
(Park et al., 1992; Degan et al., 1991; Shigenaga et al., 1994).
Using a monoclonal antibody and HPLC-EC to separate 8-oxo-7,8-
dihydroguanine derivatives, the Ames group estimated the levels
of 8-oxoGua, 8-oxo-7,8-dihydroguanosine (8-oxorG) and 8-oxodG
in various biological fluids, including spent medium from culture,
plasma, and urine.Thereby, the levels of urinary 8-oxoGua, 8-oxorG
and 8-oxodG were estimated to be 4,000, 910, and 410 pmol/kg/day,
respectively, for rats on a nucleic acid free diet. The combined level
of urinary 8-oxoG and 8-oxodG (4,300 pmol/kg/day), which was
considered to represent the excision of 8-oxo-7,8-dihydroguanine
modifications from DNA, suggests that rat cells on the average
are subjected to about 100,000 oxidative hits to DNA per day
(this estimate assumes that 8-oxoxdG represents 5% of the total

oxidatively-induced lesions to DNA) (Fraga et al., 1990; Shigenaga
and Ames, 1991). Although the monoclonal antibody (Fab 166) was
rapid and efficient for the isolation of 8-oxoGua derivatives from
urine, the antibody exhibited relatively high cross-reactivity with
a number of other compounds with a similar structure including
uric acid and related adenine derivatives. Building on this approach,
the Ames group in collaboration with others designed antibody
conjugates that recognize DNA containing 8-oxoGua in real time
imaging using confocal scanning laser microscopy; the authors
showed that reported increases of immunoreactivity of 8-oxodG in
control cultures and increases within the nucleus and mitochondria
of cells in culture treated with H2O2 or radiation (Soultanakis et al.,
2000). The early achievements of Pr. Ames and his collaborators in
the highly competitive domain of developing methods to measure
oxidatively-induced damage to DNA and relate the levels to
physiological outcomes significantly impacted and facilitated the
advancement of future research in this area.

3 Current status on oxidatively
generated damage in cellular DNA and
biological fluids

The analysis of DNA damage in vivo was and still is a topic of
major interest as illustrated by several recent developments in the
measurement, formation and repair of oxidatively damage to cellular
DNA. This section deals with the current situation concerning
the unambiguous identification and accurate measurement of base
oxidation lesions in cellular DNA upon exposure to hydroxyl radical
(.OH), one-electron oxidants and singlet oxygen (1O2). UVA/Visible
light and ionizing radiations constitute two major sources of
external oxidants (O’Neill and Wardman, 2009; Cadet et al.,
2017; Di Mascio et al., 2019), whereas oxygen metabolism is able
under physiological conditions to continuously oxidize DNA via
the initial release of superoxide anion radical (O2·-) mediated
by mitochondrial respiration and subsequent conversion into
hydrogen peroxide (Sies et al., 2022) a major cellular redox
signaling molecule (Sies, 2021). The generation of O2·- and also
of ·NO, a reactive nitrogen species (RNS), is exacerbated under
several conditions of oxidative stress including inflammation and
phagocytosis (Møller et al., 2014; Flint et al., 2016). In addition, ten
eleven translocation (TET) dioxygenases oxidize 5-methylcytosine
as part of an active demethylation pathway (Tahiliani et al., 2009;
Kriaucionis and Heinz, 2009; DeNizio et al., 2021; Feng et al.,
2021; Zhang et al., 2023). 5-Hydroxymethylcytosine (5-HmCyt),
thereby generated, is subsequently converted by iterative oxidation
into 5-formylcytosine (5-FoCyt) and 5-carboxylcytosine (5-CaCyt)
(He et al., 2011; Ito et al., 2011); the latter products are subsequently
removed from DNA by thymidine DNA glycosylase (TDG) a base
excision repair (BER) protein before cytosine insertion (Maiti and
Drohat, 2011; Kohli and Zhang, 2013; Zhongb and Sczepanski,
2023; Schnable et al., 2024). A direct decarboxylation reaction of
5-CaCyt has been recently proposed to occur in cells according to
an incompletely understood mechanism (Feng et al., 2021). Recent
progress on the measurement of released oxidized nucleobases and
nucleosides in biological fluids, mostly urine and to a lesser extent
plasma, are also reported as indirect and non-invasive approaches to
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estimate the occurrence of oxidatively generated damage to nucleic
acids in humans and animals (Chao et al., 2021).

3.1 Measurement of nucleobase base
oxidation lesions in cellular DNA and
biological fluids

The measurement of oxidatively generated damage to cellular
DNA remains a challenging issue and has been the subject of
numerous studies during the last 50 years. Early attempts initially
failed using chemical assays based on either the reduction or alkaline
degradation of 5,6-dihydroxy-5,6-dihydrothymine (ThyGly)
(Hariharan and Cerutti, 1972; Hariharan and Cerutti, 1977; Cadet
and Berger, 1985; Cadet et al., 2011). Both methods required pre-
labeling of cellular DNA with either [3H]- or [14C]-thymine, which
led to auto-radiolysis and elevated artefactual formation of oxidized
base modifications close to one lesion per 103 nucleosides. Other
early developed methods including GC-MS (Dizdaroglu et al.,
1991), immunological assays (Yin et al., 1995; Murphy et al., 2022),
[32P]-post-labeling techniques (Devanaboyina and Gupta, 1996)
have been questioned for their lack of accuracy and/or occurrence
of major drawbacks as discussed in comprehensive review articles
(Cadet et al., 1997a; Cadet et al., 2004). Although the initial version
of gas chromatography-mass spectrometry (GC-MS) method has
recently benefited by a few improvements, the method is still
insufficient and suffers from severalmajor flaws (Cadet et al., 1997b).
These include as the main questionable issues the degradation
of several unstable oxidized bases during acid hydrolysis of
extracted DNA from cells and significant artefactual oxidation of
overwhelming canonical bases with an averaged 10−4 frequency of
formation during the derivatization step prior to CG-MS analysis
(Hamberg and Zhang, 1995; Ravanat et al., 1995; Douki et al.,
1996). The latter drawback mostly explains the high discrepancy,
by at least an order of magnitude (Halliwell and Dizdaroglu,
1992) between the yields of 8-oxoGua yields determined by GC-
MS (Dizdaroglu, 1993) and the more accurate high-performance
liquid chromatographic analytical method coupled with either
electrochemical detection (HPLC-ECD) (Floyd et al., 1986) or high
resolution tandem mass spectrometry with electrospray ionization
detection (LC-MS/MS) (Cadet et al., 2002). These discrepiancies are
discussed below.

3.1.1 HPLC methods
The discovery of 8-oxo-7,8-dihydroguanine (8-oxoGua) as an

oxidation product of guanine under exposure to Udenfriend reagent
(Kasai andNishimura, 1984) was followed by the development of the
HPLC-ECD assay using an amperometric/coulometric detector in
the one-oxidationmode (Floyd et al., 1986).Thus, themethod that is
able to detect other low oxidation potentialmodified bases including
8-oxo-7,8-dihydroadenine (8-oxoAde) (Berger et al., 1990), 2,6-
diamino-4-hydroxy-5-formamidopyrimidine (FapyGua), 4,6-
diamino-5-formamidopyrimidine (FapyAde) (Park et al., 1989),
5-hydroxycytosine (5-OHCyt) and 5-hydroxyuracil (5-OHUra)
(Wagner et al., 1992) and related nucleosides was widely applied
to measure 8-oxoGua and 8-oxo-7,8-dihydro-2′-deoxyguanosine
(8-oxodG) in cellular DNA and biological samples. The HPLC-ECD
method was gradually replaced at the beginning of 2000 by the

advent of the versatile and accurate HPLC analytical tool coupled
with electrospray ionization tandem mass spectrometry (LC-
MS/MS) recognized as the gold standard method for monitoring
the formation of base/nucleoside oxidation products in cellular
DNA, RNA and biological fluids (Cadet and Poulsen, 2010;
Tretyakova et al., 2013; Chao et al., 2021). The first applications
of this analytical method to biological samples concerned the
measurement of 8-oxodG in the DNA of rat (Serrano et al.,
1996) and pig liver (Ravanat et al., 1998) as well as in urine.
This was subsequently extended to the quantitative detection of
several modified 2′-deoxyribonucleosides released from extracted
DNA using optimized conditions of enzymatic hydrolysis and
HPLC separation upon exposure of cellular DNA to ionizing
radiation (Frelon et al., 2000). The modifications included the
four cis and trans diastereomers of dTGly, 5-(hydroxymethyl)-
2′-deoxyuridine (5-HmdU), 5-formyl-2′-deoxyuridine (5-FodU),
8-oxo-7,8-dihydro-2′-deoxyadenosine (8-oxodA). A slightly
different protocol was used for the measurement of 2,6-diamino-
4-hydroxy-5-formamidopyrimidine (FapyGua) and 4,6-diamino-5-
formamidopyrimidine (FapyAde) that arise from the quantitative
hydrolysis of unstable released 2′-deoxyribonucleoside precursors
from enzymatically digested DNA (Douki et al., 1997). Multiple
reaction monitoring (MRM) detection provides relevant structural
insights about the lesions through characteristic fragmentation
showing a pseudo-molecular ion and its daughter ions produced
by collision-induced dissociation (CID). The MRM mode that
can be used either in the positive or negative ESI fragmentation
according to the analyzed lesions (Frelon et al., 2000) ensures also
a reduction in the background signal and therefore an increase
in the detection sensitivity (Cadet et al., 2002). Furthermore the
use of [13C] and [15N]-labeled internal standards at the preference
of deuterated compounds allows for in situ calibration of the
measurements through isotopic dilution, which constitutes the
current way to monitor the formation of a wide range of modified
nucleobase/nucleoside lesions from chemically and enzymatically
oxidized cellular DNA (Cadet and Wagner, 2013; Cadet et al., 2017).

The LC-MS/MS tool has progressively replaced HPLC-ECD
and GC-MS assays (for an extensive review on early findings, see
Cadet et al., 2017; Chao et al., 2021) for the detection of 8-oxoGua,
related nucleosides, and thymine oxidation products in several
fluid matrices including urine, plasma, saliva (Weimann et al.,
2001; Cooke et al., 2009). This powerful analytical approach
has been shown to be more accurate than the enzyme-linked
immunosorbent assay (ELISA) for the detection of 8-oxodG in
biological fluids (European Standards Committee on Urinary
(DNA) Lesion Analysis, 2010). However, it has been shown that
a monoclonal antibody recognizing both 8-oxodG and 8-oxo-
7,8-dihydroguanosine (8-oxorG) can be utilized in a column for
the pre-purification of complex whole urine samples (Park et al.,
1992) before HPLC-ECD analysis (Degan et al., 1991). Several
improved strategies have been used to take care of the matrix
complexity of the fluid samples that may lead to ion suppression
and therefore a loss of signal in MS analysis. One approach that
was initially applied to the measurement of 8-oxodG in cellular
DNA (Chao et al., 2008) involves the use of on-line solid phase
extraction (Hu et al., 2010). Furthermore, two-dimensional LC (2D)
MS/MS instruments equipped with a switching valve allows for
the transfer of target analytes from a trap column to a second

Frontiers in Molecular Biosciences 04 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1636255
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Cadet and Wagner 10.3389/fmolb.2025.1636255

column before MS detection. This method has been implemented
for the detection of a wide range of excreted oxidized bases,
mostly derived from guanine and 5-methylcytosine (Rozalski et al.,
2016; Shih et al., 2018; Skalska-Bugala et al., 2022). Another mass
screening strategy for the detection of 8-oxoGua and 8-oxodG
involves triple quadrupole tandem mass spectrometry (LC-QqQ-
MS/MS) that operates through ESI in selected reaction monitoring
(SRM) mode by collision-induced dissociation (CNL) scanning
(Cooke et al., 2018). High resolution mass spectrometry (HR-
MS) detection has also been considered as an accurate mass
measurement at the level of a few ppm. A hybrid quadrupole-linear
ion trap-orbitrap mass spectrometry (Q-LIT-OT-MS) instrument
using dd Nl-MS3 scan was recently applied for the high resolution
measurement of systemic urinary modified nucleosides, including
8-oxodG and 8-oxodA in cellular DNA (Chang et al., 2021).

The accurate LC-MS/MS method in the MRM mode with
isotope dilution shows a fair level of sensitivity, within the low
femtomole range, for the detection of 8-oxodG and other oxidized
2′-deoxyribonucleosides in cellular DNA and urinary samples.
However, a major limitation of chromatographic methods that
involves DNA extraction and subsequent work-up concerns the
occurrence of spurious oxidation reactions. Such oxidation is
likely the result of Haber-Weiss/Fenton reactions that artifactually
increase the level of baseline lesions and therefore questions
the accuracy of the measurements. This observation was already
made in the early 90s (Harris et al., 1994; Helbock et al., 1998;
Helbock et al., 1999) and has been the subject of debate and
various attempts to minimize/prevent adventitious oxidation of
overwhelming canonical nucleobases/nucleosides. For this purpose,
the NaI chaotropic DNA extraction method was used together with
the addition of antioxidants, metal ion chelators and/or radical
scavengers to aqueous solutions of enzymatic digests followingDNA
isolation (Ravanat et al., 2002; Ravanat et al., 2004; Chao et al.,
2008; Mangal et al., 2009). Using these procedures with HPLC-
ECD/LC-MS/MS usually give reduced steady-state levels of 8-
oxodG; however, the levels are still several fold higher than the
yields of formamidopyrimidine DNA-N-glycosylase (Fpg)-sensitive
sites (8-oxoGua, FapyGua and 8-oxoAde) as monitored by either
the alkaline elution technique or the alkaline comet assay. This
was unambiguously established by a large inter-laboratory study
involving the European Standard Committee on Oxidative DNA
Damage (ESCODD, 2002; Collins et al., 2004; Gedik et al., 2005).
It was shown that evaporation to dryness of the aqueous solution of
digested DNA filtrate of pre-purified enzymatically digested DNA
on a SPE column led to a significant increase in the level of 8-oxodG
(Chao et al., 2008). Another critical factor concerns the amount of
extracted DNA for HPLC analysis since an inverse correlation was
noted between the yield of 8-oxodG measured by LC-MS/MS and
the amount of DNA in sperm samples (Badouard et al., 2008). In this
respect, it was recommended that the size of analyzed DNA samples
should be higher than 50 µg in order to minimize the contribution
of spurious oxidation as outlined in an earlier report (Beckman and
Ames, 1996; Helbock et al., 1999).

Noteworthy is the occurrence of spurious oxidation to
nucleobases and 2-deoxyribose components of DNA once extracted
and then digested in aqueous solution, which cannot be totally
prevented despite various optimization attempts. Consequently,
the robust LC-MS/MS and HPLC-ECD methods are not able to

accurately assess low chronic damaging effects of endogenous
and exogenous oxidizing agents on cellular DNA. For example,
HPLC-ECD was unable to detect significant increases in the level of
8-oxodG above the baseline level in cellular DNA unless cells were
exposed to high doses of radiation of at least 60 Gy (Pouget et al.,
1999). Interestingly, the detection threshold for a significant increase
in the level of Fpg-sensitive sites is only 0.5 Gy allowing one
to establish a linear formation of the purine lesions within the
0.5–10 Gy dose range (Sauvaigo et al., 2003). Similar observations
were made for other main radiation-induced oxidized nucleosides
including dTGly, 5-HmdU, 5-FodU, 8-oxodA, and several dC
modified products since doses higher than 150 Gy are necessary
for their unambiguous detection in cellular DNA.

This major limitation clearly indicates that HPLC-ECD and
optimized LC-MS/MS are generally not appropriate for measuring
small increases in the frequency of oxidatively generated base
damage in cellular DNA because of interferring spurious oxidation
during DNA extraction and subsequent work-up. The results
thus far indicate that the use of HPLC based analytical tools
as well as modified GC-MS methods involving an enzymatic
digestion step may not be able to assess the damaging effects
to cellular DNA of chronic exposure to environmental oxidizing
agents and biological processes such as oxidative metabolism,
phagocytosis, inflammation and cancer progression. In contrast,
acute conditions of oxidative stress including high doses of
UVA/ionizing radiations and elevated concentrations of oxidants
can generate a significant elevation in the levels of DNA damage
above the cellular steady-state background and contribution from
artefactual oxidation. As long as dose responses are linear, the
results may be extrapolated to low doses; however, it is necessary
to establish responses of damage at low doses and take into account
biological factors, such as DNA repair, which determine the steady
state level.

3.1.2 DNA repair glycosylase based assays
The characterization and gene cloning of several DNA-

glycosylases (UNG, APE, Endo III, Fpg, OGG1, etc.) (Boiteux et al.,
1987; Boiteux et al., 1990; van der Kemp et al., 1996; Radicella et al.,
1997) that initiate the base excision repair pathway of purine
and pyrimidine oxidized bases (Tchou et al., 1991; Wallace, 1994;
David et al., 2007; Beard et al., 2019) has provided a strong impetus
to the development of sensitive methods of detection of oxidatively
generated damage in single cells. This was mostly achieved by using
either the alkaline comet assay (Gedik et al., 1998; Collins et al.,
2023) or the alkaline elution technique (Pflaum et al., 1997; Epe,
2012) for generating additional single strand breaks following DNA
N-glycosylase-induced formation of abasic sites. Thus, bacterial Fpg
is able to excise, in addition to FapyGua, 8-oxoGua and FapyAde,
whereas human and yeast 8-oxoguanine glycosylase (OGG1) is
more specific since it only recognizes oxidatively generated guanine
modifications. In addition, endonuclease III (Endo III), which
exhibits a wider range of substrate specificity than Fpg and OGG1,
has been used to detect pyrimidinemodifications, includingThyGly,
5,6-dihydroxy-5,6-dihydrouracil (UraGly), 5-hydroxycytosine (5-
OHCyt), 5-hydroxy-5-methylhydantoin (5-OH-5-MeHyd) and 5-
hydroxyhydantoin (5-OHHyd) (D’Ham et al., 1999; Cadet et al.,
2000; Gasparutto et al., 2009). In contrast to HPLC based methods,
the latter assays with DNA glycosylases minimize the degree of
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artefactual oxidation because it greatly reduces the release of
potential oxidants attached to DNA and nonmodified monomers
that may be subject to oxidation, i.e., DNA remains mostly intact.
Furthermore, a secondmajor advantage of these biochemical tools is
their low background and high sensitivity that permits the accurate
detection of very low steady-state levels of SSBs/oxidized bases
as well as small variations in their frequency. This advantage was
illustrated by the observed accumulation with age of modified
guanine sites in the DNA liver of null OGG1 mice using the
modified alkaline elution technique, information that was not
accessible by HPLC-ECD measurements (Klungland et al., 1999).
Another relevant example concerned the observation of a biphasic
curve for the decrease with time of the frequency of OGG1-
sensitive sites by applying the enzymatic version of the alkaline
elution method (Osterod et al., 2001). In contrast, attempts to assess
the repair kinetics have failed using HPLC-ECD because of the
inability to measure physiologically relevant levels.

Numerous applications of the modified enzymatic methods
with emphasis on the alkaline comet assay have been devoted
to model studies with single cells as a means to monitoring
changes in the steady-state levels of oxidatively generated damage
to DNA associated with environmental factors/health issues on
large human cohorts (Møller and Roursgaard, 2021). However,
quantitative measurement of the damage frequency requires the
calibration of enzymatic assays (Møller et al., 2018). This is usually
achieved by assuming that 1 Gy of low LET ionizing radiation
generates 0.31 DNA strand breaks/alkali-labile sites per 109 Dalton
of mammalian genomes and corresponds to 1,000 breaks per
diploid cell (Ahnstrom and Erixon, 1981). Another possibility is to
establish a positive control using either Ro19-8,022 a quantitative
1O2 photosensitizer, or potassium bromate, a specific one-electron
oxidant of guanine (Murata et al., 2001). The steady state values
obtained by themodified elution technique (0.6–2.0 lesions/106 dG)
as well as observed increases of lesions with age in rodent cells and
tissues are comparable to those obtained by HPLC-ECD using the
NaI method of extraction (Helbock et al., 1998; Hamilton et al.,
2001). Thus, it is not clear whether the inclusion of NaI in the
HPLC-ECD and LC-MS/MSmethodsminimizes artificial oxidation
to the level that can be useful for physiological studies. From
studies using enzymatic methods though, the large reduction in
artifactual oxidation renders the assays more suitable for studies
of DNA damage induced by ionizing radiation and genotoxic
compounds, and associated studies investigating the activity of DNA
repair enzymes.

3.1.3 Sequencing methods for mapping oxidized
bases at the single base resolution

Epigenetic 5-HmdCyt, the TET oxidation product of 5-MeCyt
that is preferentially formed at CpG sites in the genome is considered
as the sixth most abundant DNA nucleobase (Song and He, 2011).
Stable 5-HmCyt is prevalently generated in embryonic stem cells
(ESC) and brain tissue at a frequency close to 10% of 5-mCyt sites.
Rapidly after the discovery of this major oxidized nucleobase that is
refractory to repair through the BER pathway, attempts were made
to map at the single nucleoside resolution 5-HmCyt and its 5-mCyt
precursor in biologically relevant gene sequences (Jin et al., 2010;
Pastor et al., 2011; Song et al., 2011; Wu et al., 2011; Xu et al.,
2011).Thedynamic distribution of these twomajor epigeneticmarks

remains a challenging analytical issue and has been the subject of
numerous investigations during the last decade (for recent reviews
see Erlitzki and Kohli, 2024; Song et al., 2025). For this purpose,
threemain strategies have been considered.Thewidely usedmethod
of bisulfite sequencing (BS-seq) does not allow the distinction
between 5-mCyt and 5-HmCyt (Jin et al., 2010). This limitation was
overcome by the development of TET-assisted bisulfite sequencing
(TAB-seq) (Yu et al., 2012) and oxidative bisulfite sequencing (oxBS)
techniques (Booth et al., 2013). Other improvements have been
made by optimizing the chemistry and including enrichment of
methylated regions of the genome (Ficz et al., 2011; Pastor et al.,
2011; Robertson et al., 2011; Song et al., 2011; Stroud et al., 2011;
Williams et al., 2011; Wu et al., 2011). There is presently an array
of methods that integrate the analysis of 5-mCyt and 5-HmCyt at
base resolution into third-generation sequencing platforms, which
include single molecule real-time (SMRT) sequencing (Ardui et al.,
2018; Hu et al., 2025), nanopore sequencing (Wang et al., 2021)
and chemical modification coupled with isothermal CRISPR-based
assay (Zhang et al., 2022; Zou et al., 2025). Meanwhile, sequencing
at the base resolution of the other oxidation products of TET,
5-FoCyt and 5-CaCyt, remains highly challenging since they are
generated with a low abundance of about 1 lesions per 10−6 Cyt.
This remark applies as well to available methods for mapping the
distribution of 8-oxoGua at single base resolution (Riedl et al.,
2016; Zhang et al., 2022; Dong et al., 2022; Dong et al., 2025;
Ji et al., 2025).

3.2 Oxidatively generated damage in
cellular DNA

As previously mentioned, the measurement of oxidized
bases/2′-deoxyribonucleosides in cellular DNA that are formed
in very low amounts remains a challenging analytical issue
(Collins et al., 1997). The use of inappropriate methods including
GC-MS, immunoassays and post-labeling methods has led to
false conclusions for both qualitative and quantitative aspects
of the formation of oxidatively generated base damage in
cells and tissues. This is the case of 2-hydroxyadenine, 5,6-
dihydroxycytosine, 5-hydroxy-5,6-dihydrothymine and 5-hydroxy-
5,6-dihydroxyuracil whose formation was initially substantiated
based on questionable GC-MS measurements (Dizdaroglu, 2012;
Halliwell et al., 2021). The formation of the latter products
has not been confirmed by LC-MS/MS analysis of cellular
DNA exposed to oxidizing agents including ionizing radiation.
Another source of artefactual contribution that cannot be totally
prevented is the adventitious oxidation of overwhelming canonical
nucleobases during DNA extraction and the subsequent enzymatic
digestion steps preceding chemical analyses. To assess artefactual
oxidation, a recent study reported dividing the DNA sample
into two fractions, such that, one fraction is treated with Fpg
before complete enzymatic digestion and thereby serves as a
control for the other non-treated fraction (Dong et al., 2025).
Nevertheless, artefactual oxidation can affect the suitability of
chromatographic methods for monitoring oxidatively induced
base modifications and explains why only a few accurate
measurements have been performed so far as reported in the
next section. To achieve this goal, two main fulfilments should
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be observed, which include evidence showing the effect of acute
conditions of oxidative stress and establishment of dose/response
curves.

3.2.1 Radiation-induced base modifications
Ionizing radiation is a suitable tool to trigger, in a highly

quantitative and well-controlled way, the formation of DNA
oxidation modifications through the generation of reactive ·OH
and ionization of the bases/2-deoxyribose moieties. However,
multiple radical/excitation events are generated by the impact
of high energetic photons along the radiation track (O’Neill and
Wardman, 2009; Georgakilas et al., 2013). These indirect and direct
processes result in the formation of complex DNA damage that
include in addition to deleterious double strand breaks (DSB)
non-DSB oxidatively generated clustered damage consisting of
base modifications, single strand breaks and oxidized abasic
sites within one/two helix turns (Cadet et al., 2012; Sage and
Shikazono, 2017). The latter lesions are expected to be unique
when considering the sequence context and the fact that more
than 15 oxidized bases have been identified so far, thus preventing
the identification of non-DSB oxidatively generated DNA damage.
Noteworthy, nuclease mediated digestion of oxidized DNA
suppresses the complexity of the clustered modifications and leads
to the release of modified 2′-deoxyribonucleosides/nucleobases
that are accurately characterized by LC-MS/MS analysis
(Cadet et al., 2017).

Mechanistic studies on DNA model systems in aqueous
solutions have shown a qualitative similarity in the distribution
of the nucleobase oxidation products formed by ·OH and one-
electron oxidants (Cadet and Wagner, 2014). For example, the
addition of ·OH at the 5,6-double bond of pyrimidines (Thy,
Cyt and 5-mCyt) as well as the hydration of pyrimidine radical
cations gives rise to analogous hydroxylated radical adducts that
subsequently transform into the corresponding 5,6-hydroxyperoxyl
radical intermediates in the presence of O2 (Figures 1, 2).
The stable final degradation products of 5,6-hydroxyperoxyl
radical intermediates mostly include the four cis and trans
diastereomeric dTGly together with 5R- and 5S 1-(2-deoxy-β-D-
erythro-pentofuranosyl)-5-hydroxyl-5-methylhydantoin (5-OH-5-
mCHyd) that are generated as the stable final degradation products
of Thy (Frelon et al., 2000; Cadet et al., 2017). The situation is more
complex for cytosine and 5-methylcytosine oxidation products
since in addition to 5,6-dihydroxy-5,6-dihydro-2′-deoxyuridine
(dUGly), the deamination product of unstable 5,6-dihydroxy-
5,6-dihydro-2′-deoxycytidine (dCGly) (Tremblay et al., 1999),
the four cis and trans diastereomeric 2′-deoxyribonucleosides
of N1-carbamoyl-2-oxo-4,5-dihydroxyimidazolidine and N1-
carbamoyl-2-oxo-4,5-dihydroxy-5-methylimidazolidine (Samson-
Thibault et al., 2012; Madugundu et al., 2014) are formed through
rearrangement of unstable 5-hydroxy-6-hydroperoxy-5,6-dihydro-
2′-deoxycytidine and 5-hydroxy-6-hydroperoxy-5,6-dihydro-5-
methyl-2′-deoxycytidine, respectively (Tremblay et al., 2007;
Wagner and Cadet, 2010). As an additional oxidizing degradation
pathway, competitive deprotonation of the methyl group of dT
and 5-mdC radical cations was found to generate 5-HmdU/5-
fodU and 5-HmdC/5-fomdC through the intermediacy of 5-
(uracilyl) methyl and 5-(cytosilyl) methyl radical intermediates,
respectively (Figure 2).

Several stable 2'-deoxyribonucleoside modifications were
accurately detected by LC-MS/MS in the DNA of γ-ray exposed
Fischer glioma cells (F98) and human monocytes with a linear
dose dependence for elevated radiation doses ranging from
100 Gy to 3 kGy. The formation yields expressed in the number
of modifications per 109 normal nucleosides are reported in
Table 1.

Like pyrimidines, there is also a high similarity between the
·OH and one-electron oxidation mediated degradation pathways
of adenine and guanine in both isolated and cellular DNA (Cadet
and Wagner, 2014). Hydration of purine base radical cations that is
favored in double stranded DNA led to the formation of reducing
8-hydroxy-7,8-dihydropurinyl radicals, which are also generated
by the addition of ·OH to C8 of Gua and Ade. One-electron
oxidation of the latter intermediates gives rise to 8-oxoGua and 8-
oxo-7,8-dihydroadenine (8-oxoAde) while competitive reduction of
8-hydroxy-7,8-dihydropurinyl radicals that is enhanced in cellular
DNA, produces 2,6-diamino-4-hydroxy-5-formamidopyrimidine
(FapyGua) and 4,6-diamino-5-formamidopyrimidine (FapyAde)
through opening of the imidazole ring (Cadet et al., 2017) (Figure 3).
The guanine degradation products are formed in cellular DNA in
about 10-fold higher yields than the corresponding adenine lesions
as observed in isolated DNA and double stranded oligonucleotides.
This could be partly explained by the addition of pyrimidine
peroxyl radicals to C8 of vicinal guanine, reactions that lead
after rearrangement to the formation of 8-oxoGua and FapyGua
containing tandem base lesions (Robert et al., 2023). Deprotonation
of the guanine radical cation leads to transient and highly oxidizing
Gua (-H)· radicals that upon addition of O2·- to C5 gives rises to
2,2,4-triamino-5(2H)-oxazolone (Oz) through a complex sequence
of reactions (Misiaszek et al., 2004; Cadet et al., 2008). Formation
of related 2'-deoxyribonucleoside that was monitored in the DNA
of diabetic rats (Matter et al., 2006) has not been yet measured in
gamma-irradiated cells. From a quantitative distribution of themain
radiation-induced base decomposition products with that of one-
electron oxidation (see next section), it was concluded that indirect
effects of gamma rays predominate over ionization mediated by
direct interactions of energetic photons with DNA (Pouget et al.,
2002; Douki et al., 2006; Cadet et al., 2022). This was further
supported by the observed decrease in the yield of 8-oxodG and
dTGly with an increase in the linear energy transfer (LET) of 12C6+

(24.5 keV/μm) and 36Ar18+ (250 keV/μm) heavy charged particles
in comparison to gamma rays, i.e., high LET radiation triggers
a concomitant lowering in the yield of ·OH. Other radiation-
induced damage identified in the DNA of human lymphocytes
consists of the four cis and trans diastereomeric aldehyde adducts to
cytosine (Regulus et al., 2007) that were initially detected in .OH-
mediated oxidation of isolated DNA by LC-MS/MS operating in
neutral scan mode (Regulus et al., 2004). Assignment of previously
unknown enzymatically released 2′-deoxyribonucleosides to 6-
(2-deoxy-β-D-erythro-pentofuranosyl)-2-hydroxy-3 (3-hydroxy-2-
oxopropyl)-2,6-dihydroimidazo [1,2-c]-pyrimidin-5(3H)-one was
achieved through extensive NMR analyses and exact high resolution
mass spectrometry (HRMS) on line with HPLC (Regulus et al.,
2007). As a relevant mechanistic insight, radiomimetic bleomycin
that mostly acts by abstracting a hydrogen atom at C4′ of the 2-
deoxyribose moiety (Dedon and Goldberg, 1992) was also shown
to trigger the formation of these modifications. It was proposed
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FIGURE 1
.OH and one-electron oxidant decomposition pathway of thymine.

FIGURE 2
.OH and one-electron degradation pathway of cytosine and 5-methylcytosine.

that the resulting C4′-oxidized abasic site (Chen et al., 2007) or
more likely its ring opened form (Pogozelski and Tullius, 1998)
is able, when present in front of opposite cytosine or adenine,
to be converted into a conjugated keto-aldehyde following beta
elimination and the formation of a DNA strand scission on the 3′-
end (Sczepanski et al., 2008).This results in the formation of cytosine
cycloadducts as a function of either radiation dose or bleomycin
concentration as part of complex deleterious lesions consisting of
an intra-strand cross-link and a vicinal single strand break. The
formation efficiency of dC aldehyde adducts within the 75–300 Gy
dose range was one hundred-fold lower than that of 8-oxodG
(Regulus et al., 2007).

3.2.2 Questionable radiation-induced formation
of 5′,8-purine cyclo-2′-deoxyribonucleosides in
cellular DNA

The 5R and 5S diasteromers of 5′,8-cyclo-2′-deoxyadenosine
(cdA) and 5′,8-cyclo-2′-deoxyguanosine (cdG) that arise from
intramolecular cyclization of ·OH-mediated deoxyribos-5-yl radical
to C8 of adenine or guanine nucleosides/nucleotides were identified
as minor degradation products of calf thymus DNA in aerated
aqueous solution (Belmadoui et al., 2010; Krokidis et al., 2017).
Major interest has been devoted to the putative biological relevance
of cdA and cdG during the past 2 decades following the report
that cdG and cdA are repaired in model studies by the nucleotide
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TABLE 1 Formation of oxidatively generated base damage in cellular
DNA by ionizing radiation and high intensity UVC nanosecond laser
pulses: number of modifications per 109 nucleosides per Gy or per pulse.

Gamma raysa Gamma raysb UVC laserc

dTGly 97 7.7 160

5-HmdU 29 13.3 60

5-FodU 22 19.5 20

8-oxodAdo 3 d d

FapyAde 5 d d

8-oxodGuo 20 8.8 1,290

FapyGua 39 d d

5-HmdC d 1.2 d

5-FodC d 0.7 d

afrom Pouget et al., 2002.
bfrom Madugundu et al., 2014.
cfrom Douki et al., 2004.
dnot determined.

repair excision (NER) pathway and not by BER operating on single
oxidized bases (Brooks et al., 2000; Kuraoka et al., 2000). Several
attempts to measure cdA and cdG in the DNA of mammalian cells
by GC-MS, LC-MS and LC-MS/MS ELISA immunodetection have
led to inconsistent conclusions with estimated levels that vary by
two orders of magnitude (for a review, see Cadet et al., 2019a).
Other questionable data that were estimated by LC-MS/MS concern
the radiation-induced formation of 5′R and 5′S diastereomers of
cdA and cdG in the DNA of MCF-7 and MDA-MB-231 breast cells
in which differences were observed even upon exposure to 5 Gy.
These results sharply contrast with the lack of detection of cdA
and cdG in gamma irradiated human monocytes (Belmadoui et al.,
2010) and Thermococcus gammatolerans (Barbier et al., 2016) at
doses of 2 kGy and 5 kGy, respectively. A likely explanation for
such major divergences is that the claimed formation of cyclic
purine lesions in breast cells (Krokidis et al., 2017; Chatgilialoglu,
2019) resulted from spurious oxidative reactions associated with
DNA extraction and its subsequent digestion before LC-MS/MS
analysis (Cadet et al., 2019a; Cadet et al., 2019b). This clearly shows
that formation/dose response information is required to further
ascertain the formation of minor oxidatively generated damage to
cellular DNA. Other confusing data deal with the measurement
of cdA and cdG using ELISA in brain, liver and kidney tissue of
healthy young rats. The reported values of formation between 2
and 5 lesions per 106 nucleosides (Mori et al., 2019) are several-
fold higher than the yield of 8-oxodG. This is not compatible with
the expected 8-oxodG/cdA and 8-oxodG/cdG ratios of about 100
(Belmadoui et al., 2010).

3.2.3 One-electron oxidized base modifications
As already mentioned, the direct interaction of gamma

rays and heavy charged ions with DNA is able to ionize
purine and pyrimidine nucleobases as well as the 2-deoxyribose

moieties of DNA (Cadet and Wagner, 2013). Other biologically
relevant one-electron oxidants that essentially act on nucleobase
with a preference in most cases for guanine include type I
photosensitizers (Baptista et al., 2017; Baptista et al., 2021), two-
quantum UVC laser photolysis (Nikogosyan, 1990), metabolized
bromate (Murata et al., 2001;Kawanishi andMurata, 2006; Ballmaier
and Epe, 2006) and carbonate radical anions (Lee et al., 2007;
Radi, 2013; Roginskaya et al., 2015; Matter et al., 2018), the
decomposition product of nitrosoperoxycarbonate arising from the
reaction of CO2/bicarbonate with peroxynitrite (Uppu et al., 1996;
Illes et al., 2019).

Only a few examples of specific reactions of one-electron
oxidants on cellular DNA are available. Visible light excited
riboflavin, a preferential type I photosensitizer, has been shown by
HPLC-ECD to induce the formation of 8-oxodG in the DNA of
mammalian cells with a photosensitizer concentration and duration
exposure dependence (Yamamoto et al., 1992; Bessho et al., 1993).
Hydration of the initially generated Gua radical cation is the key
step leading to 8-oxoGua as shown by mechanistic studies on
isolated DNA and double stranded oligonucleotides (Kasai et al.,
1992; Rokhlenko et al., 2014). FapyGua and 2,2,4-triamino-5(2H)-
oxazolone, two other expected major decomposition products
from the one-electron oxidation of Gua (Douki and Cadet,
1999) have not yet been measured in cellular DNA upon type I
photosensitized oxidation. A suitable quantitative way to generate
purine and pyrimidine base radical cations in both isolated and
mammalian cells is provided by high intensity nanosecond 266 nm
laser irradiation. Extensive photophysical studies on isolated 2′-
deoxyribonucleosides has shown that under these conditions the
purine and pyrimidine radical cations are generated with a similar
efficiency (Angelov et al., 1997; Douki et al., 2001; Spassky and
Angelov, 2002). This is rationalized in terms of further absorption
of a UVC photon by the long-lived triplet excited nucleobases
following intersystem crossing of initially single excited transients.
Thus, the elevated level of absorbed energy that is higher by more
than 2 eV above the ionization threshold of purine and pyrimidine
bases leads to their efficient one-electron oxidation according to a
bi-photonic process (Douki et al., 2004; Angelov et al., 2005). High
intensity UVC laser irradiation of native CT DNA was shown to
give 8-oxodG as the predominant oxidation product over minor
products: dTGly, 5-HmdU, 5-FodU and 8-oxodA. However, pre-
heated treatment of DNA before laser exposure leads to a total
loss in the specific damage distribution since dTGly diastereomers
were formed with a higher yield than 8-oxodG. The preferential
formation of 8-oxodG in native DNA duplex is accounted for by
a redistribution of initially generated base radical cations through
positive hole migration with specific trapping of the hole by
guanine bases that exhibit the lowest oxidation potential among
DNA components. A similar oxidatively generated base damage
distribution with an overwhelming formation of 8-oxodG was
observed in the DNA of TPH1 human monocytes (Pouget et al.,
2002; Douki et al., 2006) and HeLa cells (Madugundu et al., 2013)
exposed to high intensity UVC ns laser pulses (Table 1). This
strongly gives support to the notion that charge transfer occurs
in cellular DNA upon one-electron oxidation of the nucleobases
as previously shown in isolated DNA duplexes (Genereux and
Barton, 2010; Kanvah et al., 2010). In addition, the formation of
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FIGURE 3
Oxidatively generated decomposition pathways of guanine by .OH, one-electron oxidants and singlet oxygen.

intra-strand cross-links generated by covalent addition of non-
adjacent thymine at N3 to Gua·+/G (-H). at C8 was observed
by LC-MS/MS measurement, albeit at low levels of less than 1%
of 8-oxodG.

The characteristic distribution profile ofmodified nucleobases in
one-electron oxidized cellular DNA shows the predominance of 8-
oxodG and likely FapyGua whose formation however remains to be
assessed (Madugundu et al., 2013). A comparison of the distribution
of base modifications generated by one-electron oxidation and the
direct/indirect effects of gamma rays in cellular DNA supports
the proposal that the ionization of bases contributes to a lower
extent than ·OH to the formation of radiation-induced damage
(Douki et al., 2006; Cadet et al., 2019c). A preference toward
guanine damage in DNA may also arise from the reaction of .OH
with bicarbonate present in cells, thereby, diverting the oxidation
of DNA from that with .OH to that with one-electron oxidizing
carbonate radical (Fleming and Burrows, 2022). On the basis of
competition kinetics, however, it is not likely that bicarbonate
can sufficiently scavenge .OH to make a significant difference
(Halliwell et al., 2021). The situation is different with Fenton-
induced oxidation of DNA because bicarbonate strongly interacts
with Fe2+ and gives carbonate radical anions upon reaction with
H2O2 as inferred by studies in cells exposed to H2O2 (Fleming et al.,
2024). In support of a major contribution of radiation-induced
.OH, the levels of both Fpg and Endo III-sensitive as contributors
to the steady-state DNA damage were measured in similar yields
in control THP1 cells using the modified alkaline comet assay
(Pouget et al., 1999).

3.2.4 Singlet oxygen guanine oxidation
modifications

1O2 in its first excited state, singlet oxygen (1Δg) reacts
specifically with guanine to generate overwhelmingly 8-oxoGua
(Figure 3) in isolated DNA (Ravanat et al., 2001; Dumont et al.,
2016; Di Mascio et al., 2019) at the exclusion of dSp that is
predominantly produced with single Gua monomeric components
and oligonucleotides (Cadet et al., 2008). Similarly, using
thermolabile naphthalene endoperoxide as a source of |18O]-labeled
1O2, it was shown that only 8-oxodG is formed upon incubation
of TPH1 monocytes with the oxidizing agent (Ravanat et al.,
2000). Numerous examples of the efficient formation of 8-oxoGua
upon exposure to UVA excited photosensitizers in mammalian
cells have been reported on the basis of HPLC-ECD and LC-
MS/MS measurements (for extensive reviews see Cadet et al., 2005;
Di Mascio et al., 2019; Baptista et al., 2021). UVA radiation and to
a lesser extent blue light have been shown to take place through a
major contribution of type II photosensitization, giving 1O2 that
subsequently produces 8-oxodG in both cellular DNA and skin
explants (Douki et al., 1999; Douki et al., 2003; Mouret et al., 2006;
Cadet et al., 2024).

3.2.5 TET-mediated oxidation modifications of
5-methylcytosine

Epigenetic 5-HmdC is the initially formed TET-mediated
oxidation product of 5-medC as part of the active demethylation
process within DNA (Tahiliani et al., 2009). The level of 5-HmdC
by at least 2 to 3 orders of magnitude higher than other chemically
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and enzymatically oxidized 2′-deoxyribonucleosides underscores
this modification as a stable epigenetic biomarker. Because of its
high levels, 5-HmdC has been accurately measured in the DNA
of animal issues by 1D- and 2D- LC-MS/MS (Pfaffeneder et al.,
2014; Gackowski et al., 2015; Liu et al., 2016) and mapped in
gene sequences at the nucleoside level (Kisil et al., 2024). Attempts
were made to evaluate this biomarker as a potential indicator
of cancer and aging (Kraus et al., 2012; Wagner et al., 2015;
Song et al., 2022). Interestingly, the level of 5-HmdC in DNA is
also modulated by vitamin C, which is a co-factor in the TET-
mediated oxidation of 5-medC (Young et al., 2015; Guz et al.,
2024). In contrast to 5-HmdC, the further oxidation products
of TET-mediated oxidation of 5-mdC, which include 5-FodC
and 5-CadC, are present at low steady state levels of about a
few lesions per 106 nucleosides. Because of the low levels of
these modifications, their analysis by LC-MS/MS remains to be
challenging. On the other hand, it remains to be established whether
5-HmdU that has been proposed to be generated with a low
efficiency by TET oxidation of thymine in DNA (Pfaffeneder et al.,
2014) does not arise mostly from artefactual contribution prior
to analysis.

4 Perspectives

Major progress has been made during the two last decades
toward the identification and analysis of modified bases/nucleosides
formed in DNA upon exposure to .OH, one-electron oxidants and
1O2. This has largely been achieved by LC-MS/MS measurements,
which can assess the formation of several modifications and
provide relevant mechanistic insights into the molecular effects
of UVA/visible photons, high intensity UVC laser pulses
and ionizing radiation. The similarity in the distribution of
oxidatively-induced base damage in cellular and isolated DNA
(Cadet et al., 2017) allows one to conclude that these model
studies are appropriate for describing the mode of action
of chemical and TET enzymatic oxidants in cellular DNA.
However, strong oxidizing conditions through acute exposure to
chemical and physical agents are necessary to accurately obtain
a comprehensive profile of persistent modifications in cellular
DNA. Application of these rigorous approaches have questioned
the formation and therefore the biological relevance of several
oxidized nucleosides including 2-hydroxy-2′-deoxyadenosine,
5′,8-cyclo-2′-deoxyadenosine and 5′,8-cyclo-2′-deoxyguanosine.
It may be added that the enzymatic modified comet assay and
alkaline elution technique provide complementary information
on the steady-state level of oxidatively generated DNA damage
resulting from oxidative metabolism and mild conditions of
chronic exposure to oxidants. In general, however, LC-MS/MS
and biochemical based assays remain to assess the formation
in cells of several classes of oxidatively generated damage that
have been identified in DNA model studies. These include 8-
oxodG as an ozone-mediated product oxidation (Wagner et al.,
2021), tandem lesions arising from the addition of pyrimidine
peroxyl radical to vicinal intra-strand guanine (Robert et al.,
2023) and one-electron induced generation of DNA-protein
cross-links through the covalent addition of lysine to guanine
radical cation (Perrier et al., 2006). A better assessment of the

structure and quantities of complex lesions that are produced
by ionizing radiation and other genotoxic agents in chemo- and
radiotherapy may help to improve the design of treatment protocols
in medicine. An interesting challenge today is to understand the
modifying effects on the degradation pathways of cellular DNA at
elevated dose rates of ionizing radiation associated with ‘FLASH’
radiotherapy.
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