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Applied Sciences, Centre for Artificial Intelligence Driven Drug Discovery, Macao Polytechnic 
University, Macao, China, 3Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd., Chengdu, China

Introduction: This research explores the therapeutic potential of Arctigenin 
(AG) against triple-negative breast cancer (TNBC) and elucidates its underlying 
molecular mechanisms.
Methods: Potential targets of AG and TNBC-related genes were identified 
through public databases. By intersecting drug-specific and disease-related 
targets, key genes were selected for further analysis. Differential gene expression 
profiling and Weighted Gene Co-expression Network Analysis (WGCNA) 
were performed. Functional enrichment analysis was conducted using Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). 
Machine learning algorithms were employed to identify hub genes, followed 
by validation through molecular docking, molecular dynamics (MD) simulations, 
and surface plasmon resonance (SPR) assays. In vitro experiments including cell 
viability assays, cell cycle analysis, apoptosis detection, and Western blotting 
were performed on MDA-MB-453 and MDA-MB-231 cell lines.
Results: Our study identified 183 AG-related targets, 5,193 differentially 
expressed genes, and 6,173 co-expression module genes associated with TNBC. 
Machine learning algorithms pinpointed 4 hub genes from 28 intersecting 
targets. Molecular docking, Molecular dynamics (MD) and surface plasmon 
resonance (SPR) indicated a moderately strong interaction between AG 
and SRC kinase, where the oxygen atom of AG forms hydrogen bonds 
with the oxygen atom in M341 and the nitrogen atom in G344 of SRC. 
In vitro experiments confirmed that AG reduced the viability of MDA-
MB-453 and MDA-MB-231 cells in a concentration-and time-dependent 
manner, leading S phase arrest and apoptosis. Western blotting indicated 
that AG significantly reduced the levels of Bcl-2, caspase-3, and caspase-
9, as well as decreased SRC, p-PI3K-p85, p-AKT1, p-MEK1/2, and p-
ERK1/2 expression in TNBC cells in a concentration dependent manner.
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Conclusion: AG exerts anti-TNBC effects by directly binding to SRC kinase, 
concurrently inhibiting both PI3K/AKT and MEK/ERK signaling pathways, 
ultimately leading to cell cycle arrest and apoptosis.
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Arctigenin, triple-negative breast cancer, SRC, molecular dynamics, SPR 

Introduction

Detection and intervention at the early stages have been 
identified as effective treatment options for breast cancer. 
However, recent reports indicate that the incidence and 
mortality rates of breast cancer remain high (Chlebowski et al., 
2024). The International Agency for Research on Cancer 
reported that, in 2020, breast cancer emerged as the most 
prevalent type of malignant tumor, with 2.26 million new 
cases and an approximate mortality rate of 30% worldwide
(Sung et al., 2021).

The difficulty in treating triple-negative breast cancer (TNBC) 
is derived from the high malignancy and recurrence rate, increasing 
risk of distant metastasis and mortality, as well as poor prognosis. 
TNBC accounts for 15%–20% of overall breast cancer incidence, 
commonly occurring in premenstrual women (Lin et al., 2023). 
Genetic profiles have demonstrated the negative expression of 
estrogen receptors (ERs), progesterone receptors (PRs), and human 
epidermal growth factor receptor 2 (HER-2) in TNBC. This 
molecular heterogeneity contributes to the scarcity of therapeutic 
targets and the insensitivity of TNBC to endocrine therapy 
(Karim et al., 2023). Current chemotherapies targeting TNBC are 
associated with a range of side effects, including cardiotoxicity, bone 
marrow suppression, and neurological and gastrointestinal damage, 
which can lead to poor patient compliance and diminished quality 
of life. Additionally, drug resistance often results in clinical failures, 
limiting the long-term use of chemotherapy (De Las Rivas et al., 
2021). Hence, discovering potential inhibitors to block the 
proliferation and metastasis of tumor cells might shed light on 
TNBC treatment.

Arctigenin (AG) is one of the major bioactive ingredients 
extracted from the Chinese herbal medicine Arctium lappa L., a 
common spice belonging to the Asteraceae family, as identified 
by Japanese researchers. AG is pharmacologically functional in 
anti-inflammation, antiviral, anti-tumor, immunomodulation, and 
neuroprotection. In 1994, Hirano et al. (1994) reported the similar 
inhibiting bioaction of AG as classical anticancer agents on the 
proliferation of HL-60 cells in vitro, which present a relatively 
broad spectrum, including leukemia, prostate cancer, colon cancer, 
breast cancer, etc. AG exerts antitumor effects by blocking the 
cell cycle, inducing apoptosis and autophagy, yet low cytotoxic 
to normal cells, suggesting its potential as a therapeutic agent 
(Hyam et al., 2013; Tsai et al., 2011; Zhao et al., 2020). AG and 
its metabolites have garnered increasing attention in the treatment 
of breast cancer due to the high affinity of its phytohormone 
metabolites for ERs, which inhibit the bioactivity of estrogen. 
It could be combined with tamoxifen in the endocrine therapy 

of breast cancer, inducing apoptosis in tumor cells by down-
regulating ERs and mTOR signaling pathways (Maxwell et al., 
2018). Furthermore, studies conducted in 2020 suggested that 
AG induced DNA damage in HER-2 overexpressing breast cancer 
cells, indicating its potential efficacy against HER-2-positive breast
cancer (Lee et al., 2021).

Network pharmacology has emerged as a robust approach 
to address these challenges by integrating gene expression data, 
molecular targets, and pathway analyses to predict compound-
disease interactions across multiple biological targets (Nogales et al., 
2022). This systems biology approach provides a holistic framework 
for identifying potential therapeutic targets and understanding the 
multifaceted actions of bioactive compounds. In this study, we 
utilized network pharmacology coupled with molecular docking 
to identify the key targets and mechanisms through which AG 
exerts its bioactivity, followed by experimental validation in human 
TNBC cell lines. Among the hub genes zidentified through machine 
learning, SRC emerged as a focal point of our investigation. SRC, 
plays a pivotal role in regulating key processes such as cell migration, 
invasion, and angiogenesis, which are critical for the aggressive 
nature of TNBC (Dehm and Bonham, 2004). The involvement of 
SRC in these processes, coupled with its established role in the 
progression of various malignancies, made it an ideal candidate for 
further exploration as a therapeutic target in the context of TNBC. 
The research process is shown in Figure 1.

Materials and methods

The databases

We have used public databases in this study and the details are 
listed as follows:

PubChem (https://pubchem.ncbi.nlm.nih.gov/, accessed on 10 
April 2024; CID for AG: 64981).

SwissTargetPrediction (http://www.swisstargetprediction.ch/, 
accessed on 10 April 2024; version: 2023 release).

Pharmmapper (http://www.lilab-ecust.cn/pharmmapper/,
accessed on 10 April 2024; pharmacophore model version: 
2014 update).

Uniprot (https://www.uniprot.org/, accessed on 10 April 2024; 
database release: 2024.01).

TCGA (https://portal.gdc.cancer.gov/, accessed on 10 April 
2024; project: TCGA-BRCA, data release: v36).

RCSB Protein Data Bank (PDB) (http://www.rcsb.org/, 
accessed on 14 April 2024; data retrieved from release archive 
version dated 10 April 2024).
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FIGURE 1
Flowchart of overall methodology used to predict the anti-cancer 
effect of AG for TNBC.

Acquisition of relevant targets of AG

A PubChem search was conducted using “Arctigenin” to obtain 
its structural formula and retrieve the SMILES. Subsequently, the 
MOL2 file was imported into PharmMapper and the SMILES 
file into the SwissTargetPrediction database to predict the 

corresponding target proteins of AG. After that, the acquired drug 
targets were annotated using the UniProt databases. 

Acquisition of AG-TNBC-related targets

Transcriptome and clinical data samples of breast cancer patients 
were sourced from the TCGA database, including 1,109 tumor 
and 113 normal breast tissue samples. After filtering samples with 
negative results for estrogen receptor (ER), progesterone receptor 
(PR), and human epidermal growth factor receptor 2 (HER2), a 
total of 124 TNBC samples and 113 normal samples were selected. 
Differentially expressed genes (DEGs) associated with TNBC were 
identified using the DESeq2 package in R software (version 4.1.3), 
applying the criteria of: |log2 fold change (FC)| ≥ 1 and adjusted p-
value <0.05 (Zhu et al., 2024). The DEGs were visualized through a 
volcano plot and a heat map, created using the Pheatmap and ggplot2 
packages, respectively.

Weighted gene co-expression network analysis (WGCNA) was 
performed to identify co-expression modules (Langfelder and 
Horvath, 2008). To enhance result robustness, the top 25% of the 
most significant DEGs were included in the WGCNA (Zeng et al., 
2024). The expression data was first normalized through the 
normalizeBetweenArrays function, and genes with low variance, 
specifically those with a standard deviation below 0.5, were excluded 
(Bourgon et al., 2010). To enhance network reliability, hierarchical 
clustering and static tree cutting techniques were applied to remove 
outlier samples. The pickSoftThreshold function was then employed 
to assess the fit of the scale-free topology model (R2) and the average 
connectivity across various soft-thresholding powers. The ideal soft-
thresholding power was determined using the criterion of R2 ≥ 0.9, 
which was applied to create a weighted adjacency matrix (Zhang and 
Horvath, 2005). Following this, both a weighted adjacency matrix 
and topological overlap matrix (TOM) were constructed, leading to 
hierarchical clustering and dynamic tree cutting to delineate gene 
modules. Modules were merged based on eigengene correlation 
threshold of 0.25. The correlation between module eigengenes and 
clinical traits was evaluated via Pearson correlation, and genes 
with high module membership (MM) and gene significance (GS) 
were retained for further analysis (Miller et al., 2011; Yip and 
Horvath, 2007). By using a Venn diagram to intersect DEGs, 
WGCNA-derived TNBC-related targets, and AG drug targets, 
several genes were identified as promising therapeutic candidates
for TNBC treatment. 

Functional enrichment analysis

To elucidate the biological functions and key signaling pathways 
implicated in AG-mediated treatment of TNBC, Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses were performed on the overlapping 
target genes using the clusterProfiler package (version 4.1.3) in 
R software (Ashburner et al., 2000; Kanehisa and Goto, 2000). 
Significantly enriched terms were selected by applying a threshold 
of p-value <0.05 and subsequently ranked in descending order based 
on their enrichment scores. 
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FIGURE 2
Construction of target network and acquisition of key genes. (a) Structural formula of AG. (b) Differential expression analysis of the TCGA dataset. (c)
Heatmap of DEGs showing the top 50 genes. (d) Scale independence and mean connectivity of WGCNA. (e) Cluster dendrogram and separation of 
gene modules of WGCNA. (f) Diagram of module-trait relationship for the 12 modules. (g) Scatterplot matrix of MM and GS. (h) catterplot of GS for 
TNBC vs. MM of the turquoise module. (i) Key genes for the action of AG.

Determination of hub genes with machine 
learning

Three machine learning algorithms—least absolute shrinkage and 
selection operator (LASSO), support vector machine-recursive feature 
elimination (SVM-RFE), and random forest (RF)—were employed to 
identify hub genes among overlapping target genes (Bao et al., 2023; 
Sanz et al., 2018; Tang et al., 2023), aiming to selecting genes capable 
of distinguishing TNBC patients from healthy controls. 

For SVM-RFE, a recursive feature elimination framework based on 
a linear kernel was executed using the e1071 package in R (Huang et al., 
2018). The gene expression data underwent z-score normalization, and 
binary labels were assigned to the groups (Normal vs. TNBC). Feature 
ranking was conducted using linear SVMs, with the cost parameter 
set to 10 and the scaling turned off. The elimination process was 
directed by the squared weight coefficients. A 10-fold stratified cross-
validation scheme was employed, batch elimination of 50% was applied 

when the number of remaining features exceeded 50. Hyperparameter 
optimization was performed via grid search across gamma = 2∧ (−12:0) 
and cost = 2∧ (−6:6) (Huang et al., 2017). The selection of the optimal 
feature subset was based on achieving the lowest classification error 
during cross-validation. 

In our analysis using LASSO regression, we employed the 
glmnet package in R (v4.1.3) to construct a binomial logistic model 
featuring with L1 regularization (alpha = 1) (Friedman et al., 2010). 
Z-score normalization was applied to gene expression values, and 
sample groups were binarized. 10-fold cross-validation was used to 
identify the optimal regularization parameter (lambda.min), defined 
as the value yielding the lowest mean cross-validated deviance. 
Genes with non-zero coefficients at lambda. min were selected as 
potential biomarkers.

The randomForest package (Garge et al., 2013) was utilized to 
implement the RF model. The model was initially set up with 1,000 
trees (ntree = 1,000) using the default parameters. To evaluate the 
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model’s effectiveness, out-of-bag (OOB) error estimates were used, 
and the ideal number of trees was identified by finding the lowest 
OOB error. The significance of genes was assessed through the mean 
decrease in the Gini index, leading to the selection of the highest-
ranked genes for further analysis.

Hub genes were identified through the intersection of results 
derived from three distinct machine learning algorithms. This was 
followed by an analysis using Receiver Operating Characteristic 
(ROC) curves to assess their predictive capabilities, along with 
correlation and differential expression studies to confirm their 
significance in AG interactions. 

Molecular docking

The 2D structure of AG was drawn using ChemBioDraw 2014, 
and its energy minimization was optimized by Chem 3D 2014. The 
3D structure of the human kinase proteins were downloaded from 
the RCSB Protein Data Bank (PDB IDs: 4MXO, 3OP3,8JG8 and 
3DB6) (Elling et al., 2008; Levinson and Boxer, 2014; Tang et al., 
2024; Tsytlonok et al., 2019). Ligand preparation was performed using 
the Schrödinger LigPrep module (Schrödinger, LLC, New York, NY, 
2018) with the OPLS_2005 force field. The docking box center was 
defined as the centroid of the original ligand. For the docking task, the 
standard precision (SP) docking mode of Glide (Friesner et al., 2004; 
Friesner et al., 2006; Halgren et al., 2004; Yang et al., 2021) was used 
with the default docking parameters. 

Molecular dynamics

Molecular dynamics (MD) was stimulated by AMBER 22 
(Case et al., 2005) for the selected ligand-target complex. The 
AMBER14SB force field (Maier et al., 2015) was used for protein, and 
the force field parameters of AG were generated based on the general 
AMBER force field (Wang et al., 2004) by antechamber. The TIP3P 
water model was used in an octahedral model, with a minimum 12 Å 
distance between the protein surface and box boundary. Sodium 
were then added to neutralize the system. Each simulation system 
was initially energy-minimized to optimize unreasonable atomic 
contacts and stereochemical conflicts by applying position restraints 
(force constant of 5.0, 1.0, and 0 kcal·mol−1·Å−2, respectively) on the 
backbone atoms and AG. Subsequently, the solvent was heated to 
300 K in 50 ps with all solute atoms restrained with a force constant 
of 10.0 kcal·mol−1·Å−2. Next, two 50 ps equilibration steps were 
done in the NPT ensemble with temperature and pressure (1 bar) 
control by the Langevin thermostat and Berendsen barostat method. 
Periodic boundary conditions were applied to eliminate boundary 
effects. All solute atoms were restrained with force constants of 
1.0 and 0.5 kcal·mol−1·Å−2. The production run, with no restraints, 
was performed for 200 ns. Electrostatic interactions were calculated 
by the particle mesh Ewald (PME) (Poier et al., 2023). The cutoff 
distance for nonbonded interactions was 8 Å. The SHAKE algorithm 
was used to constrain bonds involving hydrogens. The integration 
time step was set to 2 fs, and conformations were sampled every 
10 ps for subsequent analysis. 

MM/GBSA calculations

To acquire more statistically significant results, the binding free 
energy between SRC and AG was calculated for the 50 ns of MD 
trajectories every 0.5 ns via the conventional MM/GBSA approach 
in AMBER tools according to procedures in our previous work 
(Guo et al., 2012). For each frame, the free energy was calculated 
for each molecular species (SRC-AG complex, SRC, and AG), and 
the binding free energy was computed as below (Chong et al., 2009; 
Kollman et al., 2000):

ΔGbind = Gcomplex − (Greceptor +Gligand) (1)

ΔGbind = ΔH−TΔS ≈ ΔGgas +ΔGsol (2)

ΔGgas = ΔEMM −TΔS (3)

ΔEMM = ΔEint +ΔEele +ΔEvdw (4)

ΔGsol = ΔGpol,sol +ΔGnpol,sol (5)

where ΔGbind (Equations 1, 2) denotes the binding free energy, and it 
can be decomposed into two terms: (1) The free energy in a vacuum, 
ΔGgas is decomposed into the molecular mechanical energy (ΔEMM) 
and the configurational entropy (−TΔS) (Equation 3). ΔEMM is the 
summation of the intramolecular energy (ΔEint, including bond, 
angle, and dihedral energies, which is 0 in this study), electrostatic 
energy (ΔEele), and van der Waals energy (ΔEvdw) (Equation 4). 
The entropic contribution (−TΔS), which is associated with the 
conformational entropy loss when a free-state ligand binds to the 
corresponding unbound-state receptor; (2) the solvation energy 
(ΔGsol), which is composed of the polar (ΔGpol,sol) and non-polar 
contributions (ΔGnpol,sol) (Equation 5). 

Surface plasmon resonance (SPR)

SRC protein (MedChemExpress, New Jersey, United States) was 
diluted to 2 μg/mL with acetate solutions at pH4.5, pH5.0, and pH5.5, 
respectively. The protein was immobilized on the chip with acetate 
solutions at pH4.5 and a concentration of 18 μg/mL. One channel 
of SRC was immobilized before coupling the ligand, the chip was 
activated for 420 s. The coupling was stopped when the amount reached 
13800 RU. Ligand coupling was completed after blocking the chip for 
420 s. The actual immobilized amount was 11700 RU. Analyte AG 
was prepared as the solution with concentrations of 800, 400, 200, 
100, 50, 25, 12.5, 6.25, 3.125, and 1.5625 μM by gradient dilution. 
Multi-cycle kinetics runs were performed with a period of association 
of 120 s and dissociation of 240 s. The buffer contained 1xPBS (pH 
7.4), 0.05% Tween-20, and 5% DMSO. The raw data was imported 
into BiacoreTM Insight Evaluation Software 4.0, and the multi-cycle 
kinetics evaluation method was selected for calculating kinetic rate 
constants. The curve was fitted by the 1:1 binding model with data 
from 5 chosen concentrations. The association rate constant (Ka), 
dissociation constant (Kd), and affinity constant (KD) were acquired. 
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Cell culture and treatment

MDA-MB-453 cell line and MDA-MB-231 cell line purchased 
from the National Infrastructure of Cell Line Resource (NICR, 
Beijing, P.R. China). The cells lines were cultured in RPMI-
1640 medium, supplemented with 10% (v:v) of fetal bovine 
serum (FBS; Biological Industries, Kinneret, Israel) and 1% 
penicillin-streptomycin solution (Hyclone|Cytiva, Marlborough, 
United States) at 37 °C in a 5% CO2 incubator. 

Cell viability assay

Cell viability was evaluated by Cell Counting Kit-8 (CCK8 
assay; MedChemExpress, New Jersey, United States). MDA-MB-
453 and MDA-MB-231 cells were seeded into 96-well plates (3 
× 104 per well) and pre-cultured for 24 h, then incubated in 
200 μL complete medium containing AG (0, 100, 200, 300, 400, 
and 500 μM) for 24 h, 48 h or 72 h. Subsequently, CCK8 solution 
was added to each well and incubated in the dark at 37 °C for 
1 h. The absorbance was measured at 450 nm on a microplate 
reader (Eon Microplate Spectrophotometer, BioTek, United States). 
All experiments were repeated thrice independently. Cell viability
(%) = (A450 ofdrug−A450 ofblank)/(A450 ofcontrol–A450 ofblank)
× 100%. 

Cell cycle analysis

The cell cycle was assessed using a PI staining kit (KeyGEN 
BioTECH, Nanjing, P.R. China) following the manufacturer’s 
instructions via flow cytometry. After incubating with PI/RNase 
A for 45 min in the dark, the cells were conducted using a flow 
cytometer (Cytoflex, Beckman, United States). Software Modfit LT 
was employed for cell cycle distribution analysis. A total of 20,000 
events from each cell sample were obtained. All experiments were 
repeated thrice independently. 

Caspase-3 activity analysis

GreenNucTM caspase-3 Assay Kit for Live Cells (Beyotime, 
Shanghai, P.R. China) was subjected to caspase-3 activity analysis 
following the manufacturer’s instructions. After incubation at room 
temperature for 30 min, a fluorescence microscope (OBSERVER 
D1/AX10 cam HRC, Zeiss, Germany) was used to observe green 
fluorescence. 

Mitochondrial membrane potential (MMP) 
analysis

MMP assay kits with JC-1 (Beyotime, Shanghai, P.R. China) 
were purchased to detect MMP of MDA-MB-453. The fluorescence 
signals of AG-treated or untreated cells were detected via flow 
cytometry. All experiments were repeated thrice independently. 

Apoptosis analysis

Apoptosis was assessed by an annexin V-FITC/PI staining 
kit (KeyGEN BioTECH, Nanjing, P.R. China) following the 
manufacturer’s instructions. After incubating with 5 μL Annexin V-
FITC and 5 μL PI for 15 min in the dark, the cells were conducted using 
a flow cytometer (Cytoflex, Beckman, United States) and analyzed by 
software FlowJo V10. A total of 20,000 events from each cell sample 
were obtained. All experiments were repeated thrice independently. 

Western blot analysis

Total proteins were lysed from AG-treated cells (100, 300, 
and 500 μM) or untreated cells in RIPA buffer with the protease 
inhibitor cocktail and PMSF (Beyotime, Shanghai, P.R. China). The 
concentration of proteins in each group was tested by the BCA 
Protein Assay Kit (Beyotime, Shanghai, P.R. China). Protein extracts 
were quantitated and loaded on 8%–12% sodium dodecyl sulfate-
polyacrylamide gel, then electrophoresed and transferred onto a PVDF 
membrane (Beyotime, Shanghai, P.R. China), which was blocked in 
5% skimmed milk for an hour. The membranes were incubated with 
primary antibody overnight at 4 °C. The primary antibodies used were 
anti-caspase-3, anti-caspase-9, anti-Bax, anti-Bcl-2, anti-CDK2, anti-
cyclin A2, Anti-P27, anti-SRC, anti-AKT1, anti-pAKT1, anti-ERK1/2, 
anti-pERK1/2, anti-PI3K(p85), anti-p-PI3K(p85), anti-MEK1/2, anti-
p-MEK1/2and anti-β-actin antibodies (human anti-rabbit, 1:1,000; 
CST, Massachusetts, United States). Then, the membranes were 
washed and incubated with horseradish peroxidase (HRP)-conjugated 
secondary antibody (Goat anti-rabbit, 1:100; ZSGB-BIO, Beijing, 
P.R.China) for 1 h. The positive signal on the membranes was 
detected by an enhanced chemiluminescence detection kit (Beyotime, 
Shanghai, P.R. China). Band intensities were scanned and quantified 
by NIH ImageJ software. 

Statistical analysis

Data were presented as the mean ± SD. Differences between 
data groups were evaluated using the one-way analysis of variance 
followed by the Dunnett test, using GraphPad Prism 8 software. P < 
0.05 was considered as a statistically significant result.

Result

Screening of target predictions

The molecular structure is depicted in Figure 2a, and a total of 
183 potential targets for AG were identified on the PharmMapper 
and Swiss Target Prediction database (Supplementary Table S1). 
Differential expression analysis of the TCGA dataset revealed 
5193 DEGs, which were visualized using a heatmap and a 
volcano plot (Figures 2b,c; Supplementary Table S1). To explore 
the molecular mechanisms underlying TNBC, we constructed a 
gene co-expression network via WGCNA. The scale-free topology 
fit index (R2) and mean connectivity were assessed with the 
pickSoftThreshold function across a range of powers (β = 1–20). 
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As shown in Figure 2d, the R2 value surpassed the recommended 
threshold of 0.90 at a power of 3, while maintaining acceptable mean 
connectivity, justifying its selection as the ideal soft-threshold for 
network construction. Genes were clustered and partitioned into 
modules using the dynamic tree cut method (Figure 2e), resulting 
in 12 distinct gene modules, with the cluster dendrogram shown in 
Figure 2f. Additionally, a network heatmap was created to visualize 
the correlations among genes within each module (Figure 2g). 
Subsequently, the analysis of module-trait relationships indicated 
that the turquoise module had the strongest association with 
tumor/normal control phenotypes (Figure 2h), showing a significant 
positive correlation (cor = 0.997) between gene significance for 
TNBC and module membership (Figure 2i). These results suggest 
that the 6173 genes in the turquoise module are associated with 
TNBC and may serve as a reservoir of candidate genes for further 
prioritization (Supplementary Table S1). By intersecting the DEGs, 
WGCNA key module genes, and the predicted targets of AG, we 
identified 28 overlapping genes (Figure 2j; Supplementary Table S1), 
proposed as potential therapeutic targets for AG in TNBC treatment. 

GO enrichment and KEGG pathway analysis

We performed GO and KEGG pathway enrichment analyses on 
these 28 intersecting target genes. The GO analysis results are presented 
in Figure 3a. The potential target genes were predominantly enriched 
in the following biological process (BP) terms: positive regulation 
of the cell cycle, G2/M transition of mitotic cell cycle, cell cycle 
G2/M phase transition, regulation of G2/M transition of mitotic 
cell cycle, regulation of nuclear division, and regulation of the cell 
cycle G2/M phase transition. Regarding cellular components (CC), 
the enriched entries included the spindle pole, spindle microtubule, 
spindle, spindle midzone, and mitotic spindle pole. For molecular 
functions (MF), the enriched terms included protein serine/threonine 
kinase activity, protein serine kinase activity, transmembrane receptor 
protein tyrosine kinase activity, histone kinase activity, and protein 
tyrosine kinase activity. In addition, based on the KEGG pathway 
enrichment analysis, these intersecting target genes were mainly 
enriched in signaling pathways such as the Cell cycle, Progesterone-
mediated oocyte maturation, Oocyte meiosis, EGFR tyrosine kinase 
inhibitor resistance, and Gap junction (Figure 3b). 

Determination of target hub genes with 
machine learning

To further determine the critical hub genes in TNBC treatment 
using AG, we set the capability to discriminate between TNBC 
samples and non-TNBC samples in the TCGA dataset as the 
evaluation criterion and filtered the 28 intersecting target genes 
using three machine learning algorithms. We narrowed down 28 
overlapping target genes through the application of three machine 
learning techniques (Supplementary Table S2). The SVM-RFE 
method revealed 23 core target genes (Figures 4a,b). Meanwhile, 
LASSO analysis highlighted 13 of the 28 genes as significant 
core targets (Figures 4c,d). The RF algorithm provided variable 
importance scores for all potential target genes, leading to the 
identification of 10 core genes based on these scores (Figures 4e,f). 

By computing the intersection of these machine-learning-predicted 
core target genes, 4 genes (AURKA, SRC, PLK1, and CDC25C) 
were identified as the target hub genes for TNBC treatment with AG 
(Figure 4g). Subsequently, we conducted gene expression analyses 
on different samples for these five target hub genes (Figure 4h). The 
results showed that these genes are closely interrelated, with their 
expression levels significantly higher in TNBC tissues compared 
to non-TNBC tissues. To explore the diagnostic efficacy of the 4 
hub genes, ROC curve analysis was performed, with hub genes 
exhibiting an AUC value >0.7 considered diagnostic markers. In 
the TCGA dataset, the AUC values were 0.833 for SRC, 0.994 for 
AURKA, 0.983 for CDC25C, and 0.989 for PLK1 (Figure 4i).

The keys targets of the AG-mediated

Molecular docking analysis was performed to validate the 
interaction between AG and the identified hub genes, with the 
most prominent binding interactions visualized in Figures 5a-d. 
According to established criteria, ligand-receptor binding affinities 
are considered biologically significant when the binding energy falls 
below −5 kcal/mol. Remarkably, AG demonstrated strong binding 
affinity with three critical targets: SRC (−7.777 kcal/mol), PLK1 
(−7.690 kcal/mol), and AURKA (−7.685 kcal/mol), as detailed in 
Table 1. By integrating both docking scores and Glide emodel 
scores, SRC emerged as the most promising therapeutic target and 
was therefore prioritized for experimental validation. To validate 
the docking protocol, known SRC inhibitors were redocked, and 
the root mean square deviation (RMSD) values of the redocked 
structures compared to their original conformations in the protein 
data bank (PDB) were calculated. The RMSD values for PDB IDs: 
1Y57, 2H8H, 3EL8, and 4MXO were found to be 1.94 Å, 1.08 Å, 
0.80 Å, and 2.50 Å, respectively (Supplementary Table S3). These 
RMSD values can be used to assess the reliability of the docking 
method; generally, lower RMSD values (considered reliable when 
less than 2 Å, though it depends on the specific research system) 
indicate that the docking results are relatively credible, providing a 
methodological validation basis for subsequent molecular docking.

To investigate the binding pattern of SRC and AG, MD 
simulations and SPR were conducted. The overall binding mode is 
shown in Figure 6a. The oxygen atom of AG forms hydrogen bonds 
with the oxygen atom in the M341 and the nitrogen atom in the G344 
of SRC. The formation of these hydrogen bonds may influence the 
affinity of AG to SRC, thereby affecting its biological activity. The 
binding free energy provided showed the relative binding strengths 
of SRC-AG complex (Table 2). Using the MM/GBSA methods, the 
ΔEvdw was calculated to be −34.85 ± 5.19 kcal/mol for the SRC-AG 
complex, which contributed to the main part. On the other hand, the 
electrostatic energy was calculated to be −17.97 ± 5.35 kcal/mol. The 
total free binding energy was calculated to be −26.66 ± 3.75 kcal/mol 
for the complex. The binding free energy decomposition analysis 
identified key residues, as shown in Figures 6b,c. The analysis 
revealed specific key residues (per-residue contribution less than 
−1 kcal·mol−1) (7 residues), highlighting the role of amino acids such 
as G274, V281, M314, S345, G344, and L393 in recognizing AG.

For a deeper investigation of the interaction between AG 
and SRC, SPR-based binding analysis was performed. The full 
SPR sensorgrams and corresponding fitting residuals are shown 
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FIGURE 3
Functional enrichment analysis of key genes in TNBC. (a) Bar plot from the GO analysis. (b) Sankey-bubble plot from the KEGG analysis.

in Figures 6d,e, respectively. A 1:1 Langmuir binding model was 
employed for kinetic fitting, with a Chi-squared (χ2) value of 0.604 
RU2 indicating a good fit. The kinetic parameters, detailed in Table 3, 
revealed that AG binds to SRC with an equilibrium dissociation 
constant (KD) of 71.8 μmol/L, an association rate constant (ka) of 
6.95 × 102 M−1·s−1, and a dissociation rate constant (kd) of 4.99 × 
10−2 s−1. These values suggest a moderately strong binding affinity 
and validate the specific interaction between AG and SRC.

In vitro validation of AG treatment for 
TNBC

The cell viability of MDA-MB-453 cells incubated with a series 
of concentrations of AG for 12 h, 24 h, and 48 h was examined 
(Figure 7a). Compared with the control, the viability of AG-
treated cells was negatively correlated with the concentrations 
of AG, as well as the duration of incubation. The AG-treated 
group showed a low G0/G1 ratio and an increased ratio of S-
phase cells. No significant change was observed in the ratio of 
G2/M phase cells (Figure 7b), suggesting AG might induce cell 
cycle arrest to inhibit the proliferation of tumor cells by blocking 
the process of DNA replication. Similar inhibitory effects were 
noted in MDA-MB-231 cells as seen in MDA-MB-453. A marked 
decline in cell viability was observed with higher AG concentrations 
and extended treatment durations (Supplementary Figure S1a). Cell 
cycle analysis revealed that AG treatment led to a decrease in the 
G0/G1 phase cell population while increasing the S phase, with no 
significant changes in the G2/M phase (Supplementary Figure S1b). 
Expression of cyclins, CDK2, and Cyclin A2 decreased, while the 
level of P27 showed no significant change, suggesting AG-induced 
DNA replication arrest was CDK2/Cyclin A2-targeted (Figure 7c). 
Interestingly, we also found increased Cyclin E1 expression after AG 
treatment, which might have accounted for apoptosis (Figure 7d).

To verify the AG-induced cytotoxicity, MDA-MB-453 cells were 
employed to apoptosis indications after AG incubation for 48 h. 
Detected MMP showed depolarization, andcaspase-3 activity was 
promoted, which both were AG concentration-dependent, suggesting 

the apoptosis event was AG-relevant (Figures 8a,b). The Annexin-
FITC/PI-staining flow cytometry results showed that AG treatment 
increased death rate in a concentration-dependent manner (Figure 8c). 
It is worth noting that the number of cells treated with low 
concentrations of AG showed no significant differences in early 
apoptosis (100 and 200 μM) but mostly varied in late apoptosis or 
necrosis. Apoptosis-related protein indicators showed that Bcl-2, pro-
caspase-9, and pro-caspase-3 were downregulated, yet cleaved caspase-
9 and cleaved caspase-3 increased in a concentration-dependent 
manner (Figure 8d). In MDA-MB-231 cells, the evaluation of caspase-
3 activity showed a positive correlation between the number of 
apoptotic cells and AG concentration (Supplementary Figure S1c). 
Further confirmation from Annexin V-FITC/PI staining flow 
cytometry indicated that AG treatment also increased apoptosis 
in a concentration-dependent manner (Supplementary Figure S1d). 
Apoptosis-related protein analysis showed significant downregulation 
of Bcl-2, pro-caspase-9, and pro-caspase-3 with increasing AG 
concentrations, while Bax expression remained unchanged between 
treatment and control groups (Supplementary Figure S1e). The 
results suggested AG might trigger intracellular caspase cascades. 
Combined with depolarized MMP, AG-induced apoptosis in 
TNBC cell lines might be achieved via a caspase-dependent 
mitochondrial apoptosis pathway. 

To investigate the AG-mediated SRC-related protein expression, 
MDA-MB-453 cells were incubated with AG for 48 h. The 
results showed that the levels of t-AKT and p-AKT decreased. 
The level of p-ERK1/2 attenuated, hence indicating an entirely 
decreased ERK1/2 phosphorylation in the cytosol and effective 
AG-evoked blockage on ERK1/2 activation (Figure 8e). Meanwhile, 
as shown in Figure 8f, there were no notable changes in the 
levels of PI3K and MEK1/2 following AG treatment compared 
to the control group, while p-PI3K and p-MEK1/2 levels were 
markedly lower. A decrease in SRC levels was also noted, 
suggesting that AG modulates the PI3K-AKT and MEK/ERK 
pathways by downregulating SRC expression. Furthermore, we 
assessed the expression of SRC, AKT, p-AKT, ERK1/2, p-ERK1/2, 
MEK1/2, p-MEK1/2, PI3K, and p-PI3K in MDA-MB-231 cells. 
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FIGURE 4
Determining target hub genes through machine learning algorithms. (a) Error rate curves of 5-fold cross-validation of SVM-RFE algorithm. (b) Accuracy 
rate curves of 5-fold cross-validation of SVM-RFE algorithm. (c) Coefficients diagrams of Lasso analysis. (d) Cross validation curve for Lasso. (e) Error 
rate curve of RF method. (f) Variable importance value of RF method. (g) Hub genes identification from three machine learning algorithms. (h)
Expression analysis of the hub genes based on the TCGA dataset. (i) ROC curve of hub genes.

The results were largely consistent with those observed in MDA-
MB-453 cells, showing significant reductions in SRC, p-PI3K, 
p-AKT, p-MEK1/2, and p-ERK1/2 in the AG-treated groups
(Supplementary Figures S1f,g).

Discussion

AG has garnered significant attention for its broad therapeutic 
potential in treating various human diseases, owing to its 
diverse pharmacological properties, including anti-inflammatory, 
antiviral, anti-tumor, neuroprotective, and immunomodulatory effects 
(Wu et al., 2022). Notably, AG exhibits remarkable inhibitory effects 

on breast cancer cells, inducing cell cycle arrest, apoptosis, or 
autophagy, and suppressing cancer cell metastasis (Feng et al., 2017; 
Shabgah et al., 2021; Zhu et al., 2020). Importantly, ER-negative breast 
cancer cells demonstrate greater sensitivity to AG compared to ER-
positive cells (Hsieh et al., 2014), suggesting its potential utility in 
TNBC treatment. However, the precise molecular targets and binding 
mechanisms of AG in TNBC remain poorly understood. In this study, 
we utilized an integrative approach combining network pharmacology, 
molecular docking, molecular dynamics (MD) and surface plasmon 
resonance (SPR) to elucidate the effects of AG on TNBC, with 
experimental validation in MDA-MB-453 and MDA-MB-231 cells. 

Through analysis of public databases, we identified 183 potential 
drug targets of AG. Further examination of tumor and adjacent 
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FIGURE 5
Molecular docking interactions of AG with hub genes. (a) Molecular docking interaction between AG and CDC25. (b) Molecular docking interaction 
between AG and PLK1. (c) Molecular docking interaction between AG and SRC. (d) Molecular docking interaction between AG and AURKA.

TABLE 1  Molecular docking results of AG with hub genes (kcal/mol).

Proteins Docking score XP Gscore Glide gscore Glide emodel

CDC25 −3.485 −3.487 −3.487 −40.785

SRC −7.777 −7.779 −7.779 −59.389

PLK1 −7.690 −7.692 −7.692 −59.150

AURKA −7.685 −7.686 −7.686 −57.497

non-tumor tissues from TNBC patients revealed 5193 DEGs and 
6137 co-expressed module genes. The integration of these datasets 
led us to identify 28 significant genes, which were then analyzed 
through GO and KEGG enrichment assessments. These analyses 
highlighted the enrichment of AG’s mechanism of action in cell cycle 
regulation, underscoring its potential to disrupt TNBC progression. 
Using three machine-learning algorithms, we identified four hub 
genes-SRC, AURKA, PLK1, and CDC25-which exhibited high 
expression in tumor tissues and area under the receiver operating 
characteristic curve (AUC) values exceeding 0.8, suggesting their 
potential as therapeutic targets and prognostic markers for TNBC. 
AURKA and PLK1 are essential mitotic regulators that promote 
the G2/M transition and are often overexpressed in aggressive 
breast cancers (D'Assoro et al., 2015; Wang D. et al., 2017), while 
CDC25C facilitates CDK1 activation and has been associated 
with unchecked cell cycle progression in high-grade tumors 
(Topno et al., 2021). Additionally, SRC as a non-receptor tyrosine 

kinase involved in migration, proliferation, and chemoresistance, 
and its hyperactivation is characteristic of metastatic and drug-
resistant TNBC phenotypes (Finn et al., 2011; Kohale et al., 2022). 
Collectively, these genes are involved in cell cycle and survival 
pathways, suggesting that this gene module forms a biologically 
relevant and therapeutically viable network, potentially mediating 
the effects of AG in TNBC.

Additionally, we investigated a group of genes identified by at 
least two of the three analytical models, which we will refer to as near 
miss candidates. These genes warrant particular focus due to their 
developing functional importance in triple-negative breast cancer 
(TNBC) and their possible connection to AG’s mechanism. Both 
SVM RFE and LASSO consistently highlighted CLK1 and PDGFRB. 
CLK1 is known to influence the alternative splicing of genes involved 
in the cell cycle and is often overexpressed in breast cancer; its 
pharmacological inhibition can disrupt splicing and hinder tumor 
growth (Liu et al., 2025; Zhu et al., 2018). PDGFRB signaling 
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FIGURE 6
The binding mode of AG and SRC. (a) 3D binding mode of Arctigenin and 4MXO. (b) Analysis revealed specific key residues, per-residue contribution 
less than −1 kcal/mol. (c) RMSF analysis of AG with SRC. (d) Full SPR Sensorgrams of Src Protein Binding to AG. (e) Fitting Residuals of Src Protein 
Binding to AG.

TABLE 2  The contributions of each energy term to the binding energy of AG with SRC (kcal/mol).

Energy Component ΔEvdw ΔEele ΔGpol,sol ΔGnpol,sol ΔGgas ΔGsol ΔGMM/GBSA

Contributions −34.85 ± 5.19 −17.97 ± 5.35 30.74 ± 2.90 −4.58 ± 0.75 −52.82 ± 0.75 26.16 ± 3.64 −26.66 ± 3.75

TABLE 3  SPR kinetic parameters for the interaction between immobilized SRC and AG.

Immobilized ligand Injection variables 
Analyte 1 solution

Quality kinetics Chi2

(RU2)
1:1 binding ka (1/Ms) kd (1/s) KD (M)

SRC 18 μg/mL AG 6.04e−01 6.95e + 02 4.99e−02 7.18e−05

in the tumor microenvironment promotes epithelial-mesenchymal 
transition (EMT) and is inhibited by BRCA1, making it a significant 
therapeutic target, particularly in BRCA1-deficient TNBC (Bai et al., 
2021). MMP13 and RIPK2 also appeared in the SVM RFE and 
LASSO intersection. MMP13 and RIPK2 were also found in the 
overlap of SVM RFE and LASSO. MMP13 is associated with bone 
metastasis and osteolytic processes in breast cancer, indicating its 
potential as a therapeutic target (Zhu et al., 2023). Increased levels 
of RIPK2 are linked to unfavorable outcomes in TNBC and facilitate 
tumor advancement through the activation of the NF-κB and JNK 
pathways (Jaafar et al., 2018; Singel et al., 2014). CHEK1, PKIA, and 
NR3C2 were identified by both SVM-RFE and Random Forest or by 

Random Forest and LASSO. Importantly, CHEK1 is involved in the 
DNA damage response and has been considered a target for TNBC 
treatment (Gatti-Mays et al., 2020). Although PKIA and NR3C2 are 
not well understood in the context of TNBC, emerging data from 
other cancer types indicate they may have important roles in kinase 
signaling and tumor biology, necessitating further functional studies 
(Liu et al., 2023; Steegmaier et al., 2007; Xu B. et al., 2023). ANG 
was identified by both LASSO and Random Forest; its expression 
increases under low oxygen conditions, aiding in angiogenesis and 
tumor survival, with studies showing that its inhibition can reduce 
breast cancer growth in vivo (Chintalapati et al., 2009). Collectively, 
these near-miss genes form a biologically significant group with 
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FIGURE 7
Effects of AG on the proliferation of MDA-MB-453 cells. (a) Cell viability was determined by CCK8 assay. (b) Cell cycle changes were analyzed by FACS 
based on PI staining. (c) Cells were incubated with various concentrations of Arctigenin for 48 h and tested the expression of CDK2, Cyclin A2, and P27 
by Western blot. (d) Expression of Cyclin E1 examined by Western blot. x ± s, n = 3, ∗, ∗∗  and  ∗∗∗indicate 0.01 < P < 0.05, P < 0.01 and P < 0.001 vs. 
untreated control.

potential functional implications for TNBC development and AG’s 
mechanism of action. Although they were not part of the final hub 
gene intersection, their repeated identification across various feature 
selection methods indicates their reliability, suggesting they could be 
important targets for subsequent functional validation.

To further investigate the drug targets of AG in the treatment 
of TNBC, molecular docking revealed strong binding affinities 
between AG and SRC, AURKA, and PLK1 (Glide scores < −7), 
while its interaction with CDC25 was weaker (Glide score > −5). 
Based on the Glide emodel score, we hypothesized that the AG-SRC 
interaction plays a pivotal role in TNBC regulation. MD simulations 
further elucidated the binding mode of AG to SRC, revealing a van 
der Waals energy (ΔEvdw) of −34.85 ± 5.19 kcal/mol for the SRC-
AG complex. Critical amino acid residues, including G274, V281, 
M314, S345, and G344, were identified as key interaction sites.

The selection of a 200 ns simulation timescale in this study 
was primarily guided by our goal of elucidating ligand binding 
modes and characterizing key protein-ligand interactions, rather 
than determining precise kinetic parameters. Although enhanced 
sampling techniques, such as WESTPA or metadynamics, may offer 
advantages for sampling rare events, our approach, which uses 
multiple independent conventional MD trajectories, has proven 
effective for mapping binding sites and identifying interaction 
patterns in similar kinase systems. Previous studies have shown 
that simulation timescales ranging from 200 to 500 ns are 
effective for identifying ligand binding sites and characterizing 
interaction patterns (Alanzi et al., 2024; Sulaimani et al., 2025). 
Our approach compensates for the shorter timescale by employing 
multiple independent trajectories and ensuring comprehensive 
conformational sampling. The results exhibit good convergence of 

structural metrics and show excellent agreement with experimental 
binding modes. In our MM/GBSA calculations, we elected 
to exclude the entropy term (–TΔS) based on established 
limitations in obtaining accurate entropy estimates for complex 
biomolecular systems (Ruvinsky, 2007). While this results in 
reported ΔG values (−26.66 ± 3.75 kcal/mol) that strictly represent 
enthalpic contributions (ΔH), this methodological choice does 
not compromise our principal conclusions for several compelling 
reasons: (1) Entropic effects typically exhibit systematic behavior 
across structurally similar ligand, preserving the validity of 
relative binding affinity comparisons; (2) Our analytical focus 
centers on structural interaction patterns rather than absolute 
free energy quantification; and (3) Available literature provides 
well-characterized benchmarks for entropy contributions in 
small molecule-protein binding events (6–15 kcal/mol), enabling 
appropriate interpretation when required (Chang et al., 2007).

SRC, a non-receptor tyrosine kinase, is a critical regulator 
of cell proliferation, migration, and apoptosis (Chen et al., 2019; 
Patel et al., 2016; Ramadan et al., 2021). Under normal physiological 
conditions, SRC activity is tightly controlled to maintain cellular 
functions such as adhesion, survival, and angiogenesis (Le and 
Bast, 2011). However, SRC is overexpressed in various solid tumors, 
including breast, pancreatic, gastric, and bladder cancers, where 
it accelerates tumor cell growth and survival (Luo et al., 2022; 
Su et al., 2023; Wang et al., 2022; Xu et al., 2021). In this study, AG 
exhibited moderate binding affinity to SRC (KD = 71.8 μmol/L), a 
notable value for an unmodified natural compound (Wang X. et al., 
2017), indicating a moderate binding affinity between AG and 
SRC. The relatively low association rate constant and reversible 
dissociation rate suggested that AG interacts with SRC in a specific 
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FIGURE 8
Effects of AG on the apoptosis of MDA-MB-453 cells. (a) Cells were incubated with various concentrations of AG for 48 h and stained with fluorescent 
dye. (b) MMP changes were analyzed by FACS based on JC-1 staining. (c) Apoptosis rate was analyzed by FACS based on Annexin-FITC/PI staining. (d)
Expression of Bax, Bcl-2, caspase-3, and caspase-9 using western blot. (e) Impact of AG on the expression of ERK1/2, p-ERK1/2, AKT, p-AKT and SRC.
(f) Impact of AG on the expression of PI3K, p-PI3K, MEK1/2 and p-MEK1/2. x ± s, n = 3,  ∗, ∗∗  and  ∗∗∗indicate 0.01 < P < 0.05, P < 0.01 and P < 0.001 vs. 
untreated control.

yet dynamically regulated manner. This level of affinity allows AG 
to regulate SRC activity without causing permanent inhibition, a 
characteristic that is often beneficial in the modulation of signaling 
pathways (Csermely et al., 2005; Lu and Tonge, 2010).

Mechanistically, SRC influences cell cycle progression by 
phosphorylating cyclins and cyclin-dependent kinases (CDKs) 
(Zhang et al., 2006). CDK2, in complex with Cyclin A or Cyclin 
E, regulates distinct phases of the cell cycle. The CDK2/Cyclin A 
complex facilitates DNA synthesis during the S phase and prepares 
chromosomes for division in the G2 phase (Tsytlonok et al., 2019), 
while the CDK2/Cyclin E complex promotes the G1-to-S transition 
by initiating DNA synthesis-related gene expression and inhibiting 
the cell cycle inhibitor p27 (Lai et al., 2016). In our study, AG 
treatment downregulated CDK2 and Cyclin A2, leading to S-phase 
arrest in MDA-MB-453 cells, suggesting impaired DNA synthesis.

It has been reported that persistently phosphorylated or 
overexpressed SRC kinase leads to pathological modulation 
of several tumor cells proliferation-relevant signaling, namely 
PI3K/AKT pathway, MEK/ERK pathway, and JAK/STAT3 pathway 
(Ferguson et al., 2013; Rodriguez Torres et al., 2023; Xu R. et al., 
2023). By enhancing PI3K activity and AKT phosphorylation, 
SRC promotes cell proliferation and survival while influencing the 

tumor microenvironment to support tumor growth and metastasis 
(Ye et al., 2025). In breast cancer cells, SRC-driven PI3K/AKT 
activation is a critical driver of cell apoptosis (Luo et al., 2020). 
Maxwell et al. identified that AKT, NF-κb, and MAPK pathways 
were involved in AG-relevant anti-cancer effects in (either ER-
positive or ER-negative) breast cancer (Maxwell et al., 2017). 
Consistent with this, AG treatment reduced the phosphorylation 
of MEK, ERK1/2, PI3K and AKT in MDA-MB-453 and MDA-
MB-231 cells, aligning with previous findings on AG’s anti-
HIV effects (Kim et al., 2011). Additionally, AG induced apoptosis 
in MDA-MB-453 and MDA-MB-231 cells, the elevated Bax/Bcl-
2 ratio and cleaved caspase-3 and caspase-9 levels indicated that 
AG-induced apoptosis is mediated through a caspase-dependent 
mitochondrial pathway. Therefore, the mechanism shows that 
AG binds to SRC and inhibits the downstream PI3K-AKT and 
MEK/ERK signaling pathways, thereby triggering a cascade 
involving Bax, Bcl-2, caspase-3, and caspase-9 to induce the TNBC 
cell apoptosis. These results suggest that suppressing SRC-mediated 
bioactivity is a promising strategy for TNBC therapy.

However, the current study has several limitations. To begin 
with, the primary pathways that explain the role of AG in TNBC have 
yet to be thoroughly confirmed and need additional exploration,
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such as through rescue experiments. Furthermore, in vivo research 
is essential to substantiate these results and assess the viability of 
AG in the clinical treatment of TNBC. These aspects will be further 
investigated in future studies.

Conclusion

In summary, our integrated network pharmacology approach 
systematically elucidated the molecular mechanisms underlying 
AG’s anti-TNBC activity. Mechanistic investigations revealed that 
AG specifically targets SRC kinase, thereby dually suppressing both 
PI3K/AKT and MAPK/ERK signaling cascades. This coordinated 
pathway inhibition mediated significant anti-tumor effects through 
two complementary mechanisms: (1) arresting proliferation via 
cell cycle blockade and (2) triggering mitochondrial-dependent 
apoptosis. Structural analysis of the stabilized AG-SRC complex not 
only provides a rational chemical framework for structure-based 
drug optimization but also offers mechanistic insights for developing 
combination therapies targeting SRC-mediated resistance pathways 
in clinical TNBC management.
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