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Kinase-dependent regulation of
ciliary protein transport and its
implications for therapy

Taro Chaya*, Yuri Ayano and Takahisa Furukawa*

Laboratory for Molecular and Developmental Biology, Institute for Protein Research, The University of
Osaka, Osaka, Japan

Primary cilia are evolutionarily conserved microtubule-based structures that
extend from the surfaces of many different cell types and decode a
wide range of extracellular chemical and physical stimuli. Ciliary defects
cause human diseases, termed ciliopathies, which are characterized by a
variety of symptoms, such as developmental and sensory abnormalities. The
formation and function of primary cilia depend on intraflagellar transport
(IFT), which is a bidirectional protein transport system coordinated by three
multi-subunit protein complexes with kinesin and dynein motors along
the ciliary axoneme. Accumulating evidence has demonstrated that several
serine-threonine kinases play key roles in the regulation of IFT. Here, we
review the current understanding of the roles of these kinases during
the IFT process, as well as their regulatory mechanisms, physiological
and pathophysiological significance, and potential to treat ciliopathies and
age-related obesity.
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Introduction

Primary cilia are hair-like organelles that protrude from nearly all cell types and
perform diverse sensory functions. Cilia and flagella are evolutionarily conserved
membranous structures that have a wide range of functions, including motility and
sensation, among species from unicellular organisms to humans. Primary cilia consist
of a microtubule-based axoneme core that extends from a modified centriole, the basal
body (Gerdes et al., 2009; Malicki and Johnson, 2017). The ciliary membrane and
cilioplasm are separated from the plasma membrane and cytoplasm, respectively, by
the transition zone and transition fibers (Garcia-Gonzalo and Reiter, 2017). A variety
of receptors, ion channels, and their downstream signaling molecules localized to the
primary cilia detect and decode extracellular stimuli including light, odorants, and
Hedgehog morphogens (Mill et al., 2023). For example, retinal photoreceptor cells develop
outer segments, which are specialized primary cilia that contain phototransduction
components to receive light and convert it into electrical signals (Wang and Deretic,
2014). Therefore, primary cilia are recognized as hubs for multiple signal transduction
pathways. Ciliary dysfunction causes human diseases called ciliopathies, which are
characterized by a wide range of pathologies including polydactyly, craniofacial
abnormalities, brain malformation, intellectual disability, obesity, diabetes, polycystic
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FIGURE 1
IFT turnaround at the tip of cilia. IFT is a microtubule-based bidirectional cargo transport in cilia coordinated by anterograde and retrograde trains. The
anterograde trains unload their cargoes, disassemble, and reassemble into morphologically distinct retrograde trains at the ciliary tips. The ciliary
kinases CILK1 and MAK promote cargo unloading and disassembly of anterograde trains.

kidney disease, anosmia, hearing loss, and retinal degeneration
(Fliegauf et al., 2007; Nigg and Raff, 2009; Anvarian et al., 2019).

Intraflagellar transport

The formation, maintenance, and function of cilia rely on
intraflagellar transport (IFT), bidirectional protein trafficking
coordinated by three protein complexes, IFT-A, IFT-B, andBBSome,
with molecular motors along the ciliary axoneme (Figure 1). They
form highly repetitive polymers called IFT trains, which import and
export ciliary proteins, and deliver ciliary cargoes along the axoneme
in both anterograde and retrograde directions (Rosenbaum and
Witman, 2002; Lechtreck, 2015; Nachury, 2018; Nakayama and
Katoh, 2018; Pigino, 2021). The kinesin-2 motor drives anterograde
transport from the base to the tip of the cilium, whereas the
cytoplasmic dynein-2 motor drives retrograde transport from
the tip to the base (Rosenbaum and Witman, 2002; Nachury,
2018). At the tip of the cilia, IFT trains unload their cargoes
and subsequently disassemble and reassemble for turnaround and
retrograde transport (Chien et al., 2017). Mutations in the genes
encoding components of IFT trains have been reported to cause
human ciliopathies, including Bardet-Biedl syndrome (BBS) and
Joubert syndrome (Reiter and Leroux, 2017).

A recent visualization of retrograde trains in Chlamydomonas
by cryo-electron tomography provided structural insights into
the transition from anterograde to retrograde transport (Figure 1)
(Lacey et al., 2024). IFT-A and IFT-B complexes adopt different
conformations in anterograde and retrograde transport. At the
ciliary tips, anterograde trains unload their cargoes and remodel
into retrograde trains. During this process, the anterograde train
depolymerizes and the IFT-A and IFT-B complexes reassemble
into morphologically distinct retrograde trains (Pedersen et al.,
2006; Pigino et al., 2009; Chien et al., 2017; Lacey et al., 2024).
Autoinhibited dynein-2 motors are released from the anterograde
train and transformed into an open conformation (Jordan et al.,
2018). The remodeled IFT complexes bind to activated dynein-2
motors and cargoes to conduct retrograde transport.

Regulation of intraflagellar transport
by serine-threonine kinases

Several serine-threonine kinases are known to play key roles
in the regulation of IFT. Before anterograde transport, IFT-A and
IFT-B components are recruited to the basal body to assemble
into anterograde trains. Deficiency of Tau tubulin kinase 2 (Ttbk2),
a serine-threonine kinase localized to basal bodies, in mouse
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embryonic fibroblasts (MEFs) decreases the accumulation of IFT-
A and IFT-B components at the basal body, resulting in shortening
or absence of cilia (Goetz et al., 2012; Nguyen and Goetz, 2023). In
contrast, depletion of the casein kinase 2 (CK2) catalytic subunit
(Csnk2a1), a negative regulator of Ttbk2, in MEFs increases the
basal body localization of IFT-A and IFT-B components and
ciliary length (Loukil et al., 2021), suggesting that the two serine-
threonine kinases TTBK2 andCK2modulate the initial phase of IFT,
although the underlying mechanisms remain unclear.

Another two serine-threonine kinases intestinal cell kinase
(ICK), also known as ciliogenesis-associated kinase 1 (CILK1),
and male germ cell-associated kinase (MAK) have been shown
to be critical regulators of IFT turnaround step at the ciliary tip
(Hesketh et al., 2022; Nachury, 2022; Lacey and Pigino, 2025)
(Figure 1). CILK1 and MAK are evolutionarily conserved mitogen-
activating protein kinase-like kinases that show high homology,
especially in their catalytic domains (Miyata and Nishida, 1999;
Togawa et al., 2000; Shinkai et al., 2002). Cilk1 is ubiquitously
expressed in multiple tissues, whereas Mak is preferentially
expressed in the retina and testis (Tsutsumi et al., 2018). In
contrast to their distinct expression patterns, these kinases show a
similar subcellular localization. CILK1 and MAK localize mainly
to the ciliary tip in cultured cells and to the distal region of
ciliary axonemes in retinal photoreceptor cells (Omori et al., 2010;
Chaya et al., 2014; Chaya et al., 2024). Loss of CILK1 function
causes dysregulation of ciliary length, impairedHedgehog signaling,
and accumulation of IFT-A, IFT-B, and BBSome components at the
ciliary tips (Broekhuis et al., 2014; Chaya et al., 2014; Moon et al.,
2014; Okamoto et al., 2017; Nakamura et al., 2020). Since ciliary
length is controlled by IFT, regulation of IFT has been proposed
to be linked to ciliary length regulation (Ishikawa and Marshall,
2011). Mak-deficient mice exhibit elongated photoreceptor ciliary
axonemes with accumulation of IFT-A and IFT-B components
at the distal portion (Omori et al., 2010; Chaya et al., 2024).
These observations propose a model in which CILK1 and MAK
promote the disassembly of anterograde trains in the turnaround
process. This model is supported by a recent study showing that
Caenorhabditis elegans (C. elegans) DYF-5, an ortholog of CILK1
and MAK, plays a key role in regulating the turnarounds of IFT
trains at the ciliary tip, using fluorescence imaging and single
molecule tracking (Mul et al., 2025).

CILK1 phosphorylatesThr-674 in the C-terminal tail of KIF3A,
a subunit of kinesin-2, at the ciliary tip (Chaya et al., 2014; Oh et al.,
2019). MAK also phosphorylates KIF3A in retinal photoreceptor
cells (Chaya et al., 2024), suggesting that CILK1 and MAK facilitate
the disassembly of IFT complexes through the phosphorylation of
KIF3A Thr-674 at the ciliary tip. In contrast, MEFs carrying a Thr-
to-Ala mutation at residue 674 on KIF3A exhibit slightly elongated
cilia without affecting the ciliary localization of IFT88, an IFT-B
component (Gailey et al., 2020), showing that CILK1 and MAK
may have other target(s) in addition to KIF3A. In Chlamydomonas,
Ser-663 phosphorylation of the kinesin-2 motor subunit FLA8, an
ortholog of KIF3B, is required for the IFT turnaround process
at the flagellar tip (Liang et al., 2014). This residue is located
within a consensus amino acid sequence for phosphorylation by
CILK1 andMAK, which is evolutionarily conserved among species,
implying that the IFT turnaround at the ciliary tip is mediated
by phosphorylation of KIF3B in addition to KIF3A by CILK1 and

MAK in vertebrates (Figure 2A). In C. elegans, DYF-5 reduces the
binding affinity between tubulin and IFT-B components IFT74/81
by phosphorylating IFT74, proposing a model in which DYF-5-
mediated phosphorylation of IFT74 promotes tubulin unloading
from anterograde trains at the ciliary tip (Figure 2A) (Jiang et al.,
2022). Further investigations are needed to clarify the downstream
regulatory mechanisms of the IFT turnaround process executed by
CILK1 and MAK.

Physiological and pathophysiological
roles of ciliary kinases CILK1 and MAK

Cilk1-deficient mice exhibit neonatal lethality accompanied
with developmental abnormalities observed in multiple organs
and tissues including the bone, lung, kidney, intestine, esophagus,
brain, retina, and inner ear (Fu et al., 2019; Yang et al., 2021).
In humans, homozygous loss-of-function mutations in the CILK1
gene cause endocrine-cerebro-osteodysplasia (ECO) syndrome, an
autosomal recessive ciliopathy characterized by neonatal lethality
with multiple developmental defects involving the endocrine,
cerebral, and skeletal systems (Lahiry et al., 2009; Oud et al.,
2016), as well as short rib-polydactyly syndrome (SRPS), an
autosomal recessive ciliopathy exhibiting perinatal lethality with
short ribs, shortened and hypoplastic long bones, polydactyly, and
multiorgan system abnormalities (Paige Taylor et al., 2016). In
addition, heterozygous variants of the CILK1 gene are linked to
juvenile myoclonic epilepsy (Bailey et al., 2018). In contrast, Mak-
deficient mice are viable and fertile without obvious developmental
defects, but exhibit progressive retinal photoreceptor degeneration
(Omori et al., 2010). Consistent with this, mutations in the
human MAK gene lead to autosomal recessive retinitis pigmentosa
(RP), a retinal degenerative disease characterized by photoreceptor
degeneration (Ozgul et al., 2011; Tucker et al., 2011). Although the
phenotypic differences between Cilk1-deficient and Mak-deficient
mice suggest distinct roles of CILK1 andMAK in vivo, a recent study
demonstrated genetic interactions between Cilk1 andMak in retinal
photoreceptor cells (Chaya et al., 2024). It remains to be determined
whether CILK1 andMAK play overlapping or distinct roles in other
cell types, tissues, and organs.

Regulatory mechanisms of ciliary
kinases CILK1 and MAK activities

The phosphorylation of CILK1 and MAK at Thr-157 and
Tyr-159 in the TDY motif is critical for their kinase activity
(Fu et al., 2005; Fu et al., 2006; Wang and Kung, 2012). Cell cycle-
related kinase (CCRK), also known as cyclin-dependent kinase 20
(CDK20), phosphorylates CILK1 and MAK at Thr-157 in vitro
and in mouse retinal photoreceptor cells (Fu et al., 2006; Wang
and Kung, 2012; Chaya et al., 2024). Inhibition of CILK1 Thr-
157 phosphorylation leads to cilia elongation and accumulation
of IFT88 at the ciliary tips in cultured cells (Yang et al., 2013;
Nakamura et al., 2020). Similar to the loss of Cilk1 or Mak, Ccrk
deficiency results in cilia elongation and accumulation of IFT-A and
IFT-B components at the ciliary tips in cultured cells (Snouffer et al.,
2017; Noguchi et al., 2021). Ccrk-deficient mice exhibit multiple
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FIGURE 2
Ciliary kinases CILK1 and MAK in the regulation of IFT. (A) Working model of the regulation of cargo unloading and IFT train disassembly at the tip of
cilia by CILK1 and MAK through phosphorylation of their targets, including KIF3A, KIF3B, and IFT74. (B) CILK1 and MAK are phosphorylated at Thr-157
and activated by KATNIP and CCRK, whereas they are dephosphorylated at Thr-157 and inactivated by PP5. In contrast, CILK1 and MAK are proposed to
be phosphorylated at Tyr-15 and inactivated by FGFRs.

abnormalities associated with ciliopathies and dysregulation of
Hedgehog signaling, including neural tube patterning defects,
polydactyly, and malformation of the lungs and eyes (Snouffer et al.,
2017; Lupu et al., 2018; Lee and Ko, 2020). Loss of Ccrk causes
severe retinal degeneration, resembling that observed in Cilk1
and Mak-double-knockout retinas (Chaya et al., 2024). Based on
these observations, the CCRK-CILK1/MAK kinase signaling axis
was proposed to play a crucial role in the regulation of the IFT

turnaround process (Figure 2B). CCRK physically and functionally
interacts with BROMI, also known as TBC1D32 (Ko et al., 2010).
Mutations in the human BROMI gene cause ciliopathies (Adly et al.,
2014), suggesting that CCRK-CILK1/MAK kinase signaling also
occurs in humans. In contrast to CCRK, fibroblast growth factor
(FGF) signaling negatively regulates CILK1 activity through FGF
receptors (FGFRs)-mediated phosphorylation of CILK1 (Figure 2B)
(Kunova Bosakova et al., 2019). FGF treatment of cultured cells
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modulates cilia length via CILK1. FGFR1, FGFR3, and FGFR4
interact with CILK1. FGFR3 phosphorylates CILK1 and MAK.
CILK1 is phosphorylated by FGFR3 at Tyr-15, which is conserved
in CILK1 and MAK. In addition, the basal body protein KATNIP
(Sanders et al., 2015), also known as KIAA0556, and the protein
phosphatase PP5 have been suggested to be modulators of CILK1
activity (Figure 2B). Overexpression of KATNIP increases protein
levels and Thr-157 and Tyr-159 phosphorylation of CILK1 in
cultured cells (Turner et al., 2023). PP5 dephosphorylates CILK1
at Thr-157 in vitro and in cultured cells (Fu et al., 2006). Although
CCRK and KATNIP promote phosphorylation of CILK1 and MAK
atThr-157, the functional relationship between CCRK and KATNIP
remains unclear. To what extent KATNIP- and PP5-mediated
regulation of CILK1 and MAK contributes to cilia formation and
function awaits future research.

CILK1 and MAK as potential
therapeutic targets

Recently, CILK1 and MAK have emerged as potential
therapeutic targets for the treatment of ciliopathies and age-related
obesity. Overexpression of MAK and CILK1 rescued ciliary defects
observed in Cilk1-deficient cultured cells andMak-deficient retinal
photoreceptor cells, respectively (Chaya et al., 2024). Administration
of a small-molecule inhibitor of FGFRs, which negatively regulates
CILK1 activity, suppresses retinal degeneration observed in RP
model Mak-deficient mice (Ozgul et al., 2011; Tucker et al., 2011;
Kunova Bosakova et al., 2019; Chaya et al., 2024). Overexpression
of CILK1, MAK, and CCRK, and treatment with an FGFR inhibitor
rescued ciliary defects in cultured cells knocked down for Dync2li1,
a ciliopathy gene encoding cytoplasmic dynein-2 light intermediate
chain 1 (Taylor et al., 2015; Chaya et al., 2024). These observations
suggest that promotion of disassembly of anterograde IFT trains at
the ciliary tips through CILK1 and MAK activation can ameliorate
ciliopathies manifesting defects in the turnaround process and
retrograde transport.

The G protein-coupled receptor melanocortin-4 receptor
(MC4R) localizes and functions at the neuronal primary cilia
(Siljee et al., 2018; Wang et al., 2021). MC4R receives α-
melanocyte stimulating hormone and agouti-related peptide in the
hypothalamus, and plays essential roles in long-term regulation of
energy homeostasis (Krashes et al., 2016). In humans, heterozygous
loss-of-function mutations in MC4R are the most common
monogenic cause of obesity (Vaisse et al., 1998; Vaisse et al.,
2000; Lubrano-Berthelier et al., 2006). The length of MC4R-
positive cilia in hypothalamic neurons decreases with age, which is
promoted by overnutrition (Oya et al., 2024). Shortening of MC4R-
positive cilia in hypothalamic neurons disrupts the regulation
of energy homeostasis, resulting in obesity (Oya et al., 2024).
Knockdown of Cilk1 in hypothalamic neurons increases MC4R-
positive cilia length and reduces body weight gain in rats fed a
high-fat diet (Oya et al., 2024), suggesting inhibition of CCRK-
CILK1/MAK kinase signaling as a therapeutic strategy for age-
related obesity. Given that loss-of-function of Cilk1 inhibits the
IFT turnaround process at ciliary tips, how Cilk1 knockdown in
hypothalamic neurons can improve ciliary function to suppress
obesity awaits future studies.

Conclusion

It has become clear that IFT is regulated by several serine-
threonine kinases. In particular, the identification and functional
characterization of the ciliary kinases CILK1 and MAK have
unraveled the molecular mechanisms underlying the IFT
turnaround process and their physiological and pathophysiological
significance. Recently, CILK1 and MAK have emerged as
potential therapeutic targets for human diseases including
ciliopathies and age-related obesity. Genetic and pharmacological
activation of CCRK-CILK1/MAK kinase signaling can suppress
ciliary abnormalities caused by the knockdown of a gene
encoding a cytoplasmic dynein-2 component. Patients with
mutations in the genes encoding IFT-A, cytoplasmic dynein-
2 components, and CILK1 exhibited a similar spectrum of
ciliopathy symptoms (Mitchison and Valente, 2017), suggesting
a functional relationship among IFT-A, cytoplasmic dynein-2,
and CILK1. Understanding how CILK1 and MAK regulate the
IFT turnaround process by phosphorylating the downstream
target(s) could reveal the extent to which the activation of CCRK-
CILK1/MAK kinase signaling can be more generally applicable to
treat human ciliopathies.
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