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Introduction: This research explores the therapeutic potential of Arctigenin
(AG) against triple-negative breast cancer (TNBC) and elucidates its underlying
molecular mechanisms.

Methods: Potential targets of AG and TNBC-related genes were identified
through public databases. By intersecting drug-specific and disease-related
targets, key genes were selected for further analysis. Differential gene expression
profiling and Weighted Gene Co-expression Network Analysis (WGCNA)
were performed. Functional enrichment analysis was conducted using Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG).
Machine learning algorithms were employed to identify hub genes, followed
by validation through molecular docking, molecular dynamics (MD) simulations,
and surface plasmon resonance (SPR) assays. In vitro experiments including cell
viability assays, cell cycle analysis, apoptosis detection, and Western blotting
were performed on MDA-MB-453 and MDA-MB-231 cell lines.

Results: Our study identified 183 AG-related targets, 5,193 differentially
expressed genes, and 6,173 co-expression module genes associated with TNBC.
Machine learning algorithms pinpointed 4 hub genes from 28 intersecting
targets. Molecular docking, Molecular dynamics (MD) and surface plasmon
resonance (SPR) indicated a moderately strong interaction between AG
and SRC kinase, where the oxygen atom of AG forms hydrogen bonds
with the oxygen atom in M341 and the nitrogen atom in G344 of SRC.
In vitro experiments confirmed that AG reduced the viability of MDA-
MB-453 and MDA-MB-231 cells in a concentration-and time-dependent
manner, leading S phase arrest and apoptosis. Western blotting indicated
that AG significantly reduced the levels of Bcl-2, caspase-3, and caspase-
9, as well as decreased SRC, p-PI3K-p85, p-AKTl, p-MEK1/2, and p-
ERK1/2 expression in TNBC cells in a concentration dependent manner.
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Conclusion: AG exerts anti-TNBC effects by directly binding to SRC kinase,
concurrently inhibiting both PI3K/AKT and MEK/ERK signaling pathways,
ultimately leading to cell cycle arrest and apoptosis.
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Introduction

Detection and intervention at the early stages have been
identified as effective treatment options for breast cancer.
indicate that the
mortality rates of breast cancer remain high (Chlebowski et al,

However, recent reports incidence and
2024). The International Agency for Research on Cancer
reported that, in 2020, breast cancer emerged as the most
prevalent type of malignant tumor, with 2.26 million new
cases and an approximate mortality rate of 30% worldwide
(Sung et al., 2021).

The difficulty in treating triple-negative breast cancer (TNBC)
is derived from the high malignancy and recurrence rate, increasing
risk of distant metastasis and mortality, as well as poor prognosis.
TNBC accounts for 15%-20% of overall breast cancer incidence,
commonly occurring in premenstrual women (Lin et al., 2023).
Genetic profiles have demonstrated the negative expression of
estrogen receptors (ERs), progesterone receptors (PRs), and human
epidermal growth factor receptor 2 (HER-2) in TNBC. This
molecular heterogeneity contributes to the scarcity of therapeutic
targets and the insensitivity of TNBC to endocrine therapy
(Karim et al., 2023). Current chemotherapies targeting TNBC are
associated with a range of side effects, including cardiotoxicity, bone
marrow suppression, and neurological and gastrointestinal damage,
which can lead to poor patient compliance and diminished quality
of life. Additionally, drug resistance often results in clinical failures,
limiting the long-term use of chemotherapy (De Las Rivas et al.,
2021). Hence, discovering potential inhibitors to block the
proliferation and metastasis of tumor cells might shed light on
TNBC treatment.

Arctigenin (AG) is one of the major bioactive ingredients
extracted from the Chinese herbal medicine Arctium lappa L., a
common spice belonging to the Asteraceae family, as identified
by Japanese researchers. AG is pharmacologically functional in
anti-inflammation, antiviral, anti-tumor, immunomodulation, and
neuroprotection. In 1994, Hirano et al. (1994) reported the similar
inhibiting bioaction of AG as classical anticancer agents on the
proliferation of HL-60 cells in vitro, which present a relatively
broad spectrum, including leukemia, prostate cancer, colon cancer,
breast cancer, etc. AG exerts antitumor effects by blocking the
cell cycle, inducing apoptosis and autophagy, yet low cytotoxic
to normal cells, suggesting its potential as a therapeutic agent
(Hyam et al., 2013; Tsai et al., 2011; Zhao et al., 2020). AG and
its metabolites have garnered increasing attention in the treatment
of breast cancer due to the high affinity of its phytohormone
metabolites for ERs, which inhibit the bioactivity of estrogen.
It could be combined with tamoxifen in the endocrine therapy
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of breast cancer, inducing apoptosis in tumor cells by down-
regulating ERs and mTOR signaling pathways (Maxwell et al,
2018). Furthermore, studies conducted in 2020 suggested that
AG induced DNA damage in HER-2 overexpressing breast cancer
cells, indicating its potential efficacy against HER-2-positive breast
cancer (Lee et al., 2021).

Network pharmacology has emerged as a robust approach
to address these challenges by integrating gene expression data,
molecular targets, and pathway analyses to predict compound-
disease interactions across multiple biological targets (Nogales et al.,
2022). This systems biology approach provides a holistic framework
for identifying potential therapeutic targets and understanding the
multifaceted actions of bioactive compounds. In this study, we
utilized network pharmacology coupled with molecular docking
to identify the key targets and mechanisms through which AG
exerts its bioactivity, followed by experimental validation in human
TNBC cell lines. Among the hub genes zidentified through machine
learning, SRC emerged as a focal point of our investigation. SRC,
plays a pivotal role in regulating key processes such as cell migration,
invasion, and angiogenesis, which are critical for the aggressive
nature of TNBC (Dehm and Bonham, 2004). The involvement of
SRC in these processes, coupled with its established role in the
progression of various malignancies, made it an ideal candidate for
further exploration as a therapeutic target in the context of TNBC.
The research process is shown in Figure 1.

Materials and methods

The databases

We have used public databases in this study and the details are
listed as follows:

PubChem (https://pubchem.ncbinlm.nih.gov/, accessed on 10
April 2024; CID for AG: 64981).

SwissTargetPrediction  (http://www.swisstargetprediction.ch/,
accessed on 10 April 2024; version: 2023 release).

Pharmmapper (http://www.lilab-ecust.cn/pharmmapper/,
accessed on 10 April 2024; pharmacophore model version:
2014 update).

Uniprot (https://www.uniprot.org/, accessed on 10 April 2024;
database release: 2024.01).

TCGA (https://portal.gdc.cancer.gov/, accessed on 10 April
2024; project: TCGA-BRCA, data release: v36).

RCSB Protein Data Bank (PDB) (http://www.rcsb.org/,
accessed on 14 April 2024; data retrieved from release archive

version dated 10 April 2024).
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FIGURE 1
Flowchart of overall methodology used to predict the anti-cancer
effect of AG for TNBC.

Acquisition of relevant targets of AG

A PubChem search was conducted using “Arctigenin” to obtain
its structural formula and retrieve the SMILES. Subsequently, the
MOL2 file was imported into PharmMapper and the SMILES
file into the SwissTargetPrediction database to predict the
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corresponding target proteins of AG. After that, the acquired drug
targets were annotated using the UniProt databases.

Acquisition of AG-TNBC-related targets

Transcriptome and clinical data samples of breast cancer patients
were sourced from the TCGA database, including 1,109 tumor
and 113 normal breast tissue samples. After filtering samples with
negative results for estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2 (HER2), a
total of 124 TNBC samples and 113 normal samples were selected.
Differentially expressed genes (DEGs) associated with TNBC were
identified using the DESeq2 package in R software (version 4.1.3),
applying the criteria of: [log2 fold change (FC)| = 1 and adjusted p-
value <0.05 (Zhu et al., 2024). The DEGs were visualized through a
volcano plot and a heat map, created using the Pheatmap and ggplot2
packages, respectively.

Weighted gene co-expression network analysis (WGCNA) was
performed to identify co-expression modules (Langfelder and
Horvath, 2008). To enhance result robustness, the top 25% of the
most significant DEGs were included in the WGCNA (Zeng et al.,
2024). The expression data was first normalized through the
normalizeBetweenArrays function, and genes with low variance,
specifically those with a standard deviation below 0.5, were excluded
(Bourgon et al., 2010). To enhance network reliability, hierarchical
clustering and static tree cutting techniques were applied to remove
outlier samples. The pickSoftThreshold function was then employed
to assess the fit of the scale-free topology model (R?) and the average
connectivity across various soft-thresholding powers. The ideal soft-
thresholding power was determined using the criterion of R? > 0.9,
which was applied to create a weighted adjacency matrix (Zhang and
Horvath, 2005). Following this, both a weighted adjacency matrix
and topological overlap matrix (TOM) were constructed, leading to
hierarchical clustering and dynamic tree cutting to delineate gene
modules. Modules were merged based on eigengene correlation
threshold of 0.25. The correlation between module eigengenes and
clinical traits was evaluated via Pearson correlation, and genes
with high module membership (MM) and gene significance (GS)
were retained for further analysis (Miller et al., 2011; Yip and
Horvath, 2007). By using a Venn diagram to intersect DEGs,
WGCNA-derived TNBC-related targets, and AG drug targets,
several genes were identified as promising therapeutic candidates
for TNBC treatment.

Functional enrichment analysis

To elucidate the biological functions and key signaling pathways
implicated in AG-mediated treatment of TNBC, Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were performed on the overlapping
target genes using the clusterProfiler package (version 4.1.3) in
R software (Ashburner et al., 2000; Kanehisa and Goto, 2000).
Significantly enriched terms were selected by applying a threshold
of p-value <0.05 and subsequently ranked in descending order based
on their enrichment scores.
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Determination of hub genes with machine
learning

Three machine learning algorithms—least absolute shrinkage and
selection operator (LASSO), support vector machine-recursive feature
elimination (SVM-RFE), and random forest (RF)—were employed to
identify hub genes among overlapping target genes (Bao et al., 2023;
Sanz et al., 2018; Tang et al., 2023), aiming to selecting genes capable
of distinguishing TNBC patients from healthy controls.

For SVM-RFE, arecursive feature elimination framework based on
alinear kernel was executed using the 1071 package in R (FHuangetal.,
2018). The gene expression data underwent z-score normalization, and
binary labels were assigned to the groups (Normal vs. TNBC). Feature
ranking was conducted using linear SVMs, with the cost parameter
set to 10 and the scaling turned off. The elimination process was
directed by the squared weight coefficients. A 10-fold stratified cross-
validation scheme was employed, batch elimination of 50% was applied
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when the number of remaining features exceeded 50. Hyperparameter
optimization was performed via grid search across gamma = 2" (-12:0)
and cost = 2" (-6:6) (Huang et al., 2017). The selection of the optimal
feature subset was based on achieving the lowest classification error
during cross-validation.

In our analysis using LASSO regression, we employed the
glmnet package in R (v4.1.3) to construct a binomial logistic model
featuring with L1 regularization (alpha = 1) (Friedman et al., 2010).
Z-score normalization was applied to gene expression values, and
sample groups were binarized. 10-fold cross-validation was used to
identify the optimal regularization parameter (lambda.min), defined
as the value yielding the lowest mean cross-validated deviance.
Genes with non-zero coefficients at lambda. min were selected as
potential biomarkers.

The randomForest package (Garge et al., 2013) was utilized to
implement the RF model. The model was initially set up with 1,000
trees (ntree = 1,000) using the default parameters. To evaluate the
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model’s effectiveness, out-of-bag (OOB) error estimates were used,
and the ideal number of trees was identified by finding the lowest
OOB error. The significance of genes was assessed through the mean
decrease in the Gini index, leading to the selection of the highest-
ranked genes for further analysis.

Hub genes were identified through the intersection of results
derived from three distinct machine learning algorithms. This was
followed by an analysis using Receiver Operating Characteristic
(ROC) curves to assess their predictive capabilities, along with
correlation and differential expression studies to confirm their
significance in AG interactions.

Molecular docking

The 2D structure of AG was drawn using ChemBioDraw 2014,
and its energy minimization was optimized by Chem 3D 2014. The
3D structure of the human kinase proteins were downloaded from
the RCSB Protein Data Bank (PDB IDs: 4MXO, 30P3,8]G8 and
3DB6) (Elling et al., 2008; Levinson and Boxer, 2014; Tang et al,,
2024; Tsytlonok et al., 2019). Ligand preparation was performed using
the Schrodinger LigPrep module (Schrédinger, LLC, New York, NY,
2018) with the OPLS_2005 force field. The docking box center was
defined as the centroid of the original ligand. For the docking task, the
standard precision (SP) docking mode of Glide (Friesner et al.,, 2004;
Friesner et al., 2006; Halgren et al., 2004; Yang et al., 2021) was used
with the default docking parameters.

Molecular dynamics

Molecular dynamics (MD) was stimulated by AMBER 22
(Case et al, 2005) for the selected ligand-target complex. The
AMBER14SB force field (Maier et al., 2015) was used for protein, and
the force field parameters of AG were generated based on the general
AMBER force field (Wang et al., 2004) by antechamber. The TIP3P
water model was used in an octahedral model, with a minimum 12 A
distance between the protein surface and box boundary. Sodium
were then added to neutralize the system. Each simulation system
was initially energy-minimized to optimize unreasonable atomic
contacts and stereochemical conflicts by applying position restraints
(force constant of 5.0, 1.0, and 0 kcal-mol™'-A2, respectively) on the
backbone atoms and AG. Subsequently, the solvent was heated to
300 K in 50 ps with all solute atoms restrained with a force constant
of 10.0 kcal-mol 1-A™2. Next, two 50 ps equilibration steps were
done in the NPT ensemble with temperature and pressure (1 bar)
control by the Langevin thermostat and Berendsen barostat method.
Periodic boundary conditions were applied to eliminate boundary
effects. All solute atoms were restrained with force constants of
1.0 and 0.5 kcal-mol™'-A~2. The production run, with no restraints,
was performed for 200 ns. Electrostatic interactions were calculated
by the particle mesh Ewald (PME) (Poier et al., 2023). The cutoff
distance for nonbonded interactions was 8 A. The SHAKE algorithm
was used to constrain bonds involving hydrogens. The integration
time step was set to 2 fs, and conformations were sampled every
10 ps for subsequent analysis.
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MM/GBSA calculations

To acquire more statistically significant results, the binding free
energy between SRC and AG was calculated for the 50 ns of MD
trajectories every 0.5 ns via the conventional MM/GBSA approach
in AMBER tools according to procedures in our previous work
(Guo et al,, 2012). For each frame, the free energy was calculated
for each molecular species (SRC-AG complex, SRC, and AG), and
the binding free energy was computed as below (Chong et al., 2009;
Kollman et al., 2000):

AGying = Geompiex — (Greceptor + Giigand) (1)
AGpypg = AH = TAS = AGyy, + AGy, @
AGygs = AEypyy — TAS 3)

AEy = AE;,,+AE,,+AE, 4, (4)
AGgpr = AGpg 501+ AG o101 €

where AGy,;,,; (Equations 1, 2) denotes the binding free energy, and it
can be decomposed into two terms: (1) The free energy in a vacuum,
AGgﬂS
and the configurational entropy (—TAS) (Equation 3). AE,;,, is the

is decomposed into the molecular mechanical energy (AE, )

summation of the intramolecular energy (AE;,,

including bond,
angle, and dihedral energies, which is 0 in this study), electrostatic
) (Equation 4).
The entropic contribution (—TAS), which is associated with the

energy (AE,,), and van der Waals energy (AE

ele vdw

conformational entropy loss when a free-state ligand binds to the
corresponding unbound-state receptor; (2) the solvation energy
(AGy), which is composed of the polar (AG,,4,) and non-polar

contributions (AG ;) (Equation 5).

npol,so

Surface plasmon resonance (SPR)

SRC protein (MedChemExpress, New Jersey, United States) was
diluted to 2 ug/mL with acetate solutions at pH4.5, pH5.0, and pH5.5,
respectively. The protein was immobilized on the chip with acetate
solutions at pH4.5 and a concentration of 18 pg/mL. One channel
of SRC was immobilized before coupling the ligand, the chip was
activated for420 s. The coupling was stopped when theamount reached
13800 RU. Ligand coupling was completed after blocking the chip for
420 s. The actual immobilized amount was 11700 RU. Analyte AG
was prepared as the solution with concentrations of 800, 400, 200,
100, 50, 25, 12.5, 6.25, 3.125, and 1.5625 uM by gradient dilution.
Multi-cycle kinetics runs were performed with a period of association
of 120 s and dissociation of 240 s. The buffer contained 1xPBS (pH
7.4), 0.05% Tween-20, and 5% DMSO. The raw data was imported
into BiacoreTM Insight Evaluation Software 4.0, and the multi-cycle
kinetics evaluation method was selected for calculating kinetic rate
constants. The curve was fitted by the 1:1 binding model with data
from 5 chosen concentrations. The association rate constant (K,),
dissociation constant (K;), and affinity constant (KD) were acquired.
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Cell culture and treatment

MDA-MB-453 cell line and MDA-MB-231 cell line purchased
from the National Infrastructure of Cell Line Resource (NICR,
Beijing, P.R. China). The cells lines were cultured in RPMI-
1640 medium, supplemented with 10% (v:v) of fetal bovine
serum (FBS; Biological Industries, Kinneret, Israel) and 1%
penicillin-streptomycin solution (Hyclone|Cytiva, Marlborough,
United States) at 37 °C in a 5% CO, incubator.

Cell viability assay

Cell viability was evaluated by Cell Counting Kit-8 (CCKS8
assay; MedChemExpress, New Jersey, United States). MDA-MB-
453 and MDA-MB-231 cells were seeded into 96-well plates (3
x 10* per well) and pre-cultured for 24 h, then incubated in
200 uL complete medium containing AG (0, 100, 200, 300, 400,
and 500 uM) for 24 h, 48 h or 72 h. Subsequently, CCK8 solution
was added to each well and incubated in the dark at 37 °C for
1 h. The absorbance was measured at 450 nm on a microplate
reader (Eon Microplate Spectrophotometer, BioTek, United States).
All experiments were repeated thrice independently. Cell viability
(%) = (A5 0f drug — A 45, of blank)/( A5 of control - A 45, of blank)
% 100 %.

Cell cycle analysis

The cell cycle was assessed using a PI staining kit (KeyGEN
BioTECH, Nanjing, PR. China) following the manufacturer’s
instructions via flow cytometry. After incubating with PI/RNase
A for 45 min in the dark, the cells were conducted using a flow
cytometer (Cytoflex, Beckman, United States). Software Modfit LT
was employed for cell cycle distribution analysis. A total of 20,000
events from each cell sample were obtained. All experiments were
repeated thrice independently.

Caspase-3 activity analysis

GreenNuc™ caspase-3 Assay Kit for Live Cells (Beyotime,
Shanghai, PR. China) was subjected to caspase-3 activity analysis
following the manufacturer’s instructions. After incubation at room
temperature for 30 min, a fluorescence microscope (OBSERVER
D1/AX10 cam HRC, Zeiss, Germany) was used to observe green
fluorescence.

Mitochondrial membrane potential (MMP)
analysis

MMP assay kits with JC-1 (Beyotime, Shanghai, PR. China)
were purchased to detect MMP of MDA-MB-453. The fluorescence
signals of AG-treated or untreated cells were detected via flow
cytometry. All experiments were repeated thrice independently.
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Apoptosis analysis

Apoptosis was assessed by an annexin V-FITC/PI staining
kit (KeyGEN BioTECH, Nanjing, PR. China) following the
manufacturer’s instructions. After incubating with 5 pL. Annexin V-
FITCand 5 uL PIfor 15 min in the dark, the cells were conducted using
a flow cytometer (Cytoflex, Beckman, United States) and analyzed by
software FlowJo V10. A total of 20,000 events from each cell sample
were obtained. All experiments were repeated thrice independently.

Western blot analysis

Total proteins were lysed from AG-treated cells (100, 300,
and 500 uM) or untreated cells in RIPA buffer with the protease
inhibitor cocktail and PMSF (Beyotime, Shanghai, PR. China). The
concentration of proteins in each group was tested by the BCA
Protein Assay Kit (Beyotime, Shanghai, PR. China). Protein extracts
were quantitated and loaded on 8%-12% sodium dodecyl sulfate-
polyacrylamide gel, then electrophoresed and transferred onto a PVDF
membrane (Beyotime, Shanghai, PR. China), which was blocked in
5% skimmed milk for an hour. The membranes were incubated with
primary antibody overnight at 4 °C. The primary antibodies used were
anti-caspase-3, anti-caspase-9, anti-Bax, anti-Bcl-2, anti-CDK2, anti-
cyclin A2, Anti-P27, anti-SRC, anti-AKT1, anti-pAKT1, anti-ERK1/2,
anti-pERK1/2, anti-PI3K(p85), anti-p-PI3K(p85), anti-MEK1/2, anti-
p-MEK1/2and anti-B-actin antibodies (human anti-rabbit, 1:1,000;
CST, Massachusetts, United States). Then, the membranes were
washed and incubated with horseradish peroxidase (HRP)-conjugated
secondary antibody (Goat anti-rabbit, 1:100; ZSGB-BIO, Beijing,
PR.China) for 1h. The positive signal on the membranes was
detected by an enhanced chemiluminescence detection kit (Beyotime,
Shanghai, PR. China). Band intensities were scanned and quantified
by NIH Image] software.

Statistical analysis

Data were presented as the mean + SD. Differences between
data groups were evaluated using the one-way analysis of variance
followed by the Dunnett test, using GraphPad Prism 8 software. P <
0.05 was considered as a statistically significant result.

Result
Screening of target predictions

The molecular structure is depicted in Figure 2a, and a total of
183 potential targets for AG were identified on the PharmMapper
and Swiss Target Prediction database (Supplementary Table S1).
Differential expression analysis of the TCGA dataset revealed
5193 DEGs, which were visualized using a heatmap and a
volcano plot (Figures 2b,c; Supplementary Table S1). To explore
the molecular mechanisms underlying TNBC, we constructed a
gene co-expression network via WGCNA. The scale-free topology
fit index (R?) and mean connectivity were assessed with the
pickSoftThreshold function across a range of powers (f = 1-20).
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As shown in Figure 2d, the R* value surpassed the recommended
threshold of 0.90 at a power of 3, while maintaining acceptable mean
connectivity, justifying its selection as the ideal soft-threshold for
network construction. Genes were clustered and partitioned into
modules using the dynamic tree cut method (Figure 2¢), resulting
in 12 distinct gene modules, with the cluster dendrogram shown in
Figure 2f. Additionally, a network heatmap was created to visualize
the correlations among genes within each module (Figure 2g).
Subsequently, the analysis of module-trait relationships indicated
that the turquoise module had the strongest association with
tumor/normal control phenotypes (Figure 2h), showing a significant
positive correlation (cor = 0.997) between gene significance for
TNBC and module membership (Figure 2i). These results suggest
that the 6173 genes in the turquoise module are associated with
TNBC and may serve as a reservoir of candidate genes for further
prioritization (Supplementary Table S1). By intersecting the DEGs,
WGCNA key module genes, and the predicted targets of AG, we
identified 28 overlapping genes (Figure 2j; Supplementary Table S1),
proposed as potential therapeutic targets for AG in TNBC treatment.

GO enrichment and KEGG pathway analysis

We performed GO and KEGG pathway enrichment analyses on
these 28 intersecting target genes. The GO analysis results are presented
in Figure 3a. The potential target genes were predominantly enriched
in the following biological process (BP) terms: positive regulation
of the cell cycle, G2/M transition of mitotic cell cycle, cell cycle
G2/M phase transition, regulation of G2/M transition of mitotic
cell cycle, regulation of nuclear division, and regulation of the cell
cycle G2/M phase transition. Regarding cellular components (CC),
the enriched entries included the spindle pole, spindle microtubule,
spindle, spindle midzone, and mitotic spindle pole. For molecular
functions (MF), the enriched terms included protein serine/threonine
kinase activity, protein serine kinase activity, transmembrane receptor
protein tyrosine kinase activity, histone kinase activity, and protein
tyrosine kinase activity. In addition, based on the KEGG pathway
enrichment analysis, these intersecting target genes were mainly
enriched in signaling pathways such as the Cell cycle, Progesterone-
mediated oocyte maturation, Oocyte meiosis, EGFR tyrosine kinase
inhibitor resistance, and Gap junction (Figure 3b).

Determination of target hub genes with
machine learning

To further determine the critical hub genes in TNBC treatment
using AG, we set the capability to discriminate between TNBC
samples and non-TNBC samples in the TCGA dataset as the
evaluation criterion and filtered the 28 intersecting target genes
using three machine learning algorithms. We narrowed down 28
overlapping target genes through the application of three machine
learning techniques (Supplementary Table S2). The SVM-RFE
method revealed 23 core target genes (Figures 4a,b). Meanwhile,
LASSO analysis highlighted 13 of the 28 genes as significant
core targets (Figures 4c,d). The RF algorithm provided variable
importance scores for all potential target genes, leading to the
identification of 10 core genes based on these scores (Figures 4e.f).
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By computing the intersection of these machine-learning-predicted
core target genes, 4 genes (AURKA, SRC, PLK1, and CDC25C)
were identified as the target hub genes for TNBC treatment with AG
(Figure 4g). Subsequently, we conducted gene expression analyses
on different samples for these five target hub genes (Figure 4h). The
results showed that these genes are closely interrelated, with their
expression levels significantly higher in TNBC tissues compared
to non-TNBC tissues. To explore the diagnostic efficacy of the 4
hub genes, ROC curve analysis was performed, with hub genes
exhibiting an AUC value >0.7 considered diagnostic markers. In
the TCGA dataset, the AUC values were 0.833 for SRC, 0.994 for
AURKA, 0.983 for CDC25C, and 0.989 for PLK1 (Figure 4i).

The keys targets of the AG-mediated

Molecular docking analysis was performed to validate the
interaction between AG and the identified hub genes, with the
most prominent binding interactions visualized in Figures 5a-d.
According to established criteria, ligand-receptor binding affinities
are considered biologically significant when the binding energy falls
below -5 kcal/mol. Remarkably, AG demonstrated strong binding
affinity with three critical targets: SRC (-7.777 kcal/mol), PLK1
(=7.690 kcal/mol), and AURKA (-7.685 kcal/mol), as detailed in
Table 1. By integrating both docking scores and Glide emodel
scores, SRC emerged as the most promising therapeutic target and
was therefore prioritized for experimental validation. To validate
the docking protocol, known SRC inhibitors were redocked, and
the root mean square deviation (RMSD) values of the redocked
structures compared to their original conformations in the protein
data bank (PDB) were calculated. The RMSD values for PDB IDs:
1Y57, 2H8H, 3ELS, and 4MXO were found to be 1.94 A, 1.08 A,
0.80 A, and 2.50 A, respectively (Supplementary Table S3). These
RMSD values can be used to assess the reliability of the docking
method; generally, lower RMSD values (considered reliable when
less than 2 A, though it depends on the specific research system)
indicate that the docking results are relatively credible, providing a
methodological validation basis for subsequent molecular docking.

To investigate the binding pattern of SRC and AG, MD
simulations and SPR were conducted. The overall binding mode is
shown in Figure 6a. The oxygen atom of AG forms hydrogen bonds
with the oxygen atom in the M341 and the nitrogen atom in the G344
of SRC. The formation of these hydrogen bonds may influence the
affinity of AG to SRC, thereby affecting its biological activity. The
binding free energy provided showed the relative binding strengths
of SRC-AG complex (Table 2). Using the MM/GBSA methods, the
AEvdw was calculated to be —34.85 + 5.19 kcal/mol for the SRC-AG
complex, which contributed to the main part. On the other hand, the
electrostatic energy was calculated to be —17.97 + 5.35 kcal/mol. The
total free binding energy was calculated to be —26.66 + 3.75 kcal/mol
for the complex. The binding free energy decomposition analysis
identified key residues, as shown in Figures 6b,c. The analysis
revealed specific key residues (per-residue contribution less than
~1 keal-mol ™) (7 residues), highlighting the role of amino acids such
as G274, V281, M314, S345, G344, and L393 in recognizing AG.

For a deeper investigation of the interaction between AG
and SRC, SPR-based binding analysis was performed. The full
SPR sensorgrams and corresponding fitting residuals are shown
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in Figures 6d,e, respectively. A 1:1 Langmuir binding model was
employed for kinetic fitting, with a Chi-squared (x*) value of 0.604
RU? indicating a good fit. The kinetic parameters, detailed in Table 3,
revealed that AG binds to SRC with an equilibrium dissociation
constant (KD) of 71.8 umol/L, an association rate constant (ka) of
6.95 x 10> M!s7!, and a dissociation rate constant (kd) of 4.99 x
1072 571, These values suggest a moderately strong binding affinity
and validate the specific interaction between AG and SRC.

In vitro validation of AG treatment for
TNBC

The cell viability of MDA-MB-453 cells incubated with a series
of concentrations of AG for 12h, 24 h, and 48 h was examined
(Figure 7a). Compared with the control, the viability of AG-
treated cells was negatively correlated with the concentrations
of AG, as well as the duration of incubation. The AG-treated
group showed a low GO/GI ratio and an increased ratio of S-
phase cells. No significant change was observed in the ratio of
G2/M phase cells (Figure 7b), suggesting AG might induce cell
cycle arrest to inhibit the proliferation of tumor cells by blocking
the process of DNA replication. Similar inhibitory effects were
noted in MDA-MB-231 cells as seen in MDA-MB-453. A marked
decline in cell viability was observed with higher AG concentrations
and extended treatment durations (Supplementary Figure Sla). Cell
cycle analysis revealed that AG treatment led to a decrease in the
G0/G1 phase cell population while increasing the S phase, with no
significant changes in the G2/M phase (Supplementary Figure S1b).
Expression of cyclins, CDK2, and Cyclin A2 decreased, while the
level of P27 showed no significant change, suggesting AG-induced
DNA replication arrest was CDK2/Cyclin A2-targeted (Figure 7c).
Interestingly, we also found increased Cyclin E1 expression after AG
treatment, which might have accounted for apoptosis (Figure 7d).

To verify the AG-induced cytotoxicity, MDA-MB-453 cells were
employed to apoptosis indications after AG incubation for 48 h.
Detected MMP showed depolarization, andcaspase-3 activity was
promoted, which both were AG concentration-dependent, suggesting

Frontiers in Molecular Biosciences

the apoptosis event was AG-relevant (Figures 8a,b). The Annexin-
FITC/PI-staining flow cytometry results showed that AG treatment
increased death rate in a concentration-dependent manner (Figure 8c).
It is worth noting that the number of cells treated with low
concentrations of AG showed no significant differences in early
apoptosis (100 and 200 pM) but mostly varied in late apoptosis or
necrosis. Apoptosis-related protein indicators showed that Bcl-2, pro-
caspase-9,and pro-caspase-3 were downregulated, yet cleaved caspase-
9 and cleaved caspase-3 increased in a concentration-dependent
manner (Figure 8d). In MDA-MB-231 cells, the evaluation of caspase-
3 activity showed a positive correlation between the number of
apoptotic cells and AG concentration (Supplementary Figure Slc).
Further confirmation from Annexin V-FITC/PI staining flow
cytometry indicated that AG treatment also increased apoptosis
in a concentration-dependent manner (Supplementary Figure S1d).
Apoptosis-related protein analysis showed significant downregulation
of Bcl-2, pro-caspase-9, and pro-caspase-3 with increasing AG
concentrations, while Bax expression remained unchanged between
treatment and control groups (Supplementary Figure Sle). The
results suggested AG might trigger intracellular caspase cascades.
Combined with depolarized MMP, AG-induced apoptosis in
TNBC cell lines might be achieved via a caspase-dependent
mitochondrial apoptosis pathway.

To investigate the AG-mediated SRC-related protein expression,
MDA-MB-453 cells were incubated with AG for 48h. The
results showed that the levels of t-AKT and p-AKT decreased.
The level of p-ERK1/2 attenuated, hence indicating an entirely
decreased ERK1/2 phosphorylation in the cytosol and effective
AG-evoked blockage on ERK1/2 activation (Figure 8¢). Meanwhile,
as shown in Figure 8f, there were no notable changes in the
levels of PI3K and MEK1/2 following AG treatment compared
to the control group, while p-PI3K and p-MEKI1/2 levels were
markedly lower. A decrease in SRC levels was also noted,
suggesting that AG modulates the PI3K-AKT and MEK/ERK
pathways by downregulating SRC expression. Furthermore, we
assessed the expression of SRC, AKT, p-AKT, ERK1/2, p-ERK1/2,
MEK1/2, p-MEK1/2, PI3K, and p-PI3K in MDA-MB-231 cells.
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The results were largely consistent with those observed in MDA-
MB-453 cells, showing significant reductions in SRC, p-PI3K,
p-AKT, p-MEKI1/2, and p-ERK1/2 in the AG-treated groups
(Supplementary Figures S1f,g).

Discussion

AG has garnered significant attention for its broad therapeutic
potential in treating various human diseases, owing to its
diverse pharmacological properties, including anti-inflammatory,
antiviral, anti-tumor, neuroprotective,and immunomodulatory effects
(Wu et al,, 2022). Notably, AG exhibits remarkable inhibitory effects
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on breast cancer cells, inducing cell cycle arrest, apoptosis, or
autophagy, and suppressing cancer cell metastasis (Feng et al., 2017;
Shabgah etal., 2021; Zhu et al., 2020). Importantly, ER-negative breast
cancer cells demonstrate greater sensitivity to AG compared to ER-
positive cells (Hsich et al., 2014), suggesting its potential utility in
TNBC treatment. However, the precise molecular targets and binding
mechanisms of AG in TNBC remain poorly understood. In this study,
we utilized an integrative approach combining network pharmacology,
molecular docking, molecular dynamics (MD) and surface plasmon
resonance (SPR) to elucidate the effects of AG on TNBC, with
experimental validation in MDA-MB-453 and MDA-MB-231 cells.
Through analysis of public databases, we identified 183 potential
drug targets of AG. Further examination of tumor and adjacent
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FIGURE 5

Molecular docking interactions of AG with hub genes. (a) Molecular docking interaction between AG and CDC25. (b) Molecular docking interaction
between AG and PLK1. (c) Molecular docking interaction between AG and SRC. (d) Molecular docking interaction between AG and AURKA.
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TABLE 1 Molecular docking results of AG with hub genes (kcal/mol).

Proteins Docking score XP Gscore Glide gscore Glide emodel

CDC25 -3.485 -3.487 -3.487 ~40.785
SRC -7.777 ~7.779 ~7.779 -59.389
PLK1 -7.690 ~7.692 ~7.692 ~59.150
AURKA ~7.685 ~7.686 ~7.686 -57.497

non-tumor tissues from TNBC patients revealed 5193 DEGs and
6137 co-expressed module genes. The integration of these datasets
led us to identify 28 significant genes, which were then analyzed
through GO and KEGG enrichment assessments. These analyses
highlighted the enrichment of AG’s mechanism of action in cell cycle
regulation, underscoring its potential to disrupt TNBC progression.
Using three machine-learning algorithms, we identified four hub
genes-SRC, AURKA, PLKI, and CDC25-which exhibited high
expression in tumor tissues and area under the receiver operating
characteristic curve (AUC) values exceeding 0.8, suggesting their
potential as therapeutic targets and prognostic markers for TNBC.
AURKA and PLKI are essential mitotic regulators that promote
the G2/M transition and are often overexpressed in aggressive
breast cancers (D'Assoro et al., 2015; Wang D. et al., 2017), while
CDC25C facilitates CDK1 activation and has been associated
with unchecked cell cycle progression in high-grade tumors
(Topno et al., 2021). Additionally, SRC as a non-receptor tyrosine

Frontiers in Molecular Biosciences 10

kinase involved in migration, proliferation, and chemoresistance,
and its hyperactivation is characteristic of metastatic and drug-
resistant TNBC phenotypes (Finn et al., 2011; Kohale et al., 2022).
Collectively, these genes are involved in cell cycle and survival
pathways, suggesting that this gene module forms a biologically
relevant and therapeutically viable network, potentially mediating
the effects of AG in TNBC.

Additionally, we investigated a group of genes identified by at
least two of the three analytical models, which we will refer to as near
miss candidates. These genes warrant particular focus due to their
developing functional importance in triple-negative breast cancer
(TNBC) and their possible connection to AG’s mechanism. Both
SVM RFE and LASSO consistently highlighted CLK1 and PDGFRB.
CLK1 is known to influence the alternative splicing of genes involved
in the cell cycle and is often overexpressed in breast cancer; its
pharmacological inhibition can disrupt splicing and hinder tumor
growth (Liu et al, 2025; Zhu et al, 2018). PDGFRB signaling
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FIGURE 6

The binding mode of AG and SRC. (a) 3D binding mode of Arctigenin and 4MXO. (b) Analysis revealed specific key residues, per-residue contribution
less than -1 kcal/mol. (c) RMSF analysis of AG with SRC. (d) Full SPR Sensorgrams of Src Protein Binding to AG. (e) Fitting Residuals of Src Protein
Binding to AG.

TABLE 2 The contributions of each energy term to the binding energy of AG with SRC (kcal/mol).

Energy Component AEele AGpv::l,sol ‘ Aanc::l,sol AC"sol AGMM/GBSA

Contributions —34.85 £ 5.19 -17.97 £5.35 30.74 £ 2.90 —4.58 £0.75 —52.82£0.75 26.16 + 3.64 —26.66 + 3.75

TABLE 3 SPR kinetic parameters for the interaction between immobilized SRC and AG.

Analyte 1 solution (RU?)

Immobilized ligand Injection variables Quality kinetics Chi? 1:1 binding ka (1/Ms)  kd (1/s) KD (M)

SRC 18 pg/mL AG 6.04e-01 6.95e + 02 4.99e-02 7.18e-05

in the tumor microenvironment promotes epithelial-mesenchymal =~ Random Forest and LASSO. Importantly, CHEKI is involved in the
transition (EMT) and is inhibited by BRCA1, making it a significant ~ DNA damage response and has been considered a target for TNBC
therapeutic target, particularly in BRCA1-deficient TNBC (Baietal.,  treatment (Gatti-Mays et al., 2020). Although PKIA and NR3C2 are
2021). MMP13 and RIPK2 also appeared in the SVM RFE and  not well understood in the context of TNBC, emerging data from
LASSO intersection. MMP13 and RIPK2 were also found in the  other cancer types indicate they may have important roles in kinase
overlap of SVM RFE and LASSO. MMP13 is associated with bone  signaling and tumor biology, necessitating further functional studies
metastasis and osteolytic processes in breast cancer, indicating its (Liu et al.,, 2023; Steegmaier et al., 2007; Xu B. et al., 2023). ANG
potential as a therapeutic target (Zhu et al., 2023). Increased levels ~ was identified by both LASSO and Random Forest; its expression
of RIPK2 are linked to unfavorable outcomes in TNBC and facilitate ~ increases under low oxygen conditions, aiding in angiogenesis and
tumor advancement through the activation of the NF-kB and JNK  tumor survival, with studies showing that its inhibition can reduce
pathways (Jaafar et al., 2018; Singel et al., 2014). CHEK1, PKIA, and  breast cancer growth in vivo (Chintalapati et al., 2009). Collectively,
NR3C2 were identified by both SVM-RFE and Random Forest orby ~ these near-miss genes form a biologically significant group with
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Effects of AG on the proliferation of MDA-MB-453 cells. (a) Cell viability was determined by CCK8 assay. (b) Cell cycle changes were analyzed by FACS
based on Pl staining. (c) Cells were incubated with various concentrations of Arctigenin for 48 h and tested the expression of CDK2, Cyclin A2, and P27
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potential functional implications for TNBC development and AG’s
mechanism of action. Although they were not part of the final hub
gene intersection, their repeated identification across various feature
selection methods indicates their reliability, suggesting they could be
important targets for subsequent functional validation.

To further investigate the drug targets of AG in the treatment
of TNBC, molecular docking revealed strong binding affinities
between AG and SRC, AURKA, and PLK1 (Glide scores < -7),
while its interaction with CDC25 was weaker (Glide score > —5).
Based on the Glide emodel score, we hypothesized that the AG-SRC
interaction plays a pivotal role in TNBC regulation. MD simulations
further elucidated the binding mode of AG to SRC, revealing a van
der Waals energy (AEvdw) of —34.85 + 5.19 kcal/mol for the SRC-
AG complex. Critical amino acid residues, including G274, V281,
M314, S345, and G344, were identified as key interaction sites.

The selection of a 200 ns simulation timescale in this study
was primarily guided by our goal of elucidating ligand binding
modes and characterizing key protein-ligand interactions, rather
than determining precise kinetic parameters. Although enhanced
sampling techniques, such as WESTPA or metadynamics, may offer
advantages for sampling rare events, our approach, which uses
multiple independent conventional MD trajectories, has proven
effective for mapping binding sites and identifying interaction
patterns in similar kinase systems. Previous studies have shown
that simulation timescales ranging from 200 to 500 ns are
effective for identifying ligand binding sites and characterizing
interaction patterns (Alanzi et al., 2024; Sulaimani et al.,, 2025).
Our approach compensates for the shorter timescale by employing
multiple independent trajectories and ensuring comprehensive
conformational sampling. The results exhibit good convergence of
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structural metrics and show excellent agreement with experimental
binding modes. In our MM/GBSA calculations, we elected
to exclude the entropy term (-TAS) based on established
limitations in obtaining accurate entropy estimates for complex
biomolecular systems (Ruvinsky, 2007). While this results in
reported AG values (-26.66 + 3.75 kcal/mol) that strictly represent
enthalpic contributions (AH), this methodological choice does
not compromise our principal conclusions for several compelling
reasons: (1) Entropic effects typically exhibit systematic behavior
across structurally similar ligand, preserving the validity of
relative binding affinity comparisons; (2) Our analytical focus
centers on structural interaction patterns rather than absolute
free energy quantification; and (3) Available literature provides
well-characterized benchmarks for entropy contributions in
small molecule-protein binding events (6-15 kcal/mol), enabling
appropriate interpretation when required (Chang et al., 2007).

SRC, a non-receptor tyrosine kinase, is a critical regulator
of cell proliferation, migration, and apoptosis (Chen et al., 2019;
Patel etal., 2016; Ramadan et al., 2021). Under normal physiological
conditions, SRC activity is tightly controlled to maintain cellular
functions such as adhesion, survival, and angiogenesis (Le and
Bast, 2011). However, SRC is overexpressed in various solid tumors,
including breast, pancreatic, gastric, and bladder cancers, where
it accelerates tumor cell growth and survival (Luo et al, 2022;
Su et al,, 2023; Wang et al,, 2022; Xu et al., 2021). In this study, AG
exhibited moderate binding affinity to SRC (KD = 71.8 umol/L), a
notable value for an unmodified natural compound (Wang X. et al.,
2017), indicating a moderate binding affinity between AG and
SRC. The relatively low association rate constant and reversible
dissociation rate suggested that AG interacts with SRC in a specific
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untreated control.

yet dynamically regulated manner. This level of affinity allows AG
to regulate SRC activity without causing permanent inhibition, a
characteristic that is often beneficial in the modulation of signaling
pathways (Csermely et al., 2005; Lu and Tonge, 2010).
Mechanistically, SRC influences cell cycle progression by
phosphorylating cyclins and cyclin-dependent kinases (CDKs)
(Zhang et al., 2006). CDK2, in complex with Cyclin A or Cyclin
E, regulates distinct phases of the cell cycle. The CDK2/Cyclin A
complex facilitates DNA synthesis during the S phase and prepares
chromosomes for division in the G2 phase (Tsytlonok et al., 2019),
while the CDK2/Cyclin E complex promotes the G1-to-S transition
by initiating DNA synthesis-related gene expression and inhibiting
the cell cycle inhibitor p27 (Lai et al., 2016). In our study, AG
treatment downregulated CDK2 and Cyclin A2, leading to S-phase
arrest in MDA-MB-453 cells, suggesting impaired DNA synthesis.
It has been reported that persistently phosphorylated or
overexpressed SRC kinase leads to pathological modulation
of several tumor cells proliferation-relevant signaling, namely
PI3K/AKT pathway, MEK/ERK pathway, and JAK/STAT3 pathway
(Ferguson et al., 2013; Rodriguez Torres et al., 2023; Xu R. et al,,
2023). By enhancing PI3K activity and AKT phosphorylation,
SRC promotes cell proliferation and survival while influencing the

Frontiers in Molecular Biosciences

13

tumor microenvironment to support tumor growth and metastasis
(Ye et al,, 2025). In breast cancer cells, SRC-driven PI3K/AKT
activation is a critical driver of cell apoptosis (Luo et al., 2020).
Maxwell et al. identified that AKT, NF-«kb, and MAPK pathways
were involved in AG-relevant anti-cancer effects in (either ER-
positive or ER-negative) breast cancer (Maxwell et al, 2017).
Consistent with this, AG treatment reduced the phosphorylation
of MEK, ERK1/2, PI3K and AKT in MDA-MB-453 and MDA-
MB-231 cells, aligning with previous findings on AG’s anti-
HIV effects (Kim et al., 2011). Additionally, AG induced apoptosis
in MDA-MB-453 and MDA-MB-231 cells, the elevated Bax/Bcl-
2 ratio and cleaved caspase-3 and caspase-9 levels indicated that
AG-induced apoptosis is mediated through a caspase-dependent
mitochondrial pathway. Therefore, the mechanism shows that
AG binds to SRC and inhibits the downstream PI3K-AKT and
MEK/ERK signaling pathways, thereby triggering a cascade
involving Bax, Bcl-2, caspase-3, and caspase-9 to induce the TNBC
cell apoptosis. These results suggest that suppressing SRC-mediated
bioactivity is a promising strategy for TNBC therapy.

However, the current study has several limitations. To begin
with, the primary pathways that explain the role of AG in TNBC have
yet to be thoroughly confirmed and need additional exploration,
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such as through rescue experiments. Furthermore, in vivo research
is essential to substantiate these results and assess the viability of
AG in the clinical treatment of TNBC. These aspects will be further
investigated in future studies.

Conclusion

In summary, our integrated network pharmacology approach
systematically elucidated the molecular mechanisms underlying
AG’s anti-TNBC activity. Mechanistic investigations revealed that
AG specifically targets SRC kinase, thereby dually suppressing both
PI3K/AKT and MAPK/ERK signaling cascades. This coordinated
pathway inhibition mediated significant anti-tumor effects through
two complementary mechanisms: (1) arresting proliferation via
cell cycle blockade and (2) triggering mitochondrial-dependent
apoptosis. Structural analysis of the stabilized AG-SRC complex not
only provides a rational chemical framework for structure-based
drug optimization but also offers mechanistic insights for developing
combination therapies targeting SRC-mediated resistance pathways
in clinical TNBC management.
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