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Integrating multi-dimensional
data to reveal the mechanisms
and molecular targets of
baikening granules for treatment
of pediatric influenza

Zhaoyuan Gong† , Qianzi Che† , Mingzhi Hu† , Tian Song,
Lin Chen, Haili Zhang, Ning Liang, Huizhen Li, Guozhen Zhao,
Lijiao Yan, Xuefei Zhang, Bin Liu*, Jing Guo* and Nannan Shi*

Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing,
China

Background:Children are themain group affected by the influenza virus, posing
challenges to their health. The high risk of viral variability, drug resistance, and
drug development leads to a scarcity of therapeutic drugs. Baikening (BKN)
granules are a marketed traditional Chinese medicine used to treat children’s
lung heat, asthma, whooping cough, etc. Therefore, exploring the potential
mechanisms of BKN in treating pediatric influenza is of great significance for
discovering new drugs.

Methods: Through the database, we obtained differentially expressed genes
(DEGs) between pediatric influenza and healthy samples, identified the
components of BKN, and collected the targets. Target networks were built
with the purpose of screening both targets and key components. Pathway and
function enrichment were conducted on the relevant targets of BKN for treating
pediatric influenza. BKN-related hub genes for influenza were discovered
through DEGs, weighted gene co-expression network analysis (WGCNA), BKN-
cluster WGCNA, and machine learning model. The accuracy of prediction
efficiency and the value of BKN-related hub gene were validated through
analysis of external datasets and receiver operating characteristics. Ultimately,
simulations using molecular docking and molecular dynamics were used to
forecast how active components will bind to hub genes.

Result: A total of 20 candidate active compounds, 58 potential targets, and
3,819 DEGs were identified. The target network screened the top 10 key
components and 6 core targets (PPARG, MMP2, GSK3B, PARP1, CCNA2,
and IGF1). Potential target enrichment analysis indicated that BKN may be
involved in AMPK signaling pathway, PI3K Akt signaling pathway, etc., to
combat pediatric influenza. Subsequently, two hub genes (OTOF, IFI27) were
obtained through WGCNA, BKN-cluster WGCNA, and machine learning models
as potential biomarkers for BKN-related pediatric influenza. Two hub genes
were found to have primary diagnostic value based on ROC curve analysis.
Molecular docking confirmed the binding between BKN and hub gene.
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Molecular dynamics further revealed the stable binding between Peimisine
and hub genes.

Conclusion: BKNmay alleviate pediatric influenza via key components targeting
core targets (PPARG, MMP2, GSK3B, PARP1, CCNA2, and IGF1) and hub genes
(OTOF, IFI27), with the involvement of feature genes-related pathways. These
results have potential consequences for future research and clinical practice.

KEYWORDS

pediatric influenza, baikening granules, bioinformatics, machine learning, network
pharmacology, molecular docking, molecular dynamics simulation

1 Introduction

Influenza, caused by the influenza virus (classified under the
Orthomyxoviridae family (Xie et al., 2025)), is a respiratory infection
that annually results in 3–5million severe cases and leads to 290,000
to 650,000 deathsworldwide (Troeger et al., 2019). Every year, tens of
thousands of children under the age of 5 die from influenza-related
respiratory diseases worldwide (Iuliano et al., 2018). InfluenzaA and
B serve as the primary culprits behind respiratory disease outbreaks,
frequently resulting in heightened rates of hospitalization and
mortality (Suárez-Sánchez et al., 2025). Influenza viruses undergo
frequent antigenic drift and antigenic variation, allowing them to
evade pre-existing herd immunity and facilitate rapid transmission,
thereby causing seasonal influenza outbreaks and global influenza
pandemics (El Guerche-Séblain et al., 2019). Children, owing to
their compromised immune system and suboptimal vaccination
rates, exhibit heightened susceptibility to influenza and are at an
elevated risk of developing severe manifestations (Gounder and
Boon, 2019). During the annual influenza season, the prevalence of
flu among children typically ranges from 20% to 30%. However, in
certain seasons with high incidence rates, the annual infection rate
of flu in children can escalate to approximately 50% (Glatman-
Freedman et al., 2012). The burden of pediatric influenza has
a profound impact on individuals and society (Wodniak et al.,
2025), including direct medical costs and indirect costs
resulting from parents potentially contracting influenza from
their children.

In China, traditional Chinese medicine (TCM) preparations
also played a core role against influenza (Yang et al., 2025). Bai-
Ke-Ning (BKN) granule is a Chinese medicine which had been
on the market, and was used to treat pertussis in children. BKN
has the effect of clearing heat, eliminating phlegm, relieving
cough, and relieving asthma. This prescription consists of 3
various kinds of TCMs, such as Fritillaria ussuriensis Maxim.
(Ping-Bei-Mu), Baphicacanthus cusia(Nees)Bremek. (Qing-Dai),
and Ginkgo biloba L. (Bai-Guo-Ren). Qing-Dai has the function
of purging fire, clearing heat, detoxifying, analgesic, and anti-
inflammatory (Zeng et al., 2022). Bai-Guo-Ren has the effects
on anti-inflammatory and antioxidant. Alkaloids in Ping-Bei-
Mu are the main bioactive ingredients, which have the effects of
expectorating, relieving asthma and relieving cough (Wang et al.,
2018). In TCM, the occurrence of influenza is believed to be
linked to pestilence infections. TCM has the characteristics of
multiple components and multiple targets, which reflects the
thought of “treating with one formula for multiple diseases” in

TCM.Therefore, based on its efficacy and modern pharmacological
research, BKN may be a potential therapeutic drug for
pediatric influenza.

Network pharmacology can explain the pharmacological
mechanism from the perspective of multiple targets and multiple
ways, explore the target and pathway relationships between drugs
and diseases, and clarify the complex mechanism of TCM on this
basis (Berger and Iyengar, 2009; Vithalkar et al., 2025). In recent
years, weighted gene co-expression network analysis (WGCNA)
has often been used in various omics studies to screen hub genes
closely related to diseases (Zhao et al., 2021; Zhou et al., 2023). The
advantages of WGCNA include (i) mining biological functional
modules rather than individual genes. (ii) In combination with
clinical phenotypes, identify the key modules. (iii) Identifying
the hub gene is of greater biological significance and potential
application value. Machine learning techniques are often combined
with bioinformatics methods, as well as databases and biological
networks, to enhance training and validation, identify the best
interpretable features, and enable feature and model investigations
(Mirza et al., 2019; Auslander et al., 2021). Among them, random
forests (RF), the least absolute shrinkage and selection operator
(LASSO), and support vectormachine-recursive feature elimination
(SVM-RFE) is the most used. Meanwhile, the comprehensive use
of multiple machine learning methods can significantly improve
the prediction accuracy and model robustness. Sensitivity analysis
aims to systematically assess the extent and robustness of the
impact of these choices and data uncertainties on the final research
results. The receiver operating characteristic (ROC) curve is used to
evaluate the overall diagnostic performance of the test and compare
the performance of two or more diagnostic tests (Nahm, 2022).
The reasons for conducting sensitivity analysis in bioinformatics
research include (i) evaluating the robustness of the results. (ii)
Identifying the dependency of key parameters/methods. (iii)
Addressing data quality and noise issues. (iv) Verifying the newly
developed algorithm/process. (v) Enhancing the transparency
and reproducibility of research. Molecular docking involves
the use of computers to design drugs, commonly utilized for
predicting the interactions and binding affinity between proteins
and ligands (Kitchen et al., 2004). Furthermore,molecular dynamics
simulations (MD) can be utilized to investigate the interactions
between proteins and ligands, as well as the fluctuations in
residue positions during protein movement (Grewal et al., 2025;
Zhang et al., 2025). This approach provides valuable insights into
the dynamic processes involved in protein function (Xue et al.,
2016). Hence, in this research, we employed poly-bioinformatics
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FIGURE 1
Flow diagram of this study.

to anticipate distinct therapeutic targets and signaling pathways
for BKN while exploring potential mechanisms associated
with influenza.

This study aims to investigate the mechanism of BKN granule
in the treatment of pediatric influenza through bioinformatic,
machine learning, network pharmacology, molecular docking
technology, and MD. The findings will serve as theoretical
references for future experimental research and clinical applications.
The steps involved in this investigation are illustrated in
Figure 1.

2 Materials and methods

2.1 Collection of active ingredients and
targets in BKN

To gather information on the active ingredients of BKN, we
conducted a search using keywords such as “Qingdai,” “Pingbeimu,”
and “Baiguoren.” This search was performed on the TCM system
pharmacology technology platform (TCMSP, http://tcmspw.
com/tcmsp.php) and the China national knowledge infrastructure
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(CNKI) reviews (Ru et al., 2014). To filter out irrelevant components,
we applied specific criteria based on oral bioavailability (OB) ≥
30% and drug-likeness (DL) ≥ 0.18. Once the active components
were identified through screening in the TCMSP database, their
SDF structure formats were obtained from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/). We used PharmMapper
database (http://www.lilab-ecust.cn/pharmmapper/) (Liu et al.,
2010) to predict the potential targets of BKN through SDF structure.
Further analysis was carried out by selecting BKN component
targets with a Norm Fit value of ≥0.5. For standardization purposes,
we selected species “Homo sapiens” in uniport (https://www.uniprot.
org/) (Uszkoreit et al., 2021) to convert the Uniprot ID into the
gene symbol.

2.2 Collection and procession of
differentially expressed genes in influenza

We obtained microarray data for influenza from two sources,
GSE34205 and GSE42026, which were downloaded from the
GEO database. The microarray platforms used were GPL6947
(Illumina HumanHT-12 V3.0 expression beadchip) and GPL570
(Affymetrix Human Gene Expression Array). These datasets
included samples from pediatric influenza patients as well as
healthy individuals without any other diseases. Both groups had
a sample size of more than 10. We obtained gene expression
and clinical data, and performed gene symbol annotation and
data correction using Perl code. GSE34205 (Ioannidis et al.,
2012) was used as the analysis set. This study excluded children
suspected or confirmed to have multiple bacterial infections,
potential chronic diseases (i.e., congenital heart disease or renal
insufficiency), immunodeficiency, or receiving systemic steroids or
other immunomodulatory therapies. Among them, all influenza
virus infected individuals were confirmed and diagnosed through
microbiology, and all blood samples were collected within 42–72 h
after hospitalization. A total of 28 influenza virus patients were
included in the study, with a median time of 5.5 (1.4–21) months.
Blood samples from 12 healthy children with a median age of 18.5
(10.5–26) months who underwent elective surgery or outpatient
visits were used as control samples (Supplementary Table S1). And
GSE42026 (Herberg et al., 2013) was used as the validation set,
which includes 19 H1N1/09 samples and 33 healthy controls.
The LIMMA software package (Ritchie et al., 2015) was used to
identify differentially expressed genes (DEGs) between the pediatric
influenza group and the control group as disease targets in network
pharmacology. A heatmapwas generated based on theseDEGs using
R software’s pheatmap package.

2.3 Herb-component-target network
construction and ImmuneGene analysis

To establish a scientifically sound relationship between
compounds in herbs and their targets, we utilized Cytoscape 3.9.1
to construct an herb–component–target network that visually
represented this relationship. We conducted a topological analysis
to identify key components within this network. Immune related
genes were collected through the ImmPort database (https://

www.immport.org). The overlapping genes between immune
related genes and BKN-DEGs are defined as BKN-ImmuneDEGs.
Selection and visualization of BKN-ImmuneDEGs by using R
packages “ggplot2” and “pheatmap”. Analyzing the gene network
of BKN-ImmuneDEGs through the GeneMANIA database (https://
genemania.org/).

2.4 PPI network analysis construction

To explore the core targets of BKN’s anti influenza effect,
a protein-protein interaction (PPI) network was built using the
STRING (https://cn.string-db.org/; Version 12.0) (Feng et al., 2019)
database to examine the functional interaction between proteins,
with setting the species to H. sapiens and network confidence score
≥0.4. Furthermore, the Cytohubba plug-ins were utilized to identify
the core targets of BKN for combating pediatric influenza.

2.5 GO and KEGG pathway enrichment
analysis

For the Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Gene Ontology (GO) enrichment analysis, we imported the
gene symbols into the Metascape platform (http://metascape. org/),
the organism used was H. sapiens (Zhou et al., 2019). The GO
and KEGG pathway enrichment analysis findings were saved, and
bioinformatics software (http://www.bioinformatics.com.cn/) and R
version 4.3.1 finished the visualization.

2.6 Screening for BKN-related differentially
expressed genes

Using R packages (such as “limma,” “pheatmap,” and “ggpubr”),
we retrieved the expression levels of BKN-related genes from the
influenza group and the normal group and performed differential
expression analysis. Box plots and a heatmapwere utilized to present
the results. BKN-related core genes (BKN-RCG) were classified as
genes with a p-value less than 0.05. The BKN core genes were found
on the chromosomes using perl code, and we then utilized the R
package “Rcircos” to visualize them as circle plots. Additionally,
using the “cor” command, correlation coefficients for each BKN-
RCG were computed and displayed.

2.7 Unsupervised clustering and PCA of
influenza-related BKN-RCG

We used the R package “ConsensusClusterPlus” to cluster
influenza samples according to the expression of BKN-RCG with a
k-means clusteringmethod, Euclidean distance type, andmaximum
of nine clusters (Wilkerson and Hayes, 2010). Heat maps were used
to compare the expression levels of the generated clusters. Lastly,
PCA was used to illustrate the differences between the subtypes.
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2.8 Weighted gene co-expression network
(WGCNA)

To investigate the expression of gene sets, we utilized the
weighted gene co-expression network analysis (WGCNA) approach.
The R package “WGCNA” was employed to construct a co-
expression network for DEGs. We selected the top 25% of genes
with the highest variation to ensure biologically relevant gene
modules and determined the soft-thresholding power based on the
standard scale-free topology criterion (scale-free R2 ≥ 0.9), which
is a widely accepted approach (Langfelder and Horvath, 2008).
By determining the optimal soft power, we generated a weighted
adjacency matrix and transformed it into a topological overlap
matrix (TOM). TOM is a matrix used to describe the degree of
topological overlap between nodes in complex networks, which
is widely used to analyze the characteristics such as the stability,
robustness and community structure of the network. Larger TOM
values indicate stronger stability and robustness of the network,
while smaller TOM values indicate weaker stability and robustness
of the network (Shuai et al., 2021). Using a hierarchical clustering
tree technique with a minimummodule size set at 100, we identified
modules based on TOM difference measure (1-TOM). From these
co-expressionmodules, we could extract keymodules that exhibited
high correlation with specific phenotypes or diseases. Hub genes
were then identified based on internal connectivity within the
key module and their correlation with feature vectors of the
key module (Langfelder and Horvath, 2008).

2.9 Screening and validation of hub genes
in pediatric influenza

We applied the “VennDiagram” program to identify intersected
genes between DEGs, diseases, and clusters. Subsequently, we
used three machine-learning algorithms to screen important
biomarkers for pediatric influenza: RF (Ishwaran and Kogalur, 2010;
Wang H. et al., 2016; Perera et al., 2020), LASSO logistic regression
(Cheung-Lee and Link, 2019a; Fernández-Delgado et al., 2019),
and SVM-RF (Huang et al., 2018a). The SVM algorithm identifies
the optimal variables by deleting SVM-generated eigenvectors
(Liu et al., 2023). LASSO utilizes regularization to reduce prediction
errors (Yang et al., 2018). RF can handle high-dimensional
data, establish predictive models, and predict the importance of
each variable (Blanchet et al., 2020). Finally, the genes obtained
by all three algorithms were ultimately crossed to screen for
the characteristic genes. To validate the usefulness of these hub
genes comprehensively, the dataset from GSE42026 served as our
validation set. The predictive capability of these algorithms was
evaluated using ROC curves, and area under curve (AUC)was
calculated accordingly.

2.10 Molecular docking

We obtained the 3D structures of BKN-core components
from Pubchem. And the 3D structure of feature genes was
obtained through the AlphaFold Protein Structure Database
(https://alphafold.com/). Initial conformations for each component

were established using energy minimization techniques in Chem3D
14.0 software. AutoDockTools was utilized for molecular docking,
with the best four combinations of docking selected and visualized
using Pymol and Discovery Studio 2019.

2.11 Molecular dynamics (MD) simulation

MD simulation was performed on the receptor-ligand with the
lowest binding energy from molecular docking results. GROMACS
2023.3 software was used to carry out MD simulations, utilizing
amber14sb force field and general Amber force field (GAFF) to
generate parameter and topology data for proteins and ligands
respectively.The simulation box size was optimized based on protein
atom distance greater than 1 nm, followed by water molecule filling
at a density of one to achieve electrical neutrality through Cl− and
Na+ ion replacement methods. Using the steepest descent approach,
5.0 × 104 steps of energy optimization were carried out to minimize
the overall system’s energy consumption and, finally to lower the
overall system’s unreasonable contact or atom overlap. Then, the
system’s temperaturewas stabilized throughfirst-phase equilibration
using the NVT ensemble at 300 K for 100 ps. The NPT ensemble
was used to mimic second-phase equilibration at 100 ps and 1 bar.
To thoroughly pre-equilibrate the simulation system, the main goal
of the simulation is to optimize the interaction between the target
protein and the solvent and ions. MD simulation ran for 50 ns at
a temperature of 310.15 K and 1 atm of pressure in an isothermal
and isostatic ensemble. The V-Rescale and C-Rescale techniques
were used to regulate the temperature and pressure, respectively.The
temperature and pressure coupling constants were 0.1 ps. The Van
der Waals force was computed using the Leonard-Jones function,
and the nonbond truncation distance was established at 1.4 nm.The
LINCS algorithm limited the bond length of every atom. Using a
0.16 nm Fourier spacing and the Particle Mesh-Ewald method, the
long-range electrostatic interaction was computed. Finally, we used
gmx_mmpbsa to calculate the binding free energy of the compound
(http://jerkwin.github.io/gmxtool). Notably, to further demonstrate
the stability of the binding between the small molecule and the
protein, all MD simulations were performed twice. In the data
presentation, the RMSD, RMSF, Rg, H-bond, and SASA metrics
represent the mean values from the two simulations, while the
MMPBSAanalysiswas conducted on the segments of the trajectories
that exhibited greater stability.

3 Result

3.1 Collection of active ingredients and
targets of BKN

The BKN active components were screened using the TCMSP
database. Twenty prospective BKN compounds, eight from
Pingbeimu, eight from Qingdai, and four from Baiguoren, were
ultimately gathered (Supplementary Table S2). PharmMapper and
UniProt databases were used to predict potential targets. Finally,
200 targets in Pingbeimu, 250 targets in Qingdai, and 229 targets in
Baiguoren were collected.
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FIGURE 2
Heatmap of DEGs in pediatric influenza. (A) Heatmap of the entire DEGs. (B) Heatmap of the top 10 DEGs.

3.2 Identification of DEGs in pediatric
influenza from GEO

By computing the difference in gene expression between 22
normal samples and 28 influenza infection samples, we were
able to select DEGs of pediatric influenza. Ultimately, the limma
package in R software was used to identify 3,819 DEGs from the
GSE34205 dataset. Figure 2A shows that 1747 upregulated and 2072
downregulated genes were found. Figure 2B displays the top 10
genes with the greatest up- and downregulation.

3.3 Herb-component-target network
construction and ImmuneGene analysis

58 potential targets of BKN in combating pediatric influenza
were shown in Supplementary Table S3. We utilized Cytoscape and
its plugins to construct “herb-component-target” network, with
79 nodes and 497 edges (Figure 3A). β-sitosterol was the most
prolific, with 42 potential targets, secondly isovitexin (38), and
pingbeimine C (34), bisindigotin, indican, beta-sitosterol, sitosterol,
coniferin, Peimisine, and sevcoridinine as illustrated in Figure 3B.
The course of influenza disease is closely related to immune activity.
Therefore, we further investigated the correlation between immune
related genes and selected genes that overlap with BKN related
DEGs as BKN-ImmuneDEGs. A total of 17 BKN ImmuneDEGs
were obtained, including nine upregulated genes (CTSG, CHIT1,
RNASE3, PPARG, PLAU, TYMP, IGF1, NR1I3, and RARA) and
eight downregulated genes (PIK3CG, SYK, FGFR1, IGF1R, NR3C2,
PPARA, TGFBR1, and LCK), as illustrated in Figures 3C,D. Further
import these BKN-ImmuneDEGs into GeneMANIA to construct a
gene network (Figure 3E). The gene mainly involved in response to

phosphatidylinositol 3-kinase signaling, regulation of MAP kinase
activity, regulation of interleukin-4 production, positive regulation
of T cell activation, negative regulation of MAPK cascade, and
intracellular receptor signaling pathway.

3.4 Analysis of protein-protein interaction
networks

Using the intersection targets from Cytoscape and STRING, we
built a PPI network with 144 edges and 47 nodes, with an average
node degree of 4.97 (Figure 4A). A p-value of less than 1.0e-16
indicated significant clustering in the PPI network. Twenty-nine key
genes were initially filtered out of the data based on degree values
larger than or equal to the standard degree value (Figure 4B). Then,
we used eight random algorithms from the CytoHubba plugin to
further determine the top 10 central genes, and identified the core
targets through intersection, as illustrated in Figure 4C. We use R to
draw an Upset graph to display the results of each algorithm. The
core targets include PPARG, MMP2, GSK3B, PARP1, CCNA2, and
IGF1, as illustrated in Figure 4D.

3.5 Functional enrichment analysis of
target

Based on biological process (BP), cellular component (CC), and
molecular function (MF), GO enrichment analysis was examined.
To further investigate the various mechanisms by which BKN
contributes to pediatric influenza treatment, we ran a GO enrichment
analysis of the 58 common targets. Three groups containing a
total of 521 items were found: 445 BP, 48 MF, and 28 CC
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FIGURE 3
BKN-Herb-component-target network. (A) There were 3 kinds of herbs (Ping-Bei-Mu, Qing-Dai, Bai-Guo-Ren), 19 compounds, and 42 related targets
on the network. The blue square represents BKN. Hexagons of different colors represent the active ingredients of different medicinal herbs. The dark
green diamond represents the intersection of drug and disease targets. Green represents medicinal herbs. (B) According to the
BKN-Herb-component-target network, the degree values of different compounds rank in the top 10. (C, D) The box plot and heatmap showed
expression patterns of BKN-ImmuneDEGs in pediatric influenza. (E) Gene network and functional analysis of ImmuneCDEGs generated using
GeneMANIA. The inner circle contains ImmuneCDEGs, while the outer circle contains reciprocal genes. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 00.001.
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FIGURE 4
Intersection target PPI network and network analysis. (A) Intersection target PPI network. The orange circle represents the intersection target, with a
larger degree value indicating a larger shape. (B) Intersection targets greater than or equal to the standard degree value. (C) The CytoHubba plugin was
used to identify the core targets from the PPI network. The node’s color ranged from pale yellow to red, with a matching increase in degree. (D) The
Upset graph shows the results of eight algorithms represented as core targets.

(Supplementary Table S4). As bubble charts and lollipop charts, the
top 10 enriched BP terms, MF terms, and CC terms are displayed
(Figures 5A,B). Result showed that the BP termsweremainly involved
the cellular response to lipid, response to wounding, response to
alcohol, response to hormone, and regulation of leukocyte cell-cell
adhesion. Highly enriched MF terms were carboxylic acid binding,
nuclear receptor activity, protein kinase binding, endopeptidase
activity, and oxidoreductase activity. In addition, the CC terms
included secretory granule lumen, specific granule, ficolin-1-rich
granule lumen, and protein kinase complex. We evaluated KEGG
pathway enrichment analysis of 58 common targets (with P <
0.05 as the significance level). 52 pathways had targets that were
substantially enriched (Supplementary Table S5). Gene counts were
usedtofilter thetop17significantlyenrichedpathways(Figures 5C,D).
KEGG enrichment results showed that nucleotide metabolism,
AMPK signaling pathway, PI3K-Akt signaling pathway, ovarian
steroidogenesis, and pathways in cancer.

3.6 BKN-related core genes expression
difference, chromosome position, and
expression correlation analysis

Weobtained 29BKNcore genes through network pharmacology
analysis (Supplementary Table S6). To further analyze the network
pharmacology results, we obtained 29 BKN-RCG by intersecting
the BKN target with DEGs. Among these genes, a total of 18
genes are highly expressed in pediatric influenza, and a total of
11 genes are highly expressed in the normal group (Figures 6A,B).

Figure 6C shows the specific chromosomal locations of the BKN-
RCG. As shown in Figures 6D,E, correlation analysis between every
two BKN-RCG in pediatric influenza samples revealed a substantial
correlation between the BKN-RCG, with the correlation being
predominantly positive.

3.7 Identification of BKN-related molecular
clusters in influenza

To identify BKN-related molecular clusters in influenza. We
used all 58 intersection genes related to influenza in BKN. Studies
have indicated that the most stable and credible clustering findings
(Figure 7A) and cumulative distribution function (CDF) curves
fluctuating within a minimum range (Figure 7B) were obtained
when k = 2, and the consistency score was greater than 0.9
(Figure 7C). A significant difference between the two clusters was
found using principal component analysis (PCA) (Figure 7D). The
expression differences of BKN-related intersection genes between
Cluster 1, Cluster 2 as illustrated in Figure 7E.

3.8 Identification of significant module
genes in pediatric influenza via WGCNA
and cluster WGCNA

We constructed the co-expression network through WGCNA
package for identifying significant module genes of pediatric
influenza. Grouping genes with comparable expression patterns
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FIGURE 5
GO and KEGG enrichment analysis results. (A) Lollipop diagram showing the BP, CC, and MF. (B) Bubble chart showing the BP, CC, and MF. (C) The
KEGG enrichment analysis bubble chart displaying the top 17 pathways. (D) The top 17 pathways’ KEGG types, as determined by KEGG
enrichment analysis.

into the same gene module through average linkage clustering. We
screened the top 25% of genes with the highest fluctuations for
WGCNA analysis. The results showed that when the soft threshold
was 3 and the scale-free R2 was 0.9, we identified co-expressed gene
modules (Figure 8A). A total of four distinct gene co-expression
modules were generated via WGCNA analysis while showing the
heatmap of the TOM (Figures 8B–D).Themodule with the smallest
p-value is the one most related to the disease. The WGCNA result
shows that the blue module was highly related to pediatric influenza
(Figure 8E). Meanwhile, the blue module was positively correlated
with module-associated genes (Figure 8F).

Additionally, the WGCNA algorithm was used to generate
gene modules and co-expression networks for three BKN-related
molecular clusters to identify the critical gene modules linked to
pediatric influenza. The results revealed the co-expression gene
modules when the scale-free R2 was 0.9 and the soft threshold was
3 (Figure 9A). While displaying the TOM heatmap, the dynamic
cutting algorithm produced three co-expression modules in various
hues (Figures 9B–D).When the geneswithin the threemoduleswere

compared to ascertain the degree of gene co-expression similarity
between influenza and controls, the 5119 genes in the turquoise
module were most strongly linked to the BKN-related molecular
cluster (Figure 9E). Moreover, the turquoise module showed a high
correlation with genes related to modules (Figure 9F).

3.9 Candidate hub genes of pediatric
influenza selection and validation

Taking the intersection of DEGs, WGCNA, and BKN-related
cluster WGCNA, we identified 168 key genes (Figure 10A) and
performed further exploration of them. Lasso regression, RF,
and SVM-RFE algorithms were adopted to screen candidate hub
genes for ROC evaluation. According to the SVM-RFE algorithms
display N = 2, Root Mean Squared Error (RMSE) (0.24) is the
smallest (Figure 10B). This indicated that the model performance
was optimal under this combination of features. Therefore, the
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FIGURE 6
Analysis of BKN-RCG. (A) Box plot of core gene expression differential analysis between normal samples and pediatric influenza samples, (∗p < 0.05, ∗∗p
< 0.01, ∗∗∗p < 0.001). (B) Expression of BKN-RCG in normal and pediatric influenza. (C) Chromosome location of BKN-RCG. (D) Correlation analysis
between the two BKN-RCG. (E) BKN-RCG correlation network.
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FIGURE 7
BKN-related clusters in pediatric influenza. (A) Matrix of consensus at k = 2. (B) Cumulative distribution function (CDF). (C) The consensus clustering
score. (D) The two subclusters’ distribution in PCA. (E) Heatmap showing the 58 BKN-dysregulated between the two clusters.
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FIGURE 8
Co-expression network in pediatric influenza. (A) Soft threshold selection. (B) Dendrogram of genes within the co-expression module. Various
modules are displayed using various colors. (C) A map of feature genes’ clustering within modules. (D) Correlation heatmap between modules. (E)
Module signature gene correlation analysis with clinical traits. (F) Gene significance for pediatric influenza and blue module genes is plotted together in
scatter plots.
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FIGURE 9
BKN-related molecular clusters’ co-expression network in pediatric influenza. (A) Soft threshold selection. (B) Dendrogram of genes within the
co-expression module. Various modules are displayed using various colors. (C) A map of feature genes’ clustering within modules. (D) Correlation
heatmap between modules. (E) Module signature gene correlation analysis with clinical traits. (F) Gene significance for pediatric influenza and the
turquoise module genes is plotted together in scatter plots.
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FIGURE 10
Candidate hub pediatric influenza genes selection. (A) Venn diagram showing the gene that connects the influenza module-related genes to the
BKN-related molecular clusters module-related genes. (B) Biomarker screening based on SVM-RFE. The horizontal axis represents the number of
retained variables, and the vertical axis represents RMSE. (C) Error variation trend of RF. The black solid line represents the overall error. The red dotted
line and the green dotted line respectively represent the error rates of different classification results. (D) MeanDecreaseGini of each variable in RF
algorithm. (E) LASSO logistic regression algorithm to screen biomarkers. The horizontal axis represents Log(λ), and the vertical axis represents Binomial
Deviance. The red dotted line represents the λ value corresponding to the point where the deviation is the smallest, and the number above it is the
number of variables corresponding to each λ value. (F) A Venn diagram displaying the points where the three algorithms’ diagnostic markers intersected.
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FIGURE 11
Candidate hub genes of pediatric influenza validate. (A) Nomogram shows the incidence rate of pediatric influenza. (B) Correction curve of
characteristic gene column chart for influenza A. (C) Decision curve of feature genes nomogram of pediatric influenza.

two optimal candidate genes were screened out from SVM-
RFE. The relationship between the error rate, the number of
classification trees, and the two genes in descending order of
relative relevance was found using RF in conjunction with feature
selection (Figures 10C,D). Interferon alpha-inducible protein 27
(IFI27) and Otoferlin (OTOF) rank first and second respectively,
suggesting their significance in classification tasks. The optimal
λ value is selected by using 10-fold cross-validation to achieve
feature selection. And 16 predicted genes were chosen using
LASSO regression analysis from the set of statistically significant
univariate variables. Figure 10E illustrates the Lasso regression
results. The three algorithms identified IFI27 and OTOF as hub
genes with overlap (Figure 10F).

We constructed a column chart using IFI27 and OTOF to
obtain individual score tables (Figure 11A). The total of these
distinctive genes’ expression scores can be used to calculate
treatment sensitivity and forecast the risk rate of these genes in the
development of pediatric influenza. Two indicators of the accuracy
of this prediction are the proximity of the dashed and solid lines in
the calibration curve (Figure 11B) and the distance between the red
and gray lines in the decision curve (Figure 11C). The ROC curves
for IFI27 and OTOF (Figures 12A,B) demonstrated their likelihood

as important biomarkers with AUCs of 0.965 and 0.935, respectively.
This suggests that the biological markers had a good predictive
value accuracy. Within the GSE42026 validation set, there was a
significant difference (P < 0.01) in the expression of IFI27 andOTOF
between the pediatric sepsis and control groups (Figures 12C,D).
TheROC curves for IFI27 andOTOF, with AUCs of 0.971 and 0.912,
respectively, suggested that their likelihood as valuable biomarkers
in the GSE42026 validation set (Figures 12E,F).

3.10 Molecular docking validation

We conducted molecular docking to investigate whether
the proteins encoded by the pediatric influenza hub genes we
obtained can bind and function with the active components of
BKN. The protein structures of IFI27 (AF-P40305-F1-v4) and
OTOF (AF-Q9HC10-F1-v4) were downloaded from the AlphaFold
protein structure database. The results indicate that the hub
genes and active components could form stable structures, and
the binding energy of most docking combinations is lower than
−5.0 kcal/mol (Figure 13A). This implies that most of the hub
genes and active components could form stable structures. The
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FIGURE 12
Candidate hub genes of pediatric influenza validate by ROC and expression. (A) ROC of the IFI27 in experimental set. (B) ROC of the OTOF in
experimental set. (C) Boxplot of the IFI27. (D) Boxplot of the OTOF. (E) ROC of the IFI27 in validation set. (F) ROC of the OTOF in validation set.

best docking combinations (Peimisine- IFI27 and Peimisine-OTOF)
are shown in Figures 13B,C.

3.11 Molecular dynamics simulation

In view of the results of molecular docking, the following
MD studies mainly focus on the relationship between Peimisine-
IFI27 and Peimisine-OTOF, respectively. MD reveals the stability
of protein-ligand complexes in physiological aqueous solutions at
37°C (310.15 K) and in silico under standard atmospheric pressure (a
pressure of 1 atm). To assess their performance, we used Peimisine-
OTOF and Peimisine-IFI27 for 50 ns dynamics simulations. We ran
the molecular dynamics simulation twice to ensure reproducibility.
And the standard deviation was used to represent the accuracy
of repetitive measurements. The results showed that the value of
the standard deviation can prove that the results in this study
had excellent reproducibility. The detailed results of the two
simulations can be found in Supplementary Tables S7 and S8. The
initial and final structures of every trajectory in PDB format can
be found in Supplementary Material.

It can be observed that all two complexes showed good stability,
the average RMSD values for Peimisine- IFI27 and Peimisine-
OTOF are as follows: 0.737 nm and 0.729 nm. After 25 ns of MD

simulation, the RMSD-time curves became steady (Figure 14A),
and the RMSD value of Peimisine-IFI27 was stable at 0.8 nm,
while the Peimisine-OTOF was stable at 0.7 nm. In general, the
system is said to be stable once the RMSD value stabilizes, and
the fluctuation range is smaller than 0.2 nm (Saranya et al., 2023).
The majority of the atomic RMSF values varied between 0.2 and
1.2 nm during the MD simulation, the average RMSF values for
Peimisine-IFI27 and Peimisine-OTOF are as follows: 0.304 nm and
0.386 nm. Additionally, a nearly horizontal line was created by
the Rg values, indicating a relatively stable complex system, the
average Rg values for Peimisine-IFI27 and Peimisine-OTOF are as
follows: 1.512 nm and 4.555 nm. (Figures 14B,C). Moreover, the Rg
values of Peimisine- IFI27 were smaller than Peimisine-OTOF. In
conclusion, these findings demonstrate the superior conformational
stability of those two complexes and provide compelling evidence
for the validity of docking. In addition, to further evaluate the
binding interactions in protein-ligand complexes, we quantified
the solvent-accessible surface area (SASA) to indicate changes in
molecular conformation or exposure during the simulation process.
The average SASA values for complexes Peimisine- IFI27 and
Peimisine-OTOF during MD simulation are as follows: 73.792 nm2

and 1018.103 nm2. The SASA values exhibited minor fluctuations
throughout the course of the simulation, demonstrating their stable
interaction (Figure 14D).
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FIGURE 13
Molecular docking validation. (A) Heat map showing the results of the molecular docking between hub genes and active components. (B) Peimisine-
IFI27 docking models. (C) Peimisine-OTOF docking models.

To determine the strength and stability of protein-ligand
interactions, we computed the difference between the free
energies of bound and unbound states utilizing Molecular
Mechanics–Poisson Boltzmann Surface Area (MMPBSA). We
selected 10 ns trajectories to choose segments with steady RMSD
values for MMPBSA energy analysis. The sum of the entropy
(–TΔS) and enthalpy (ΔH) changes was the total binding energy
(Wilson Alphonse and Kannan, 2023). We utilized the gmx_
mmpbsa.bsh script to evaluate the entropy change in each complex
at intervals of 1000 ps. The total binding energy was dissected
into four distinct components as shown in Table 1. Table 1
presents the outcomes of protein-ligand binding energies. In the
system comprising protein-ligand complexes, Peimisine-OTOF and
Peimisine-IFI27 proteins exhibited negative binding free energies
with small molecules (−126.691 kJ/mol and −125.930 kJ/mol
respectively), indicating a more stable association between
Peimisine and IFI27. Notably, Van der Waals interaction played
a significant role in this main energy interaction.

Finally, we determined the change in the alteration in hydrogen
bond count within the two complexes throughout the 50 ns
simulation process. Hydrogen bonds served as indicators of the
affinity between the ligand and protein. The docked complex

exhibited a stable pattern of hydrogen bonds (Figure 15) (Cong et al.,
2023). Our findings indicated that there is fluctuation in the number
of hydrogen bonds within both complexes, ranging from 0 to 2. The
average count of hydrogen bonds observed during MD simulation
for Peimisine-IFI27 and Peimisine-OTOF are as follows: 0.041 and
0.346 respectively.

To demonstrate the stability of the binding between the small
molecule Peimisine and two proteins during the MD process,
the python package Prolif and MDAnalysis was employed to
assess the bonding interactions between the small molecules and
the proteins throughout the MD simulations (Figures 16A,B).
The results indicated that in the IFI27 protein, the residues
Val14, Val37, Ala43, Met44, Leu102, Thr103, Ile106, and Ile110
maintained hydrophobic and van der Waals interactions with
the small molecule for most of the simulation time. In contrast,
in the OTOF protein, the residues Trp1325, Tyr1474, Gln1482,
Ile1484, and Lys1587 exhibited similar stable hydrophobic and
van der Waals interactions with the small molecule throughout
most of the MD simulation process. The stable interactions of
these residues further corroborate that Peimisine maintains a stable
binding with either the IFI27 or OTOF protein throughout the
MD process.
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FIGURE 14
Molecular docking validation. (A) The RMSD of Peimisine- IFI27 and Peimisine-OTOF. (B) The RMSF of Peimisine- IFI27 and Peimisine-OTOF. (C) The
Rog of Peimisine- IFI27 and Peimisine-OTOF. (D) The fluctuation plot of the complexes SASA.

TABLE 1 MMPBSA analysis of proteins and small molecules in complex simulation processes.

Energy Peimisine-OTOF Peimisine-IFI27

Van der Waals Energy (KJ/mol) −212.534 −145.503

Electrostatic energy (kJ/mol) −0.306 −11.432

Polar solvation energy (KJ/mol) 97.126 39.728

Nonpolar solvation Energy (KJ/mol) −29.374 −21.871

Total Binding Energy (KJ/mol) −145.089 −139.079

-T∆S(KJ/mol) 18.397 13.149

Total Binding Free Energy (KJ/mol) −126.691 −125.930

4 Discussion

Children around the world are greatly affected by influenza,
resulting in high hospitalization rates and significant morbidity and
mortality (Nayak et al., 2021). The high risk of viral variability,
drug resistance, and drug development leads to a scarcity of

drugs for treating viral diseases (Xiong et al., 2020). TCM has a
successful history of treating infectious diseases, including influenza
which is classified as “YI Disease” according to TCM theory. This
classification was first reported in Huang Di Nei Jing (Li et al.,
2021). In modern times, TCM has been successfully used to manage
various pandemics, including SARS-CoV in 2003, MERS-CoV in
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FIGURE 15
The hydrogen bonds of Peimisine- IFI27 and Peimisine-OTOF.

2012, seasonal epidemics caused by influenza viruses and dengue
viruses, and SARS-CoV-2 (Huang et al., 2021). The marketed TCM
BKN is mainly used for lung heat, phlegm heat, asthma syndrome,
and pertussis in children, etc. It has the effects of clearing the
liver, purging fire, promoting lung function, relieving asthma, and
relieving cough and phlegm. Due to the different reactions of
children to drug metabolism compared to adults, expanding the
therapeutic applications of marketed TCM for children may be an
effective way to explore new drugs. Given the therapeutic effect
of BKN, we attempt to explore whether BKN can be used to treat
pediatric influenza.

BKN is composed of three kinds of TCMs: Ping-Bei-Mu,
Qing-Dai, and Bai-Guo-Ren. Studies have found that Qing-Dai
can alleviate lung inflammation, downregulate pro-inflammatory
cytokines, and inhibit the JAK2/STAT3 signaling pathway (Qi et al.,
2024). Ping-Bei-Mu can inhibit the recruitment of inflammatory
cells and the production of cytokines, and treat respiratory
inflammation (Wang D. et al., 2016). The extract of Bai-Guo-
Ren has been proven to inhibit pulmonary fibrosis (Daba et al.,
2002). The possible mechanism of BKN in pediatric influenza
was systematically in this study using network pharmacology
techniques. By means of the “drug-component-target” network
analysis, the primarymaterial basis for BKN’s therapeutic actions on
pediatric influenza had been determined.We found that β-sitosterol
was the compound with the highest pharmacological activity in
BKN treatment of pediatric influenza. It had been demonstrated
that β-sitosterol, a common phytosterol found in Chinese medicinal
plants, had anti-inflammatory and antioxidant properties. Research
has found that β-sitosterol had promising antiviral activity against
H1N1 virus, as it can reduce virus titers in a concentration
dependent manner and exert its anti-influenza effect (Shokry et al.,
2023). β-sitosterol can block retinoic acid-inducible gene I (RIG-I)
signaling, and immune responses mediated by harmful interferons
(IFNs) production, providing potential benefits for the treatment
of influenza (Zhou et al., 2020). Isovitexin is the main flavonoid
compound of Vigna radiata extract (VRE). VRE has been found

to inhibit the entry of the influenza virus by directly blocking the
HA protein of the influenza virus (Lo et al., 2020). Isovitexin has
been proven to interact with the human angiotensin-converting
enzyme 2 (hACE2) receptor and possesses hACE2 receptor blocking
properties (Ferdausi et al., 2022). Another study found through
virtual screening that bisindigotin may interrupt the interaction
between the hACE2 receptor and the SARS-Cov-2 viral spike protein
(Wei et al., 2020). Peimisine is one of the main alkaloids of Ping-
Bei-Mu. Studies have found that Peimisine can inhibit oxidative
stress, DNA damage, apoptosis and autophagy dysregulation
through the NRF2/KEAP1 and JNK/MAPK-dependent pathways,
thereby slowing down the pathological progression of lung diseases
(Liu et al., 2024). Peimisine can also alleviate the destruction of
alveolar structure and reduce the aggregation of inflammatory cells,
thereby preventing pulmonary interstitial fibrosis (Jiao et al., 2024).
In addition, Peimisine can increase the content of IκB protein,
reduce the content of p65 protein in lung tissue, and exert anti-
lung injury by inhibiting the activity of the NF-κB signaling pathway
(Jin et al., 2022).

We analyzed six hub genes, including PPARG, MMP2,
GSK3B, PARP1, CCNA2, and IGF1, using the PPI network
combined with CytoHubba plugin. Moreover, GO and KEGG
analysis of 58 targets showed that BKN may prevent pediatric
influenza through nucleotide metabolism, AMPK signaling
pathway, PI3K/Akt signaling pathway, and cellular response to
lipids. Research had found that the AMPK signaling pathway
was associated with influenza A virus (IAV) replication and
IAV pneumonia. Activating the PPARG/AMPK pathway could
significantly protect mice from IAV infection (Bei et al., 2021).
The activation of the PI3K/Akt signaling pathway occurred through
various mechanisms in a biphasic manner and played multiple roles
during IAV infection. Phosphatidylinositol-3-kinase (PI3K) could
regulate early step during viral entry, resulting in suppression of
premature apoptosis at later stages of infection, and regulating the
polarization of alveolar macrophages towards M1/M2b (Ehrhardt
and Ludwig, 2009; Zhao et al., 2014). These pathways are associated
with immune responses. Therefore, we further collected immune
genes to study the immune related genes and pathways of BKN
treatment for childhood influenza. A total of 17 BKN ImmuneDEGs
were identified, mainly involving response to photosensitivity 3-
kinase signaling, regulation of MAP kinase activity, regulation of
interleukin-4 production, positive regulation of T cell activation,
negative regulation of MAPK cascade, and intracellular receptor
signaling pathway.

Secondly, a series of bioinformatics analyses were conducted
based on gene expression profiles obtained from the GSE34205
dataset to identify 3,819 DEGs between pediatric influenza and
normal samples. Based on these DEGs, we further combined
WGCNA, BKN related clusterWGCNA, and threemachine learning
algorithms (LASSO, SVM RFE, and RF) to screen and identify
IFI27 and OTOF as pediatric influenza hub genes associated with
BKN. The RF model serves as an illustration of a supervised
non-parametric technique employed for achieving classification
(Zhang et al., 2023). LASSO identifies variables by seeking values
that minimize the likelihood of classification errors (Cheung-
Lee and Link, 2019b). SVM-RFE can sort features and select the
most important features for classification (Huang et al., 2018b).
The results of in-depth verification indicated that the hub genes
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FIGURE 16
Key contacts and their residues analyzed in Peimisine-IFI27 complex (A) and Peimisine-OTOF complex (B).
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IFI27 and OTOF found in children’s influenza were accurate.
IFI27 belongs to the interferon-induced protein 12 family and
is a nuclear encoded mitochondrial protein rich in brown fat
tissue. Multiple clinical studies had found the value of IFI27 as
a biomarker in various respiratory virus infections, including
severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-
2) and respiratory syncytial virus (Tang et al., 2017; Gao et al.,
2021; Shojaei et al., 2023). Villamayor et al. found through cellular
and animal models that IFI27 protein levels were significantly
upregulated in three unrelated viral infections caused by IAV,
SARS-CoV-2, and Sendai virus (SeV). Using IFI27 knockout
cells, it was found that IFI27 expression is positively correlated
with virus production, possibly because it can counteract host
induced antiviral responses, including in vivo antiviral responses
(Villamayor et al., 2023). Another study found revealed the
significant role played by IFI27 in cristae morphogenesis, ensuring
the preservation of succinate dehydrogenase function and active
fatty acid oxidation to sustain thermogenesis in brown adipocytes
(Cui et al., 2023). OTOF had been found to be associated with
neuronal transmission function, and in a mouse model with
complete knockout of the OTOF gene, it was found that the
auditory phenotype exhibited extremely severe deafness (Roux et al.,
2006). Further research had found that downregulation of OTOF
protein levels can lead to hearing loss (Strenzke et al., 2016).
Meanwhile, Short et al. found that infection with influenza virus
could lead to middle ear inflammation and hearing loss (Short et al.,
2011). Our study found that IFI27 and OTOF protein levels
were significantly reduced in children with influenza. Finally,
we used molecular docking to validate β-sitosterol, bisindigotin,
beta sitosterol, sitosterol, coniferin, Peimisine, and sevcodinine
could bind to IFI27 and OTOF. Molecular dynamics further
confirmed the stable binding of Peimisine- IFI27 and Peimisine-
OTOF. This suggests that this may be the biological implications
of BKN’s antiviral, mitochondrial metabolism, and thermogenic
effects in treating pediatric influenza and its associated
hearing loss.

In this investigation, we attempted to identify hub genes of
pediatric influenza associated with BKN and further explore the
role of BKN in pediatric influenza. Based on various data of
“drugs”, “diseases”, and “children”, this study extensively examined
the mechanism of BKN treatment for pediatric influenza from
various perspectives such as genes, proteins, pathways, etc. utilizing
network topology, WGCNA, machine learning, molecular docking,
and MD methods. Previous studies on network pharmacology of
TCM or herbal medicine for pediatric influenza treatment did not
conduct thorough analysis of human samples. Instead, they relied
on animal samples or simply extracted disease targets from datasets
(Lai et al., 2020; Tang et al., 2022). Previous machine learning
research had mainly been used to predict influenza virus genotypes
to phenotypes (Borkenhagen et al., 2021), screen and identify
genetic biomarkers (Chen et al., 2024), and research on childhood
influenza was limited. This investigation took the target as the
link and explored the multifaceted mechanisms of BKN treatment
for pediatric influenza from the perspective of drug intervention.
Therefore, compared with other studies, our research is more
comprehensive and provides greater guidance in the exploration of
novel drugs. However, there were some limitations in our study.
Firstly, there were no further in vivo experiments to validate these

results. In future studies, we propose the following experimental
approaches to validate our findings: (i) the interaction between
active ingredients and hub genes can be verified through surface
plasmon resonance technology and cell thermal shift analysis. (ii)
The function and mechanism of hub genes in pediatric influenza
were verified through gene knockout/overexpression experiments or
clinical samples. (iii) Conducting the in vitro antiviral experiments
on BKN and its active ingredients. (iv) Animal models, i.e., develop
animal models to study the therapeutic effect of BKN. Furthermore,
due to ethical constraints limiting the amount of blood collected
per child, conducting comprehensive mechanistic research within
a restricted timeframe becomes challenging and represents a major
limitation. To validate our findings effectively, it is imperative to
conduct further mechanism analysis on a larger sample size.

5 Conclusion

In summary, based on network pharmacology, we had revealed
the key components (β-sitosterol, Peimisine, and sevcoridinine),
core targets (PPARG, MMP2, GSK3B, PARP1, CCNA2, and IGF1),
and enriched pathways of BKN in treating pediatric influenza; Based
on comprehensive bioinformatics analysis, we screened hub genes
(IFI27 and OTOF) related with BKN in the progression of pediatric
influenza. Molecular docking demonstrated that these hub genes
and key components had excellent binding activity, and molecular
dynamics simulations further confirmed the stable and compact
structure of the complexes between Peimisine-IFI27 and Peimisine-
OTOF. This study explores potential therapeutic drugs for pediatric
influenza based on the key components and genesmediated by BKN.
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