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Introduction: Population genetic screening is rapidly emerging as a key 
methodology in the clinical laboratory for detecting actionable genomic 
conditions in asymptomatic patients. While current clinical methods are largely 
focused on targeted gene panels, the increasing efficiency of next-generation 
sequencing (NGS) platforms permits the use of whole genome sequencing 
(WGS) for routine clinical applications. The key advantage of WGS is that 
the complete genome produced by a single sequencing event can form the 
basis for a patient’s genomic health care record for reanalysis throughout a 
patient’s lifetime.
Methods: We developed a scalable clinical WGS-based lab developed procedure 
(LDP) for heritable disease gene testing and pharmacogenomics (PGx). We 
performed extensive validation across a range of blood, saliva, and reference 
specimens.
Results: The clinical deliverable for the WGS LDP was 78 genes associated 
with actionable genomic conditions and 4 PGx genes. The validation cohort 
consisted of samples from 188 study participants that were orthogonally 
sequenced at commercial reference laboratories and additional reference 
materials. The WGS LDP demonstrated excellent sensitivity, specificity, 
and accuracy.
Conclusion: The deployed LDP was then used to sequence over 2,000 patients 
as part of a broader clinical implementation study (“Geno4ME”). Our findings 
support WGS as a viable method for broad clinical screening.
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Introduction

Identification of individuals at risk for heritable genetic 
conditions or suboptimal drug dosing provides opportunities for 
life-saving medical intervention and improvement in treatment 
outcomes. Accumulating population genomics evidence suggests 
that a significant number of individuals carry a clinically actionable 
genetic variant that is associated with an increased risk of 
disease, yet are unaware of their genetic risks until symptomatic 
(Manickam et al., 2018; Abul-Husn et al., 2016; Win et al., 2017; 
Haer-Wigman et al., 2019). For genes with a well-established 
association with inherited cancer, cardiovascular disease, or 
other condition, published clinical guidelines provide specific 
disease-risk reduction plans, enhanced screenings for early disease 
detection, and/or treatments (Musunuru et al., 2020; Sonkin et al., 
2024; Daly et al., 2021; Weiss et al., 2021). Additionally, recent 
insights suggest that up to 98%–99% of individuals have one or 
more genetic variants that can impact drug efficacy and safety 
(Dunnenberger et al., 2015). Pharmacogenomics (PGx), which 
focuses on the identification of genomic variants in an individual 
that modulate pharmacokinetics and pharmacodynamics of specific 
classes of drugs, can have direct implications for prescribing 
guidelines (Relling and Evans, 2015). The high prevalence of 
individuals with actionable genomic variants has resulted in 
growing interest in genomic screening tools for broad population 
health applications (Phillips et al., 2018). This interest, combined 
with advancements in cost-effective sequencing technologies, 
have generated population-focused research initiatives in diverse 
populations as part of the field of genomic medicine. Focusing 
on mixed populations of healthy patients and patients with 
cardiovascular disease, ClinSeq and MedSeq were among the first 
large-scale genome sequencing research studies at the intersection 
of population health and genomic medicine (Biesecker et al., 
2009; Vassy et al., 2014). These landmark studies highlighted the 
challenges of using large scale sequencing for clinical care, such 
as variant classification of novel and known variants, and the 
complexity of returning results to patients and providers (Biesecker, 
2012). Importantly, these studies revealed the potential for patient 
data re-analysis over their lifetime as new phenotypes and genetic 
understanding become available. Recently, the All of Us Research 
Program has been a leading whole-genome sequencing effort to 
perform population genomics analysis in unselected populations. 
However, this nationwide program is a public research program and 
is disconnected from a participant’s primary provider and clinical 
care. Thus, there remains a need for scalable genomic screening tools 
with gene panels that can be rapidly expanded, quickly interpreted, 
and incorporated into a patient’s clinical care.

A comprehensive genomic assay evaluable for both heritable 
genomic conditions and PGx in populations should ideally cover a 
large and diverse panel of gene loci. While most modern genomic 
screening tools have been effective at characterizing small genomic 
variants (approximately less than 50 bp in size), extensive evidence 
suggests that large copy number variants in the human population 
are a contributor to heritable disorders (Zhang et al., 2009). 
Thus, an ideal procedure should be able to characterize multiple 
variant types, including single-nucleotide variants (SNVs), multi-
nucleotide variants/polymorphisms (MNVs), insertions, deletions, 
and copy-number variants (CNVs). High-throughput methods 

for simultaneously characterizing single nucleotide variants in 
multiple genes, such as MALDI-TOF and SNV array-based 
methods, have been applied in a population health context 
(Uffelmann et al., 2021; East et al., 2021; Stanssens et al., 2004). To 
characterize larger variants, microarray-based comparative genomic 
hybridization (array CGH or aCGH) has been applied clinically 
(Bejjani and Shaffer, 2006; Park et al., 2011; Wayhelova et al., 
2019). Characterization of diverse variant types using these 
methods can require multiple assays to acquire a comprehensive 
genomic profile and often there is difficulty with resolving novel 
and/or complex variants. To address these limitations, whole-
exome sequencing (WES) and whole-genome sequencing (WGS) 
have been applied in a variety of population genomic health 
applications, such as healthy population screening (Foss et al., 
2022; Lindor et al., 2017; Vassy et al., 2017; Williams, 2022), 
unselected research cohort screening (Manickam et al., 2018; 
Biesecker et al., 2009; Vassy et al., 2014; Bick et al., 2024; 
Perkins et al., 2018; Gonzalez-Garay et al., 2013; Carey et al., 
2016), and newborn screening (Woerner et al., 2021; Chen et al., 
2023; Holm et al., 2018). Both WES and WGS allow for single-
nucleotide resolution of variants and have been demonstrated to 
capture a significant number of gene- and exon-level CNVs with 
potential clinical importance (Hehir-Kwa et al., 2015; Conrad et al., 
2010). WGS, when compared to WES, has reduced variant allele 
capture bias, can potentially profile more complex chromosomal 
rearrangements, and can be expanded to noncoding and intergenic 
regions (Steyaert et al., 2018). Recent advances in PCR-free WGS 
have led to increased variant detection sensitivity and retention 
of complex genotypes (e.g., repetitive regions) when compared 
to conventional WGS (Dolzhenko et al., 2017; Zhou et al., 
2022). Therefore, a PCR-free WGS-based assay is ideal for 
comprehensively evaluating variation in coding regions while 
providing opportunity for future region expansion as additional loci 
of interest become evident.

Although using a WGS-based assay as a primary method of 
diagnosis holds significant promise as a tool for rare diseases 
and large-scale population health genomics (Bick et al., 2024; 
Liu et al., 2019), few studies have evaluated the practicality and 
performance of WGS for returning clinically-actionable results in a 
healthcare setting. In addition, consistent and accurate classification 
of variants between reporting laboratories remains a challenge, 
especially for large population health programs (Harrison et al., 
2022). While software tools that can aggregate population, genomic, 
protein, and disease-specific information to assist in variant 
classification have been developed (Ravichandran et al., 2019; 
Preston et al., 2022; Kim et al., 2024; Gall et al., 2022), the 
degree to which these tools enhance workflow productivity and 
accuracy is still being established. Here, we developed a clinical PCR-
free WGS-based lab developed procedure (LDP) for hereditable 
disease testing and PGx. We validated our WGS-based assay for 
variant detection, variant pathogenicity classification, and PGx 
interpretation against orthogonal panel testing at outside reference 
laboratories using a large cohort. Additionally, we determined if 
DNA originating from either blood or saliva specimens impacted 
WGS assay performance. Our results support the feasibility and 
high diagnostic accuracy of using a WGS-based assay as a 
core population health tool for evaluating clinically actionable
genomic variants.
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Methods

Participant selection and sample collection

This study was reviewed and approved by the Providence 
Institutional Review Board (approval number STUDY2020000637). 
The validation of the WGS LDP was performed in support 
of the “Genomic Medicine for Everyone” (Geno4ME) clinical 
implementation study, involving WGS of Providence patients, 
return of selected clinical results, and genome banking for 
future research (Lucas Beckett et al., 2025). Study participants 
were patients in the Providence system and informed consent 
was obtained from all participants using an in-house developed 
automated electronic consent platform. Information on participants’ 
personal/family history of cancer and/or cardiovascular conditions, 
race and ethnicity, as well as current medications taken was obtained 
using a self-reported survey. Whole blood was collected using 
venipuncture and stabilized in standard clinical use EDTA tubes. Saliva 
was collected and stored using DNA Genotek Oragene-DNA saliva 
DNA collection kit (DNA Genotek #OGR-600). In total, 120 whole 
blood and 70 saliva specimens were collected in the WGS Validation 
cohort, with 60 participants providing paired whole blood and saliva 
samples for cross-sample validation (N = 189 unique participants). 

Genomic condition gene selection for 
analysis

For selected genomic conditions, we evaluated variant 
pathogenicity in 78 genes determined to be clinically actionable 
and reportable by the American College of Medical Genetics 
and Genomics (ACMG) as secondary findings in clinical exome 
and genome sequencing and/or National Comprehensive Cancer 
Network (NCCN) guidelines (Daly et al., 2021; Kalia et al., 2017). 
The complete list of genes and genomic conditions analyzed in this 
study are shown in Figure 1.

Sample genomic DNA extraction, 
sequencing, QC, and variant calling

Genomic DNA for whole genome sequencing was extracted 
using the Qiagen QIAsymphony DSP Midi Kit (catalog 937,255). 
Whole genome next-generation sequencing (NGS) libraries were 
prepared from 300 to 500 ng gDNA with the Illumina DNA PCR-
Free Prep, Tagmentation kit (catalog 20041795). Sequencing was 
performed on the Illumina NovaSeq 6,000 with 24 libraries loaded 
per S4 flow cell and a target depth of 30X coverage. As a sequencing 
quality control, the Illumina PhiX Control v3 Library was sequenced 
on every WGS with error rates of less than 1% considered passing. 
In addition, every 100 samples a germline variant quality control 
sample containing known germline DNA variants was extracted 
prepared as a WGS library, sequenced, and annotated in the same 
manner as other patient samples. Intra-run variation (within-run) 
was determined by preparing and sequencing three WGS replicates 
of sample gme-wes-25 and sequencing the libraries on the same 
WGS run. Inter-run (between-run) variation was determined by 
preparing and sequencing three WGS replicates of DNA from 

control sample NA12878 and sequencing across three separate WGS 
sequencing runs. Variant calling and pharmacogenetic genotyping 
were performed using standard analysis pipelines on the Illumina 
DRAGEN (Dynamic Read Analysis for GENomics) Bio- IT 
Platform (v3.9.5) with the following flags: --enable-map-align true, 
--enable-map-align-output true, --enable-duplicate-marking true, 
--enable-sort true, --vc-combine-phased-variants-distance 3, --vc-
enable-roh true, --vc-enable-baf true, --vc-enable-phasing true, 
--enable-variant-caller true, --enable-cnv true, --cnv-enable-self-
normalization true, --cnv-enable-tracks true, --vc-enable-roh true, 
--vc-enable-baf true, --vc-enable-phasing true, --enable-variant-
caller true, --enable-cnv true, --cnv-enable-self-normalization true, 
--cnv-enable-tracks true, --cnv-segmentation-mode slm, --cnv-
interval-width 250, --enable-sv true. Variants with variant allele 
frequencies (VAFs) less than 10% were excluded from further 
analysis. This VAF threshold was chosen based on the estimated 
minimum supporting variant read depth required at a target 
coverage of 30X to reliably call a variant. The hg19 (GRCh37) 
genome build was selected as the reference genome for this study 
based on the availability of select analysis tools at the time of 
assay development. Regions for gene variant analysis were extracted 
using coordinates on the hg19 reference derived from the longest 
Refseq transcript (O'Leary et al., 2016; Church et al., 2011). These 
regions for analysis were extended by an additional 1,000 bases 
upstream and downstream of the first (5′ UTR) and last (3′

UTR) exons, respectively. Exon-level and whole gene-level CNV 
and structural variation (SV) was detected using the DRAGEN 
and/or Manta CNV callers included as part of the Illumina 
DRAGEN Bio-IT Platform. Coverage metrics were calculated using 
deepTools2 (Ramírez et al., 2016). Reads not mapping to hg19 were 
discarded from further analysis. 

Validation of WGS variant calling method 
to variants from patient electronic medical 
records

Initial validation of the WGS DRAGEN variant calling pipeline 
was performed by comparison of WGS DRAGEN variants to 
clinically significant genomic variants obtained from patient electronic 
health records (EHRs). Genomic DNA for WGS was extracted, 
sequenced, and analyzed as described above for 30 bio-banked patient 
blood samples collected under IRB protocol STUDY2018000254, an 
internally funded Providence registry of germline pathogenic/likely 
pathogenic (P/LP) carriers of hereditary cancer risk. The registry 
utilizes the Progeny database to curate and maintain highly annotated 
screening, disease and genetic testing data for participants in the 
biorepository. Sample selection was drawn from the Progeny database 
of de-identified samples. Participants provided DNA samples for future 
use in discovery and all available EHR genomic testing information 
(EHR Comparison validation group). Samples were selected based 
on variety of genes to be within the Geno4ME suite broad variant 
profile (truncating, missense, indel and genomic rearrangements, 
with available EHR genomic testing information [EHR Comparison 
validation group]). A positive variant match was determined by 
the presence of an expected gene coding and/or protein change as 
described in the patient EHR to a variant in the WGS DRAGEN 
pipeline that passed all quality filters. 
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FIGURE 1
Genes tested for the Geno4ME LDP heritable disorder panel and their associated diseases.

Classification of variants

To classify variants in genes with an associated genetic 
condition, pathogenicity was assessed based on criteria from the 
joint American College of Medical Genetics and Genomics and 

Association for Molecular Pathology Standards and Guidelines 
(ACMG/AMP criteria from 2015) (Richards et al., 2015). PP5 or 
BP6 criteria were not considered for final variant pathogenicity 
classification as recommended by Biesecker et al. (2018). Prior to 
manual variant curation, variants were initially classified using the 
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FIGURE 2
Overview of workflow for WGS sample processing, interpretation, and comparison to outside references for assay validation. This complete workflow is 
referred to as Geno4ME LDP.

Artificial Intelligence Classification Engine (ACE), an automated 
ACMG classification algorithm in the Fabric Enterprise platform 
(Version 6.18.X) (De La Vega et al., 2021). All variants, including 
CNVs and SVs, were uploaded to the Fabric Enterprise platform for 
automated interpretation prior to manual curation or interpretation. 
Variants were targeted for manual curation if initially classified as 
P/LP by ACE and/or the interpretation for the associated genetic 
condition in the ClinVar genomic annotation aggregation database 
was P, LP, conflicting, or not provided (Landrum et al., 2014). 
Evaluation of variant population frequency, in silico predictions 
of variant effect, and statistical support for pathogenicity using 
the ACMG/AMP criteria were performed using tools in the 
Fabric Enterprise platform. Estimation of population variant allele 
frequency was based on the gnomAD database (Chen et al., 2024). 
Literature review for variants identified for manual curation was 
assisted by Mastermind Genomic Search Engine (Chunn et al., 
2020). For putative variants of uncertain significance (VUS) and 
P/LP variants, alignment quality of the region was manually 
inspected using Integrative Genomics Viewer (IGV) for read and 
alignment quality (Robinson et al., 2011). The overall workflow 
for WGS and interpretation we termed the Geno4ME LDP as is 
henceforth referred to below. The Geno4ME LDP method was used 
for comparison to all reference methods (Figure 2).

Geno4ME LDP orthogonal validation with 
outside reference methodologies

Sensitivity, specificity, and accuracy of the Geno4ME LDP for 
variant calling was determined by comparison to a CLIA-certified 
commercial molecular laboratory using an outside reference method 
(OS-ORM). The OS-ORM was based on hybrid-capture NGS for 
all 78 genes associated with a genomic condition surveyed in this 
study were covered by OS-ORM Panel A, OS-ORM Panel B, or 
both (Supplementary Table S1). Because not all VUS were reported 
by the outside provider due to differences in outside provider 
classification or ORM panel return of results (RoR) criteria, only 
variants identified by the OS-ORM to be P/LP were considered 

TABLE 1  Expected SV/CNV in control NIBSC samples tested using the 
Geno4ME LDP method.

Sample ID Expected SV/CNV

NIBSC 1 None

NIBSC 2 None

NIBSC 3 MSH2 deletion exons 1–6, heterozygous

NIBSC 4 MSH2 deletion exon 7, heterozygous

NIBSC 5 MSH2 deletion exons 1–2, heterozygous

NIBSC 6 MSH2 deletion exon 1, heterozygous

NIBSC 7 MLH1 exon 13 amplification (three or more copies)

to be true positives for comparison. For genes where a different 
transcript was selected between the Geno4ME LDP and ORM, gene 
variants were remapped to the Geno4ME LDP selected transcript 
(Supplementary Table S2). In total, Geno4ME LDP variant calling 
results for 188 samples (119 whole blood and 69 saliva from 
the WGS Validation ORM group, Supplementary Spreadsheet SA) 
were validated by comparison the OS-ORM. Sensitivity, specificity, 
and accuracy of the Geno4ME LDP for variant calling was 
further tested by comparison to germline data from a previously-
described cohort of 25 cancer patient reference samples sequenced 
by a clinically-validated WES assay (WES Comparison Validation 
Group, Supplementary Spreadsheet SA) (Bigelow et al., 2022).

Reference DNA samples for CNV caller validation Geno4ME 
LDP were obtained from the National Institute for Biological 
Standards and Control (NIBSC, UK Stem Cell Bank Blanche Lane 
South Mimms Potters Bar Herts. EN6 3QG, NIBSC code: 11/218-
XXX). Seven purified human genomic DNA samples with or without 
CNV variants in MLH1 and MSH2 were tested using the Geno4ME 
LDP and compared to the known copy number genotypes provided 
by the manufacturer (Table 1). Accuracy of the Geno4ME LDP 
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TABLE 2  List of drugs and their associated PGx genes assayed.

Drug(s) Drug type Associated gene(s)

Warfarin Anticoagulant/antiplatelet VKORC1, CYP2C9, CYP4F2, rs12777823

Clopidogrel Anticoagulant/antiplatelet CYP2C19

Lansoprazole
Omeprazole
Pantoprazole

Proton pump inhibitors CYP2C19

Citalopram
Escitalopram

Selective serotonin reuptake inhibitors CYP2C19

TABLE 3  Summary of samples used for validation in this work.

Validation group N Individuals N samples Purpose

EHR Comparison 30 30 Validation of DRAGEN WGS variant calling

WGS Validation ORM 188 188 Validation of Geno4ME LDP variant calling and PGx diplotyping to OS-ORM

WGS Validation SBa 60 120 Validation of Geno4ME LDP variant calling and PGx diplotyping between Saliva and Blood samples

WGS Validation CNV N/A 7 Validation of CNV calling using the Geno4ME LDP to previously characterized DNA samples

WES Comparison 24 24 Validation of Geno4ME LDP variant calling to orthogonal WES-ORM

WGS Validation PGx N/A 18 Validation of Geno4ME LDP PGx using previously characterized Coriell cell lines

a59 samples for the Saliva-Blood comparison overlap with the WGS validation ORM validation group.

TABLE 4  Coverage over genome metrics calculated by validation group.

Validation group N samples Mean Median SD Min Max

EHR Comparison 30 35.8X 35.6X 7.37X 20.9X 50.2X

WGS Validation (ORM + SB) 249 36.5X 37.0X 9.4X 16.5X 62.3X

WGS Validation CNV 7 40.4X 38.4X 6.8X 34.2X 53.9X

WES Comparison 24 37.2X 35.2X 8.7X 24.9X 54.7X

WGS Validation PGx 18 40.0X 41.9X 6.0X 30.7X 48.5X

was measured by identification of expected exon CNVs alterations 
characterized by the manufacturer. 

Geno4ME LDP PGx genotyping and PGx 
phenotyping

Five PGx genes with gene-drug prescribing guidelines were 
selected based on the published joint recommendations from 
Clinical Pharmacogenetics Implementation Consortium (CPIC) 
and the U.S. Food and Drug Administration (Hicks et al., 
2015; Lima et al., 2021; Scott et al., 2013; US Food and 
Drug Administration, 2020; Johnson et al., 2017). For these five 
PGx genes, variants were selected based on recommendations from 

AMP, the College of American Pathologists (CAP), and/or CPIC 
(Johnson et al., 2017; Pratt et al., 2019). The pre-selected defining 
PGx variants, the logic to define genotypes as well as the genotypes 
to phenotype mapping were implemented into Fabric Genomics 
cloud platform and used as part of the Geno4ME LDP (henceforth 
referred to as Geno4ME LDP PGx). The PGx panel considered 
for validation included 7 gene-drug pairs that were selected based 
on FDA and CPIC guidelines (Table 2). For CYP2C19, both Tier 1 
(∗2,∗3, and∗17) and Tier 2 (∗4A,∗4B,∗5,∗6,∗7,∗9,∗10, and∗35) alleles 
were included per AMP/CAP recommendation, CYP2C9 Tier 1 
alleles (∗2,∗3,∗5,∗6,∗8, and∗11), VKORC1 (c.-1639G>A, rs9923231), 
CYP4F2 (∗3), and the single variant rs12777823 (CYP2C cluster) 
were included as recommended in the CPIC guideline for warfarin. 
The genotype to phenotype mapping was based on PharmGKB, 
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FIGURE 3
Molecular consequences of all matched variants identified in patient EHRs and compared to the DRAGEN WGS variant calling. A total of 33 variants 
across 30 patient EHRs had variant matches in the DRAGEN WGS variant calling pipeline and the majority were missense (A). Out of the variants 
identified in patient EHRs, 13 genes were represented (B).

FIGURE 4
Molecular consequences and distribution of genes with matching P/LP classifications for all matched variants identified in the WGS Validation cohort. 
The WGS Validation cohort was tested using the Geno4ME LDP and OS-ORM in parallel. A total of 17 variants across 17 participants had matches to the 
ORM and the majority were missense (A). Out of 14 P/LP variants that matched between the WGS Validation cohort and the OS-ORM, 7 genes were 
represented and the most frequent gene with P/LP variants was MUTYH (B).

CPIC, and PharmVar annotations (Supplementary Table S3) 
(Johnson et al., 2017; Gaedigk et al., 2021; Whirl‐Carrillo et al., 
2021). CYP2C19, CYP2C9, and CYP4F2 alleles negative for assayed 
variants were designated as ∗1. 

Validation of Geno4ME LDP PGx 
genotyping

Validation of CYP2C19, CYP2C9, CYP4F2, VKORC1 genotyping 
by Geno4ME LDP PGx was performed by comparison to a 
CLIA-certified commercial molecular laboratory using an outside 

reference method for PGx (OS-ORM PGx). The outside reference 
method for PGx validation was MassARRAY genotyping (Invitae). 
Accuracy of Geno4ME LDP PGx genotyping against the ORM PGx 
was performed using the same 188 samples used for validating the 
Geno4ME LDP variant call concordance (WGS Validation ORM 
group, Supplementary Spreadsheet SA). In addition, accuracy of 
Geno4ME LDP PGx genotyping was further validated by comparing 
Geno4ME LDP PGx to 18 previously characterized cell lines/DNA 
samples (WGS Validation PGx validation group). The following 
cell lines/DNA samples were obtained from the NHGRI Sample 
Repository for Human Genetic Research at the Coriell Institute for 
Medical Research: NA7019, NA7029 NA07439, NA10847, NA12717 
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TABLE 5  Concordance of the Geno4ME LDP and the ORM for identifying 
gene SNVs/indels in the WGS Validation cohort.

Cohort WGS validation ORM

N samples 188

Experimental Method Geno4ME LDP

Reference Method Hybridization-based NGS

Positive genes confirmed by Reference 
Method

17/17

Negative genes confirmed by 
Reference Method

14,382/14,382

Effect size Percent (95% CI)

Sensitivity 100% (80.5%–100%)

Specificity 100% (100%–100%)

Positive Predictive Value 100% (80.5%–100%)

Negative Predictive Value 100% (100%–100%)

NA17641, NA18524, NA19109, NA23275, NA24008, HG00436, 
HG00589, HG01190, NA07348, NA12003, NA12878, NA19207, and 
NA19785. These cell lines/DNA samples were used to validate the 
Geno4ME LDP PGx for CYP2C19, CYP2C9, CYP4F2, and VKORC1
diplotypes based on previously described diplotypes (Pratt et al., 
2016). Genotypes not supported by the Geno4ME LDP PGx were 
not evaluated for accuracy when comparing to the NHGRI Coriell 
samples. The single variant rs12777823 was not supported by the OS-
ORM PGx or NHGRI Coriell reference method and was therefore 
not compared to the Geno4ME LDP PGx method. Overall, the 
total number of individual samples used for Geno4ME LDP PGx 
validation was 206. 

Statistics and plots

Sensitivity, specificity, Positive Predictive Value (PPV), Negative 
Predicative Value (NPV), and 95% confidence intervals (Cis) 
were calculated using the MedCalc Diagnostic Test evaluation 
calculator online tool (https://www.medcalc.org/calc/diagnostic_
test.php). Graphs were created using Graphpad Prism (v10.1.1) 
or Rstudio (v2023.06.01, R version 4.3.1). For comparisons of the 
Geno4ME LDP for gene variant calling to the ORM and WES-RM, 
a positive gene match was determined if all variants detected within 
a gene matched between the Geno4ME LDP and reference method. 
Negative genes were determined if no variants were reported in 
either the Geno4ME LDP or reference method. Due to assay 
limitations, MSH3 exon 1 and the PMS2 regions with high homology 
to its pseudogene PMS2CL (exon 9 and exons 11–15) were excluded 
for comparisons of the Geno4ME LDP to the OS-ORM and WES-
RM. A summary of validation group sample sizes and their purposes 
is shown in Table 3.

Results

Cohort composition and sequencing 
characteristics

For the WGS Validation ORM and WGS Validation SB validation 
groups the average age at time of collection was 56.5 years (SD = 
13 years, N = 189 individuals). Out of these 189 participants, 157 
self-reported sex as female and 32 as male. 60 participants provided 
matched saliva and blood samples. The average WGS sequencing 
coverage over human genome, separated by validation group, is shown 
in Table 4. Median coverage over genome per group ranged from 
35.2–41.9X median per-base coverage. Samples used for inter-run 
variation analysis had a mean coverage over genome of 34.2X (SD = 1.7, 
CV = 4.9%). Samples used for intra-run variation analysis had a mean 
coverage over genome of 40.9X (SD = 8.8, CV = 21.4%). Full sequencing 
metrics for individual samples and by validation group are shown in 
Supplementary Figures S1–S3 and Supplementary Spreadsheet SA. 

Concordance of DRAGEN WGS variant 
calling method to variants from patient 
EHRs

A total of 33 variants identified across 30 patient EHRs 
were used for comparison to the WGS DRAGEN variant caller 
(Supplementary Spreadsheet SB). Most identified variants were 
missense (Figure 3A) and the most frequent gene represented was 
BRCA1 (Figure 3B). 

Patient HR23 was found to have a large, multi-exon 
heterozygous BRCA1 deletion identified by DRAGEN (BRCA1
c.678_4740del, del BRCA1 exons 10–15/24) and this deletion had 
99% overlap with the deletion described by EHR (BRCA1 c.671_
4675del). Overall, all 33 variants identified in patient EHRs were 
identified using the WGS DRAGEN variant caller. 

Concordance of Geno4ME LDP variant 
calling with the ORM

Within the WGS Validation ORM group, an average of 453.2 
total variants per sample (SD = 141.7) were evaluated by the 
Geno4ME LDP. Most identified variants were SNVs, MNVs, or 
indels (N = 188, Supplementary Figure S4). Using the Geno4ME 
LDP, a total of 17 genes across 17 different participants were positive 
with a P/LP variant and most of these P/LP variants were missense 
(Figure 4A; Supplementary Spreadsheet SC). The results of the 
Geno4ME LDP were compared to the OS-ORM and were found to 
match with 100% concordance (Table 5; Supplementary Figure S5). 
Overall, 7 different genes with P/LP variants were represented in the 
WGS Validation ORM group (Figure 4B). 

Performance of Geno4ME LDP for initial 
classification of variants

Across the 188 samples in the WGS Validation ORM validation 
group, 13,096 SNV, MNV, or indel variants were initially evaluated 

Frontiers in Molecular Biosciences 08 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1669085
https://www.medcalc.org/calc/diagnostic_test.php
https://www.medcalc.org/calc/diagnostic_test.php
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Wagner et al. 10.3389/fmolb.2025.1669085

TABLE 6  Performance of the ACE autoclassification software for initial classification of variants in the WGS validation ORM group heritable disorder 
gene panel.

Final classification (ACE + ACMG)

ACE Autoclassification

B LB VUS LP P Totala

B 11,533 0 0 0 0 11,533

LB 0 1,101 0 0 0 1,101

VUS 250 0 197 0 8b 455

LP 0 0 1 0 3 4

P 0 0 0 0 3 3

Totala 11,783 1,101 198 0 14

aThe number of samples represented is N = 188 across the WGS Validation ORM group.
bTwo instances of the established risk allele APC c.3920T>A p.Ile1307Lys are included as Pathogenic.

TABLE 7  Variant concordance between the Geno4ME LDP and 
WES-ORM in the WES Comparison cohort.

Cohort WES comparison

N samples 25

Experimental Method Geno4ME LDP

Reference Method WES

Positive genes confirmed by Reference 
Method

77/78

Negative genes confirmed by 
Reference Method

874/874

Effect size Percent (95% CI)

Sensitivity 98.7% (93%–100%)

Specificity 100% (99.6%–100%)

Positive Predictive Value 100% (95.3%–100%)

Negative Predictive Value 99.9% (99.2%–100%)

and classified by ACE in the Fabric Enterprise platform (Table 6). 
Of the 455 variants classified by ACE as VUS, 250 were reclassified 
as benign following curation. Most of these 250 variants reclassified 
from VUS to benign consisted of two missense variants that were 
interpreted by automated pipelines as MNVs without a presence 
in population databases (dbSNP reference alleles rs386638457 and 
rs386643884) instead of separate, high population frequency SNVs. 
Eight variants initially classified by ACE as VUS were reclassified 
to pathogenic following manual curation. One variant, the in-frame 
insertion variant WT1 c.378_392dup p.Ala127_Pro131dup, was 
classified by ACE as LP but after manual curation was reclassified as 
VUS. Overall, no variants classified by ACE as B/LB were later found 
to be LP/P following comparison to variant classification results 
from the ORM or manual review. 

Concordance of Geno4ME LDP and 
WES-RM variant calling

A total of 78 variants across 25 samples were identified using the 
Geno4ME LDP and/or the WES-ORM within the WES Validation 
ORM validation group (Table 7; Supplementary Spreadsheet SD). 
Most of the identified variants were missense (Figure 5A). Of 
the 78 variants identified, 63 unique variants were represented 
across 26 different genes (Figure 5B). All variants were identified 
in both the Geno4ME LDP and WES-ORM for each sample, 
except for a TP53 c.854A>T p.Glu285Val variant in sample gme-
wes-19 that was present at 27% VAF only in the previously 
sequenced WES data. Investigation of the raw WGS DRAGEN 
variant calling data for the sample revealed two supporting 
reads for the TP53 c.854A>T p.Glu285Val variant (depth = 15) 
but a low variant quality score (Qual = 5.18) that resulted in 
filtering by the Fabric Enterprise platform. Review of the patient 
medical record revealed that a matched solid tumor specimen 
that was sequenced using hybrid-capture NGS and contained 
the TP53 variant at 5% VAF. Using the WES-ORM as the 
reference method, the Sensitivity and Specificity of Geno4ME 
LDP for variant calling was 98.72% and 100%, respectively 
(Table 7; Supplementary Figure S6). 

Performance of the Geno4ME LDP for 
identification of large CNVs

Seven control NIBSC samples were tested using the Geno4ME 
LDP to evaluate CNV caller accuracy at single and multi-exon 
resolution. All five samples with CNVs characterized by the sample 
provider were identified using one or both GenoME LDP CNV 
calling algorithms to affect the same expected gene exons with 
the same zygosity and CNV type (Supplementary Spreadsheet SE). 
Two samples expected to be negative for CNV alterations were also 
negative by Geno4ME LDP. Overall, the concordance between the 
CNV alterations described by the sample provider for the seven 
control NIBSC samples and the Geno4ME LDP was 100%. 
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FIGURE 5
Molecular consequences and genes represented for of all matched variants identified comparing Geno4ME LDP to WES-ORM. A total of 78 variants 
were identified across all samples, with the majority being missense (A), and 26 unique genes were represented (B).

TABLE 8  PGx variant concordance of the Geno4ME LDP method and DNA derived from previously characterized NHGRI coriell samples.

Cohort size Number of matching samples Gene Concordant variants

N = 18 18/18 (100%)

CYP2C19 18/18 (100%)

CYP2C9 16/16 (100%)

CYP4F2 14/14 (100%)

VKORC1 18/18 (100%)

Concordance of Geno4ME LDP PGx with 
NHGRI coriell samples

Eighteen samples obtained from NHGRI Coriell with known 
CYP2C19, CYP2C9, CYP4F2, and VKORC1 diplotypes (WGS 
Validation PGx group) were evaluated using the Geno4ME LDP 
PGx. Of these samples, six diplotype calls across five NHGRI 
Coriell samples could not be evaluated due to the diplotype 
being unknown or not supported by the Geno4ME LDP PGx 
pipeline (Supplementary Spreadsheet SF). For diplotypes supported 
by the Geno4ME LDP PGx, the overall concordance between the 
Geno4ME LDP PGx and the previously characterized NHGRI 
Coriell samples was 100% (Table 8). 

Concordance of Geno4ME LDP PGx to 
ORM PGx

Performance of the Geno4ME LDP PGx was further 
evaluated by comparing Geno4ME LDP PGx results of the 
WGS Validation ORM validation group to the OS-ORM PGx 
(N = 188). The most common diplotype for each gene was 
CYP2C19∗1/∗1, CYP2C9∗1/∗1, CYP4F2∗1/∗1, and VKORC1
GA (Table 9). Most participants in the WGS Validation ORM 
validation group had normal metabolizer status for CYP2C19
and CYP2C9 (Table 10). Slightly more than half of participants 
were classified as warfarin resistant based on CYP4F2 diplotype 

and/or were warfarin sensitive based on VKORC1 diplotype. For 
one participant, gme-039, the CYP2C19 diplotype was identified 
using the Geno4ME LDP method as∗4A/∗17 and the OS-ORM 
PGx as∗4/∗17. However, the discrepancy was determined to 
be due to nomenclature differences of reporting∗4 suballeles 
where∗4A and∗4 have the same core alleles and phenotype. The 
overall concordance between the Geno4ME LDP and ORM PGx 
diplotyping for CYP2C19, CYP2C9, CYP4F2, and VKORC1 was 
100% (Table 11; Supplementary Spreadsheet SG). 

Concordance between blood and saliva 
samples using the Geno4ME LDP

Of the 60 participants with matched blood and saliva 
samples that were processed using the Geno4ME LDP (WGS 
Validation SB validation group), 32 matched pairs were positive 
for P/LP or VUS variants and 28 were screen-negative (Table 12). 
Within the 32 positive matched pairs, the majority of the 
47 matching variants were missense (Figure 6A). These 47 
variants were identified across 26 different genes and the overall 
concordance between DNA derived from blood or saliva was 
100% (Figure 6B; Supplementary Spreadsheet SH). For these 
same 60 participants, Geno4ME LDP PGx diplotype results 
for CYP2C19, CYP2C9, CYP4F2, VKORC1, and rs12777823 
were compared and had an overall concordance of 100% 
(Table 13; Supplementary Spreadsheet SI).
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TABLE 9  Distribution of PGx gene diplotypes from the WGS validation 
cohort identified using the Geno4ME LDP.

Gene Diplotype n Percent

CYP2C19

∗1/∗1 73 38.8%

∗1/∗17 50 26.6%

∗1/∗2 35 18.6%

∗2/∗17 13 6.9%

∗17/∗17 8 4.3%

∗2/∗2 5 2.7%

∗1/∗3 1 0.5%

∗2/∗4B 1 0.5%

∗4A/∗17 1 0.5%

∗8/∗17 1 0.5%

CYP2C9

∗1/∗1 127 67.6%

∗1/∗2 36 19.1%

∗1/∗3 20 10.6%

∗2/∗3 3 1.6%

∗2/∗2 2 1.1%

CYP4F2

∗1/∗1 88 46.8%

∗1/∗3 85 45.2%

∗3/∗3 15 8.0%

VKORC1

GA 109 58.0%

GG 61 32.4%

AA 18 9.6%

rs12777823

GG 132 70.2%

GA 53 28.2%

AA 3 1.6%

Discussion

Rapid increases in sequencer capacity and throughput, 
automation and AI assistance for variant detection and 
interpretation, and significant decreases in per base sequencing 
costs are making it feasible to use WGS for routine clinical 
applications. Given that a majority of individuals carrying an 
actionable P/LP variant are unaware of their carrier status 
(Zawatsky et al., 2021), and that accumulating evidence suggests that 
identifying individuals for testing based on medical history alone 
insufficiently captures the majority of individuals with monogenic 
risk for a heritable genetic condition (Manickam et al., 2018; 
Abul-Husn et al., 2016; Murray et al., 2020), the introduction of 

TABLE 10  PGx metabolizer status distribution from the WGS 
validation cohort.

Gene Metabolizer status n Percent

CYP2C19

Normal metabolizer 73 38.8%

Intermediate metabolizer 51 27.1%

Rapid metabolizer 50 26.6%

Ultrarapid metabolizer 8 4.3%

Poor Metabolizer 6 3.2%

CYP2C9

Normal metabolizer 127 67.6%

Intermediate metabolizer 56 29.8%

Poor metabolizer 5 2.7%

CYP4F2
Warfarin resistant 100 53.2%

Normal warfarin sensitivity 88 46.8%

VKORC1
Warfarin sensitive 127 67.6%

Normal warfarin sensitivity 61 32.4%

rs12777823
Normal warfarin sensitivity 132 70.2%

Warfarin sensitive 56 29.8%

WGS-based screening of patient populations has high potential 
for improving health outcomes. Furthermore, several recent 
studies have demonstrated the utility of population-based high-
throughput genomic screening for facilitating early disease 
detection, risk management, and reducing adverse drug reactions 
(Buchanan et al., 2020; Grzymski et al., 2020; Rao et al., 2023;
Swen et al., 2023).

To address this opportunity for improving health outcomes, 
we show that the Geno4ME LDP is a highly accurate clinical 
procedure for evaluating actionable genomic variants. We found 
100% of previously tested variants obtained from patient EHRs to 
be identified using the DRAGEN WGS variant caller. The Geno4ME 
LDP had high overall agreement with well-characterized reference 
samples and with samples orthogonally tested by the ORM or WES-
RM. When compared to variants identified using the OS-ORM 
PGx, the Geno4ME LDP had 100% sensitivity and specificity for 
identifying variants of interest. In addition, the Geno4ME LDP 
had 100% accuracy when compared to CNV and PGx reference 
samples. One notable discrepancy was the presence of a predicted 
pathogenic TP53 c.854A>T p.Glu285Val in one WES sample but 
absent using Geno4ME LDP. The low level VAF of the TP53 variant 
in the matched tumor sample compared to the control blood sample 
suggested that the variant may represent chimerism or, more likely, 
clonal hematopoiesis of indeterminate potential (CHIP). However, 
the patient was deceased at the time of Geno4ME LDP testing and 
therefore additional sample could not be obtained to definitively 
determine the origin of the TP53 variant in the WES data. This 
discrepancy demonstrates the need for genomic screening clinical 
tests to be understood in the context of the patient’s/participant’s 
medical history, and like all germline testing the ability to assess 
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TABLE 11  Concordance of the Geno4ME LDP method and the OS-ORM PGx for identifying PGx diplotypes in the WGS validation cohort.

Cohort Experimental
method

Reference
method

Gene tested Number of
concordant 
results

Percent
concordance

WGS Validation ORM Geno4ME LDP
MALDI-TOF
Genotyping

CYP2C19 188 100%

CYP2C9 188 100%

VKORC1 188 100%

CYP4F2 188 100%

TABLE 12  Small variant concordance of the WGS-Fabric method between DNA derived from blood or saliva for the same participants.

Cohort Outcome Number of matching samples Concordant variants

WGS Validation SB
Positive 32/32 (100%) 47/47 (100%)

Negative 28/28 (100%) NA

FIGURE 6
Molecular consequences and genes represented for all matched variants identified in the WGS Validation cohort comparing DNA derived from blood 
or saliva using Geno4ME LDP. A total of 47 variants were identified across all samples, with the majority being missense (A), and 26 unique genes were 
represented (B).

TABLE 13  PGx variant concordance of the Geno4ME LDP method between DNA derived from Blood or Saliva for the same participants.

Cohort Number of matching samples Gene Concordant variants

WGS Validation SB 60/60 (100%)

CYP2C19 60/60 (100%)

CYP2C9 60/60 (100%)

CYP4F2 60/60 (100%)

VKORC1 60/60 (100%)

rs12777823 60/60 (100%)
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fibroblast cell lines if needed, particularly with TP53 variants. 
Notably, detection of low-level chimerism or CHIP likely requires an 
increased read depth that was outside the scope of this population 
genomics study. Future iterations of the Geno4ME LDP could 
benefit from increased coverage or other highly sensitive detection 
methods to detect CHIP, which is now being recognized to have 
possible implications for clinical decision making (Libby et al., 2019; 
Zhang et al., 2025; Uddin et al., 2022).

The feasibility of using a clinical lab procedure such as Geno4ME 
LDP for large populations requires scalability at both the levels 
of sample collection and data analysis. We found identical variant 
concordance between samples obtained using saliva or blood. 
Our work agrees with previous data suggesting that once oral 
microbiome reads are excluded, saliva-derived and blood-derived 
genomic DNA are generally comparable in quality for clinical 
WGS workflows (Yao et al., 2020; Kvapilova et al., 2024). Since 
saliva can be obtained via at-home collections without the need 
for a phlebotomist, the sample type would be more conducive to 
population health applications. At the level of data analysis, use 
of ACE in the variant curation process rapidly screened variants 
of interest and allowed for reduced hands-on time for manually 
curating variants. For example, out of 113,096 evaluated variants 
in the WGS Validation ORM group heritable disorder gene panel, 
ACE was able to reduce the number of variants requiring manual 
evaluation to 250 (0.02% of all variants evaluated in the group) 
without loss of P/LP identification sensitivity. In addition, the 
automated Geno4ME LDP PGx accurately diplotyped all samples, 
providing predicted metabolizer status for all PGx genes analyzed in 
this study without manual intervention.

Upfront testing of the whole genome using a method such 
as Geno4ME LDP allows for simultaneous testing of multiple 
genomic features while also allowing for future incorporation of 
additional screened genes and/or polygenic risk tests through region 
unmasking. Because the Geno4ME LDP was validated for all variant 
types of interest, new genes can rapidly be added to the panel 
in the future. Reasons for reanalysis using the Geno4ME LDP 
could include new gene-disease associations, additional information 
availability for a patient, and advances in variant calling techniques 
(Robertson et al., 2022). In principle, reanalysis of gene variants in 
the Geno4ME LDP for newly or previously selected genes would 
be achieved by simply passing previously generated WGS variant 
data through Fabric Enterprise platform with updated population, 
predictive, and curated databases. Future reanalysis of participants 
tested using the Geno4ME LDP as part of the Geno4ME clinical 
implementation study (N = 2,017 participants) may provide valuable 
insight into the usefulness and challenges of iterative population 
genomic testing (Lucas Beckett et al., 2025).

We acknowledge that there are remaining challenges when using 
short-read sequencing for achieving comprehensive population 
genomics testing. Recent work suggests that complex structural 
variants represent a substantial component of actionable genomic 
conditions (Collins et al., 2020). In addition, highly polymorphic 
genes such as relevant PGx gene CYP2D6, pseudogene regions, and 
highly repetitive regions continue to present analysis challenges 
(Kane, 2021; Morton et al., 2020; C et al., 2020). Although WGS 
tools for genotyping CYP2D6 are available (Chen et al., 2021), the 
clinical importance of CYP2D6 would necessitate comprehensive 
validation if it were to be part of the Geno4ME LDP, and may 

require alternative sequencing methods to capture complex alleles 
(Pratt et al., 2021). A similar alternative sequencing strategy may also 
be necessary for detection of alleles in PMS2 that are confounded by 
its pseudogene, PMS2CL (Bouras et al., 2024; Gould et al., 2018). We 
also recognize that while we were able to confirm accurate detection 
of several CNVs in available reference material, the Geno4ME LDP 
could benefit from CNV detection validation at other regions to 
ensure the behavior of CNV detection is reproducible for other genes 
in the panel. Future comparisons of the Geno4ME LDP to well-
characterized complex reference samples will determine the limits of 
the method for detecting actionable SV and polymorphic variation 
as part of clinical testing.
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