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Misfolding and aggregation of intrinsically disordered proteins into amyloid fibrils 
are central to neurodegenerative diseases such as Parkinson’s, Alzheimer’s, 
and Huntington’s. Increasing evidence suggests that transient, low-populated 
oligomeric intermediates, rather than mature fibrils, are key cytotoxic species. 
Natural polyphenols have shown promise as amyloid inhibitors, though 
their mechanisms of action remain unclear due to the complexity of 
early aggregation. This perspective explores how solution-state NMR can 
quantitatively assess inhibitor mechanisms. Building on recent literature 
elucidating the aggregation mechanisms of the huntingtin exon 1 protein (httex1), 
responsible for Huntington’s disease, we propose a kinetic framework that 
integrates early reversible oligomerization with downstream fibril formation and 
models the impact of small-molecule binding at distinct stages of the pathway. 
We show that monomer sequestration and inhibition of elongation-competent 
nuclei produce distinct aggregation profiles, resolvable through global fitting of 
NMR and kinetic data. This mechanistic insight enables classification of inhibitors 
by target stage—monomeric, oligomeric, or fibrillar—and demonstrates how 
polyphenols serve as a biologically relevant case study for applying this general 
NMR-driven framework to the design of small-molecule amyloid inhibitors.

KEYWORDS
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 1 Introduction

Protein misfolding, aggregation, and fibrillation are central to neurodegenerative 
diseases such as Parkinson’s, Alzheimer’s, and Huntington’s. These processes are often 
initiated by partial unfolding of native monomeric precursors, generating aggregation-
prone conformers that nucleate the formation of toxic oligomers and, ultimately, insoluble 
cross-β sheet fibrils (Chen and Wetzel, 2001; Fitzpatrick et al., 2013; Sawaya et al., 2007).

While mature amyloid fibrils were historically considered the primary pathogenic 
entities, accumulating evidence identifies early-stage intermediates—monomers, dimers, 
low-molecular-weight oligomers, and protofibrils—as the principal mediators of cellular
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toxicity (Cascella et al., 2021; Fusco et al., 2017; Li et al., 
2011; Miguez et al., 2023; Nucifora et al., 2012). Consequently, 
early misfolded intermediates represent critical targets for 
therapeutic intervention, offering a window of opportunity before 
irreversible fibril deposition (Chebaro and Derreumaux, 2009; 
Garfagnini et al., 2024; Lemkul and Bevan, 2012).

Despite this understanding, most current therapeutic strategies 
remain symptomatic and lack the molecular precision to address 
upstream misfolding and oligomerization events. Therefore, there 
is a pressing need to identify inhibitors that can selectively target 
transient, low-populated species to delay or prevent pathology at 
its origin. Shifting the focus from downstream fibrillar insoluble 
aggregates to early soluble species may enable effective disease-
modifying treatments and redefine the therapeutic paradigm for 
amyloid-related disorders.

In this context, solution-state nuclear magnetic resonance 
(NMR) spectroscopy stands out as a powerful tool. Unlike 
fluorescence-based assays such as Thioflavin T (ThT), which 
selectively binds β-sheet-rich fibrils (Biancalana and Koide, 2010), 
or more recent-developed probes like ANS and taBODIPY designed 
to detect pre-fibrillar intermediates (Li et al., 2024), but still 
constrained by extrinsic binding, limited structural insight, and 
potential interference with native aggregation pathways—solution 
NMR enables atomic-resolution analysis of protein conformational 
states and interactions.

Here, we highlight recent NMR advances that enable the 
detection and kinetic characterization of transient species 
exchanging on the microsecond-to-millisecond timescale, alongside 
the detailed elucidation of early aggregation mechanisms. 
We focus on huntingtin exon 1 protein (httex1) as a model 
amyloid system. Its well-characterized aggregation behavior and 
defined oligomerization intermediates make it ideally suited 
for dissecting amyloid nucleation and fibrillation mechanisms 
(Ceccon et al., 2020b; Ceccon et al., 2022; Kotler et al., 2019). 
As shown in Figure 1A, httex1 aggregation proceeds via a rapid 
“pre-nucleation” phase that generates elongation-competent 
nuclei through “primary nucleation”. These nuclei seed fibril 
elongation by monomer addition and can also catalyze “secondary 
nucleation” on fibril surfaces, thereby amplifying the aggregation 
process. This sequence ultimately leads to the accumulation of 
insoluble amyloid fibrils during the slower “fibrillation” phase 
(Ceccon et al., 2022; Torricella et al., 2024).

We further introduce a theoretical kinetic framework 
extending classical aggregation models (Cohen et al., 2011c; 
Cohen et al., 2011a; Cohen et al., 2011b) by incorporating 
reversible inhibitor binding at distinct stages of the aggregation 
process. With this perspective, we aim to provide a conceptual and 
methodological platform for the rational design and screening of 
inhibitors targeting nucleation intermediates in amyloid-related
disorders. 

1.1 Natural polyphenols as potential 
inhibitors of amyloid aggregation

Among the various classes of small molecules studied as 
aggregation inhibitors, natural polyphenols have emerged as 
broad-spectrum modulators of amyloid formation. Numerous 

studies support their neuroprotective effects across models of 
neurodegenerative diseases. For instance, resveratrol, a stilbene 
from grapes, has shown protective activity in Alzheimer’s 
models (Ge et al., 2012; Ladiwala et al., 2010). Taxifolin, a 
dihydroflavonol, inhibits Aβ oligomers (Sato et al., 2013), while 
(−)-epigallocatechin-3-gallate (EGCG), found in grape seeds and 
green tea, interferes with β-sheet formation and reduces mutant 
huntingtin aggregation (Ehrnhoefer et al., 2011; Fernandes et al., 
2021). Among simpler phenolics, gallic acid—a major grape-
derived compound—has shown significant anti-amyloidogenic 
activity. It inhibits aggregation of both Aβ and α-synuclein, 
shifting the equilibrium toward off-pathway, non-toxic oligomers 
(Liu et al., 2014; 2013).

Despite these promising outcomes, the precise molecular 
mechanisms of polyphenol-mediated inhibition remain unclear. 
Evidence suggests polyphenols interact with conserved structural 
motifs that recur across amyloidogenic proteins (Barreca et al., 2017; 
Ehrnhoefer et al., 2011; Murray et al., 1994). Polyphenols offer 
attractive scaffolds due to their chemical diversity, modifiability, and 
tunable bioavailability (Sahraeian et al., 2024; Williamson, 2025), 
allowing for structure–activity relationship studies and synthetic 
optimization (Hasnat et al., 2024; Liu et al., 2024). This versatility, 
combined with natural origin and low toxicity, makes them ideal 
leads for developing selective aggregation inhibitors (Davison and 
Brimble, 2019). 

2 Probing amyloid pre-nucleation, 
fibril formation and inhibition 
mechanisms via NMR

2.1 Exchanged-induced chemical shift and 
relaxation techniques

Understanding the molecular events that precede amyloid fibril 
formation is essential to identify early determinants of protein 
misfolding diseases. Pre-nucleation processes typically involve 
low-populated, short-lived oligomeric species, often invisible to 
conventional structural biology tools. Yet in systems such as 
Aβ, α-synuclein, huntingtin, and tau, such elusive intermediates 
play critical roles in seeding aggregation, modulating toxicity, 
and shaping the pathway toward mature fibrils (Fusco et al., 
2017; Li et al., 2011; Miguez et al., 2023; Nucifora et al., 2012). 
Solution NMR methods—including Carr–Purcell–Meiboom–Gill 
(CPMG) relaxation dispersion (Palmer, 2004), exchange-induced 
chemical shift (δex) (Vallurupalli et al., 2011), and spin-lock 
R1ρ measurements (Palmer and Massi, 2006)—have enabled 
detection and kinetic characterization of these elusive species. These 
techniques were systematically applied to huntingtin exon 1 (httex1) 
protein by the group of Marius G. Clore (Ceccon et al., 2020b; 
Ceccon et al., 2020a; Ceccon et al., 2021a; Ceccon et al., 2022; 
Kotler et al., 2019), establishing a robust experimental and analytical 
framework for quantifying pre-nucleation oligomerization. Httex1

comprises three domains: an N-terminal amphipathic segment (NT, 
∼17 residues) that promotes oligomerization and aggregation; a 
central polyglutamine (polyQ) tract, whose pathological expansion 
(≥35 glutamines) triggers rapid aggregation and amyloid fiber 
formation, ultimately leading to neuronal dysfunction; and 
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FIGURE 1
(A) Schematic representation of the aggregation pathway of the pathogenic httex1Q35 variant, including pre-nucleation events, primary nucleation, and 
fibril elongation. Monomeric httex1 (m) sequentially self-associates into tetrameric helical bundles (T) via coiled-coil dimers (D), followed by irreversible 
conversion into elongation-competent nuclei (P), which seed fibril formation (M). (B) NMR measurements used to probe pre-nucleation 
oligomerization of non-pathogenic httex1Q7: exchange-induced chemical shift perturbation (δex) acquired as a function of concentration of httex1Q7, 
concentration-dependent 15N R1ρ relaxation dispersion profiles recorded at three spin-lock RF field strengths: 750 Hz (red), 1,500 Hz (black), and 
3,000 Hz (blue), 15N CPMG relaxation dispersion curves acquired for [httex1Q7] = 0.3 mM (green), 0.6 mM (blue), and 0.8 mM (black). In all 3 panels, 
best-fitted curves and experimental data are represented as solid lines and circles, respectively. Data adapted from (Ceccon et al., 2022; Ceccon et al., 
2020a). (C) Corresponding kinetic scheme that accounts for experimental data, describing the pre-nucleation of httex1Q7. The off-pathway dimer 
species (D∗) is shown here for completeness. (D) Effects of inhibitor on httex1Q7 pre-nucleation and corresponding NMR observables. Simulated δex, R1ρ 
and CPMG data in the presence of increasing concentrations of inhibitor ([I] = 0.2, 0.4, 0.8 mM) are based on the extended kinetic model in panel (E)
where the inhibitor selectively binds monomeric httex1Q7 (m) forming a reversible monomer-inhibitor complex (mI) (KD,mI = 50 μM). Additional details of 
the simulations of δex, R1ρ, and CPMG data are provided in the Supplementary Material (SI). Species distributions (D∗, m, D, T, mI) shown in (C) and (E)
correspond to the equilibrium populations calculated for [httex1Q7] = 1.2 mM.

a proline-rich domain (PRD) which reduces aggregation by 
increasing solubility (Bates et al., 2015; Chen and Wetzel, 2001;
Kar et al., 2011).

To dissect early molecular events of amyloid aggregation, Clore’s 
group employed a non-pathological httex1Q7 construct containing 
only 7 glutamine repeats (Ceccon et al., 2020b; Ceccon et al., 
2021a). This truncated construct remains largely monomeric for 

several weeks, enabling high-resolution NMR studies under near-
physiological conditions. To investigate the mechanism of pre-
nucleation oligomerization, a combination of NMR experiments 
was conducted on httex1Q7 at 5 °C, including 15N and 13Cα CPMG 
relaxation dispersion, exchange-induced chemical shift (15N and 
13Cα δex) analyses, and 15N R1ρ relaxation rates in the rotating frame 
obtained at several spin-lock field strengths. Measurements were 
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performed at various protein concentrations and magnetic fields, 
enabling global kinetic modeling (Figure 1B).

Results revealed a branched oligomerization model with 
two competing pathways (Figure 1C). In the on-pathway, httex1

monomers (m) first form coiled-coil dimers (D), which then 
assemble into tetrameric helical bundles (T), a process driven by 
the NT segment. In parallel, an off-pathway yields non-productive 
dimers (D∗) that cannot proceed further. Exchange between m and 
D∗  occurs on a slower timescale (∼750 μs), well captured by 15N and 
13Cα CPMG dispersion. In contrast, the faster monomer-tetramer 
exchange (∼50 μs) was primarily captured through δex and 15N R1ρ. 
Dissociation constants describing the equilibrium m ⇌ D, m ⇌ 
D∗, and D ⇌ T yield values of ∼70 mM, ∼200 mM and ∼30 μM, 
respectively. At 1.2 mM total httex1Q7, populations were ∼1% for D∗, 
∼3% for D, and ∼5% for T.

These findings underscore the remarkable sensitivity of NMR 
relaxation techniques in detecting and quantifying transient, low-
populated oligomers that elude conventional structural methods, 
offering a powerful approach to unravel early amyloid aggregation 
at atomic resolution.

The impact of inhibitors, such as polyphenols, on httex1Q7 pre-
nucleation can be assessed by NMR. Only the binding between the 
inhibitor (I) and the monomer (m) is kinetically accessible, as the 
low populations of D and T (≤5%) and their rapid exchange rates 
(10–100 μs) preclude equilibrium with ligands that generally bind 
on the ms-to-s timescale.

Although traditional NMR and/or ITC experiments are 
generally sufficient to extract the equilibrium dissociation constant, 
KD,mI and stoichiometry of the inhibitor–monomeric httex1

(mI) complex, concentration-dependent 15N and 13Cα δex and 
15N R1ρ relaxation rates measurements are needed to probe 
partial or complete inhibition of the fast monomer–tetramer 
exchange. As shown from simulations in Figure 1D, the binding 
of an inhibitor (assuming concentrations of [I] = 0.2, 0.4 and 
0.8 mM and KD,mI = 50 µM consistent with previous literature 
(Ahmed et al., 2017; Marcinko et al., 2020)) results in a 
suppression of concentration-dependent δex shifts as well as a 
significant reduction in R1ρ rates and CPMG RD dispersion 
(additional details are provided in the SI). As highlighted in the 
corresponding kinetic scheme in Figure 1E, this reflects a decreased 
population of m, D, and T, consistent with inhibition of the 
productive tetramerization pathway (i.e., for [I] = 0.8 mM and 
[httex1Q7] = 1.2 mM, ∼0.2% for D∗, ∼1.5% and 2% for D and T, 
respectively).

Note that for the purposes of this perspective, we are considering 
only inhibitors that effectively block the productive pathway (shown 
in gray in Figure 1E), as reversible tetramerization is tightly linked 
to the formation of elongation-competent nuclei (P) and represents 
a critical early step in amyloid fibril formation (M) (see Figure 1A). 
For further discussion of the m ⇌ mI equilibrium and modeling 
assumptions, see SI.

Given the limited relevance of the non-productive (m 
⇌ D∗) pathway to fibril formation, an ideal inhibitor might 
selectively target the productive exchange while leaving 
the mI ⇌ DI∗equilibrium largely unaffected, therefore 
without a selective quenching of CPMG dispersion as 
described for the binding of Profilin to monomeric httex1

(Ceccon et al., 2020b). 

2.2 Time-resolved NMR techniques

Time-intensive relaxation-based NMR experiments used for 
httex1Q7 are not applicable to pathological httex1Q35, as monomer 
signals decay rapidly due to aggregation over a few hours 
(Ceccon et al., 2021; Ceccon et al., 2022). Nonetheless, detailed 
insight into pre-nucleation, nucleation, and fibrillation can be 
achieved by acquiring time-resolved 2D 1H–15N SOFAST-HMQC 
(Schanda et al., 2005) spectra (Figure 2A).

Rapid pre-nucleation transitions (m ⇌ D ⇌ T) are characterized 
through time-dependent δex (Figure 2B, left), similarly to what 
was previously described for the non-pathological httex1Q7, and 
1H–15N cross-peak volume/intensity (V/I) ratios of residues in 
the NT segment (Figure 2B, right). Off-pathway dimerization (m 
⇌ D∗) contributes negligibly to δex and V/I and is irrelevant 
to fibril formation; it is thus excluded. As shown in Figure 2B, 
for these NT residues, cross-peak volume and intensity diverge 
during the early phase: cross-peak volume decreases from t = 
0, while intensity initially increases, peaking at 2–3 h before 
declining. This reflects chemical exchange line broadening caused 
by rapid tetramerization (with significant 15N and 1HN shift 
differences between monomeric and transient oligomeric species). 
Since tetramer population (T) scales with [m]3, an initial drop in 
monomer reduces line broadening, temporarily narrowing peaks 
and increasing intensity—until monomer depletion dominates and 
the signal fades.

In contrast, slow fibril formation kinetics are extracted from 
the gradual decay of PRD 1H–15N intensities (Figure 2C), a region 
not subject to fast exchange, serving as a clean readout for 
irreversible aggregation. This dual-observable strategy enhances 
the mechanistic understanding of aggregation-prone httex1Q35 and 
enables characterization of inhibitor effects.

Global fitting of δex and V/I data to the m ⇌ D ⇌ T model 
(Figures 2D,E) shows that the m ⇌ D equilibrium constant 
(KD1 ∼ 70 mM) matches that for httex1Q7. In contrast, the D 
⇌ T constant (KD2 ∼11 μM) is 2–3 times smaller for httex1Q35, 
indicating increased tetramer stability (∼0.4–0.6 kcal/mol). The 
simplest kinetic scheme that accurately fits data in Figure 2F 
includes primary nucleation, secondary nucleation, and elongation. 
This aligns with the updated kinetic scheme proposed by 
Clore’s group (Torricella et al., 2024), where tetramers formed 
rapidly on the μs timescale convert irreversibly to elongation-
competent nuclei (P), which then seed fibrillation (M) via elongation 
and secondary nucleation (see SI for additional details and 
derivation).

Given the mechanism of httex1Q35 aggregation and according 
to differential Supplementary Equations S1, S2, inhibition of fibril 
formation can occur at distinct stages: 

1. Sequestration of m into mI shifts the pre-nucleation 
equilibrium (mI ⇌ m ⇌ D ⇌ T) away from higher-
order oligomers. This effect is reflected in changes to 
concentration-dependent δex and V/I ratios (Figure 2G) 
in simulations with [I] = 0.2, 0.4, 0.8 mM, assuming 
KD,mI = 50 µM. Reduced availability of free monomer
(mfree ≪ mtot) lowers the formation rate of elongation-
competent nuclei (P), thereby suppressing both secondary 
nucleation (second term in Supplementary Equation S1) 
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FIGURE 2
Mechanistic dissection of httex1Q35 aggregation and inhibition via NMR and kinetic modeling. (A) Aggregation monitored by 1H-15N SOFAST-HMQC 
spectra recorded at t = 0 h, 10 h, and 20 h (B) NMR observables reporting pre-nucleation oligomerization of httex1Q35: (left) exchange-induced 15N-δex

for Phe10 at t = 0 h (black) and 10 h (red); (right) time-dependent evolution of peak volume (in blue) and intensity (in red) for Lys8. (C) Time-dependent 
decay of 1H-15N cross-peak signal intensities for PRD residues Leu74 and Ala92, indicating irreversible fibril growth. (D) Pre-nucleation analysis: (left) 
15N-δex, and (right) peak V/I ratio for Lys8 as a function of httex1Q35 concentration. (E) Aggregation kinetics of httex1Q35 monitored by PRD signal decay, 
acquired at increasing protein concentrations (0.20–0.75 mM). (F) Kinetic model that accounts for experimental data describing httex1Q35 aggregation 
without inhibitor. The model integrates reversible pre-nucleation equilibria (m ⇌ D ⇌ T), irreversible conversion of tetramers into 
elongation-competent nuclei (T → P) governed by, and subsequent fibril elongation (P → M). In (D) and (E), best-fitted curves and experimental data 
are represented as solid lines and circles, respectively. (G) Effect of monomer sequestration on concentration-dependent δex (left) and V/I data (right) 
for Lys8 across different inhibitor concentrations. (H) PRD signal decay kinetics under monomer inhibition. Green curves in (G) and (H) show 
simulations of monomer inhibition at increasing concentrations ([I] = 0, 0.2, 0.4, 0.8 mM) based on the extended model described in (I) which includes 
reversible binding of the inhibitor to the monomer (m ⇌ mI, with KD,mI = 50 μM). (J) Simulated time-course of monomeric httex1Q35 “m” (left panel) and 
elongation-competent “P” nuclei (right panel) in the absence (black) and in the presence of inhibitor ([I] = 0.8 mM and [m] = 0.38 mM). Red and blue 
curves represent inhibition by sequestration of m and P, respectively. (K) PRD signal decay kinetics under nucleus sequestration. Green curves in (K)
represent simulations at increasing inhibitor concentrations ([I] = 0, 0.2, 0.4, 0.8 mM) based on the extended model described in (L), which incorporates 
reversible binding of the inhibitor to the nuclei (P ⇌ PI, with KD,PI = 50 μM). (A) And data shown in (B–E,G,H,K) are adapted from 
(Ceccon et al., 2022; Torricella et al., 2024).
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and elongation (Supplementary Equation S2). These effects 
manifest as a slower decay of PRD signal intensities with 
increasing [I] (Figure 2H). The corresponding kinetic model 
incorporating the off-pathway “mI” state is shown in 
Figure 2I, with time-dependent evolution of m(t) and P(t) 
illustrated in Figure 2J.

2. Sequestration of P nuclei into PI affects the time course of 
PRD intensity decay (Figure 2K), without altering δex or V/I, 
since P forms downstream of the m ⇌ D ⇌ T equilibrium. 
A significant reduction in free P (Pfree ≪ Ptot) impairs 
fibril elongation (Supplementary Equation S2), as represented 
in the kinetic model including the PI state (Figure 2L). 
Although P is a monomeric unit at the oligomer end, its 
conformation and environment may differ from that of the 
free monomer, potentially exposing distinct ligand-binding 
surfaces. Similar mechanisms have been observed for tau, Aβ, 
and actin, where inhibitors cap fibril ends by recognizing 
polymerization-competent termini. Thus, selective binding 
to the P state is both structurally plausible and biologically 
relevant. (Bai et al., 2025).

Importantly, although both mechanisms initially produce 
similar inhibition profiles due to pre-existing elongation-
competent nuclei (P (0) ≠ 0), their kinetics diverge over time 
as monomer depletion and de novo P formation proceed 
differently (compare Figures 2H,M). A combined scenario in 
which the inhibitor binds both m and P is also considered and 
described in Supplementary Figure S2.

It is important to highlight that in both kinetic models 
presented in Figures 1E, 2I, which involve formation of mI state, 
we have excluded further dimerization (mI)2, tetramerization 
(mI)4 or heterotypic associations (e.g., m2I, mI2), possibilities 
previously described for httex1Q7 in the presence of SH3 protein 
inhibitors (Ceccon et al., 2021). While a fully generalized model is 
theoretically possible, it would require many speculative parameters 
that are not currently constrained by experimental data.

Here, we treat mI as an off-pathway species that sequesters 
aggregation-competent monomers and suppresses downstream 
oligomer formation. This approach contrasts with a recent study by 
Knowles and Vendruscolo (Habchi et al., 2017) which investigated 
conditions where the m ⇌ mI equilibrium is strongly shifted toward 
mI. Under such regime, aggregation kinetics are reinterpreted based 
on the behavior of the mI species itself, effectively treating it as an 
alternative aggregation-competent species with its own nucleation 
and elongation characteristics.

In our system, however, full saturation of the m ⇌ mI 
equilibrium is generally unachievable due to two main limitations: 
(a) the limited aqueous solubility of polyphenolic inhibitors (in the 
low mM range) and (b) the micromolar-range dissociation constant 
(Kd ∼ μM). As a result, monomer and mI species coexist, leading to 
a complex inhibition landscape in which multiple pathways overlap 
and contribute to the observed behavior. 

3 Conclusions and perspective

Advanced solution-state NMR, especially relaxation-based 
techniques, provides a unique window into the fleeting early 

stages of amyloid aggregation—critical for effective therapeutic 
intervention. Building on established NMR methods and kinetic 
modeling of httex1 aggregation, we demonstrate that NMR combined 
with kinetic analysis can distinguish oligomerization pathways, 
define inhibitor binding modes, and classify inhibition mechanisms. 
This mechanistic insight goes beyond traditional endpoint 
assays, enabling accurate, pathway-specific screening of natural 
compounds. We advocate a paradigm shift toward NMR-based 
monitoring of aggregation inhibition, a strategy that accelerates the 
discovery of disease-modifying agents with well-defined molecular 
modes of action and supports the integration of natural compounds 
into therapeutic and nutritional frameworks. Polyphenols emerge 
as versatile and tunable scaffolds, offering significant potential 
for rational anti-amyloid drug design. Importantly, investigating 
the effects of polyphenols on amyloid aggregation holds broad 
implications across nutritional science, biomedicine, and preventive 
health, given their dietary accessibility and bioactivity.
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