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Unraveling metabolic 
reprogramming in Δhnox
Paracoccus denitrificans: a 
time-resolved metabolomics and 
AI-Powered proteome modeling 
approach

Md Shariful Islam1, Aishat Alatishe1, William Bahureksa2 and 
Erik Yukl1*
1Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United 
States, 2Chemical Analysis and Instrumentation Laboratory Research Cores Program, New Mexico 
State University, Las Cruces, NM, United States

Heme-nitric oxide/oxygen binding (H-NOX) proteins function as critical sensors 
for nitric oxide in many bacterial species. However, their physiological functions 
are surprisingly diverse, and most have yet to be thoroughly investigated. Here, 
we investigate the impact of hnox deletion in Paracoccus denitrificans, a species 
known for its metabolic versatility and the formation of unusually thin biofilm 
structures. Time-resolved targeted metabolomics across three growth phases 
(OD600 = 0.6, 2.0, and 4.0) indicates that the deletion of hnox is consistently 
associated with disruptions in central carbon metabolism. At early stages, the
Δhnox strain exhibits increased abundance of glycolytic and pentose phosphate 
pathway metabolites accompanied by decreases in amino acids, suggesting 
dysregulation in late glycolysis or promotion of fermentative metabolism. Higher 
cell densities are characterized by increased quorum sensing, which is shown 
to promote biofilm dispersal in the WT but had little effect on the Δhnox
strain. Metabolomics changes at these stages continue to highlight the pentose 
phosphate and glycolytic metabolites along with redox cofactors, implicating 
changes in energy metabolism or oxidative stress response. Total proteomics 
at OD600 = 2.0 were collected to explore connections between metabolism 
and proteome dynamics, and to provide an opportunity to test several machine 
learning (ML) models for predicting proteomic changes from metabolomic 
profiles. While constrained by limited sample size, these exploratory models 
showed biologically meaningful concordance with experimentally observed 
proteome shifts, highlighting both the promise and the current limitations of 
artificial intelligence (AI)-based methods in non-model microbial systems.
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Introduction

Paracoccus denitrificans is a Gram-negative, facultatively 
anaerobic bacterium capable of complete denitrification, a 
biochemical process that entails the sequential reduction of nitrate 
to nitrogen gas via intermediates such as nitrite, nitric oxide, and 
nitrous oxide (Baker et al., 1998; Xia et al., 2018; Stouthamer et al., 
1997). Understanding this process is crucial for addressing the 
buildup of harmful nitrogenous compounds in the environment 
and has important implications for wastewater management and 
environmental engineering (Pascual et al., 2020; Assefa et al., 2019; 
Strauss et al., 2012). Furthermore, P. denitrificans possesses the 
potential for a range of biotechnological applications, including 
bioremediation and the enhancement of sustainable agricultural 
practices (Puri et al., 2022; Yang et al., 2013; Kojima et al., 2004; 
Lycus et al., 2018; Gómez-Acata et al., 2018; Zhao et al., 2015; 
Olaya-Abril et al., 2018; Islam et al., 2024).

Practical application of P. denitrificans in these processes may 
be improved by or even require the formation of a monoculture 
or mixed-species biofilms (Nisha et al., 2015; Singh et al., 2015; 
Kiely et al., 2010). Biofilms are structured communities of cells 
encased within a self-produced extracellular polymeric substance 
(EPS), which confers tolerance to antimicrobials and various 
environmental stresses such as changes in pH, mechanical shear, 
osmolarity, and nutrient availability (Mishra et al., 2023). P. 
denitrificans is noted for its unusually thin biofilms consisting of 
densely packed cells in what is nearly a monolayer (Yoshida et al., 
2017; Singh et al., 2015), which contrasts with the large “mushroom” 
structures of EPS and cells formed by well-studied biofilm 
producers such as Pseudomonas aeruginosa (Sauer et al., 2002; 
Sauer et al., 2022). The processes of surface adhesion and EPS 
production during the planktonic to sessile transition are tightly 
regulated by environmental cues and both inter- and intracellular 
signaling pathways, although these may differ substantially between 
species (Costerton et al., 1999; Flemming and Wingender, 2010; 
Flemming et al., 2016). In P. denitrificans, biofilm formation 
requires the calcium-dependent adhesin BapA (Kumar and 
Spiro, 2017; Yoshida et al., 2017) and is regulated through a 
quorum sensing (QS) circuit with enzymes PdeI and PdeR acting 
as acylhomoserine lactone (AHL) synthase and transcription 
factor/response regulator, respectively (Zhang et al., 2018). 
Deletion of pdeI promoted biofilm formation while exogenous 
addition of C16 AHL inhibited it, suggesting an inhibitory 
role for QS in this organism (Morinaga et al., 2018). However, 
pdeR overexpression was shown to promote biofilm formation 
(Wang N. et al., 2022), perhaps suggesting distinct roles for PdeR 
alone and in complex with AHL. There is also data suggesting that 
cyclic diguanosine monophosphate (c-di-GMP) inhibits biofilm 
formation as deletion of the two annotated diguanylate cyclase 
(DGC) genes results in increased biofilm formation (Kumar and 
Spiro, 2017). This is unusual in that c-di-GMP generally signals for 
biofilm development (Römling et al., 2013).

Adjacent to one of the DGC genes (dgcA) is a gene encoding 
a heme-nitric oxide/oxygen binding protein (H-NOX). H-NOX 
proteins are known to modulate communal behaviors such as 
biofilm formation and quorum sensing in response to NO, often 
acting upstream of cyclic-di-GMP regulatory pathways (Plate 
and Marletta, 2013). Indeed, the Δhnox mutant of P. denitrificans

displays a markedly biofilm-deficient phenotype and elevated 
levels of AHL relative to the WT at high cell densities (Kumar 
and Spiro, 2017; Islam et al., 2024). Moreover, a comprehensive 
proteomics study of Δhnox P. denitrificans showed altered 
abundance of proteins involved in central carbon and energy 
metabolism occurring at cell densities (OD600 = 0.6) that precede 
dysregulation of AHL (Islam et al., 2024). These findings suggest a 
role for H-NOX in coordinating metabolism with biofilm formation 
in this organism.

In the present study, we explored this regulatory role more deeply 
by focusing on how core metabolic pathways—including glycolysis, 
the pentose phosphate pathway (PPP), and the tricarboxylic acid 
(TCA) cycle—contribute to biofilm development in P. denitrificans.
We performed targeted metabolomic profiling comparing WT and 
Δhnox P. denitrificans across different stages of bacterial growth, 
which revealed changes in the abundance of metabolites associated 
with amino acid metabolism, glycolysis, and PPP. Furthermore, 
by integrating metabolomic and proteomic data from cultures at 
OD600 = 0.6, we employed an AI learning framework to successfully 
predict protein expression profiles at OD600 = 2. The application 
of supervised ML algorithms and graph neural networks (GNN) 
predicted correlations between metabolite abundance and protein 
output that were largely verified by mass spectrometry. AI-based 
methodologies have demonstrated growing effectiveness in the field 
of systems biology, especially in the modeling of high-dimensional 
omics data, the inference of regulatory interactions, and the prediction 
of phenotypic outcomes in response to genetic or environmental 
perturbations (Camacho et al., 2018; Ma et al., 2018; Ching et al., 2018). 
Collectively, our data suggest that hnox deletion induces alterations 
in metabolic regulation, disrupting biofilm development at low cell 
densities and manifesting persistent changes in energy metabolism 
and oxidative stress response at high cell densities. 

Materials and methods

Bacterial strains and culture conditions

WT and Δhnox P. denitrificans PD1222 strains were a kind gift 
from Dr. Stephen Spiro at the University of Texas Dallas (Kumar 
and Spiro, 2017). As noted below, strains were grown in LB 
medium (Formula/liter: Tryptone 10 g, Yeast extract 5 g and Sodium 
Chloride 10 g) with or without supplementation with 10 mM CaCl2
at 30 °C with shaking at 50–100 rpm. 

Bacterial growth and crystal violet staining

For growth experiments, overnight cultures in LB medium were 
diluted to OD600 = 0.05 in 12 mL of fresh LB in 50 mL plastic 
culture tubes without CaCl2 supplementation to match conditions 
used for metabolomics samples (see below). Three replicate samples 
were maintained at 30 °C with shaking at 100 rpm and OD600
was measured every 4 h. Crystal violet (CV) staining experiments 
were performed in the same way except that LB was supplemented 
with 10 mM CaCl2 and shaking was at 50 rpm to facilitate biofilm 
formation (Kumar and Spiro, 2017). Samples were monitored until 
they reached the desired OD600 (3 replicates for each OD), at which 
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point media and planktonic cells were discarded, and the tubes were 
rinsed 3 times with deionized water and air dried. 12 mL of 0.1% w/v 
CV was added and shaken at room temperature for 1 h. Stain was 
discarded, and the tubes were again rinsed 3 times with deionized 
water and allowed to dry. Finally, CV was dissolved with 12 mL of 
100% DMSO and absorbance at 570 nm was measured. 

Scanning electron microscopy (SEM) 
sample preparation and imaging

Overnight starter cultures were adjusted to OD600 = 0.05 in 
3 mL of fresh LB medium supplemented with 10 mM CaCl2 in 
sterile polystyrene Petri plates, each bearing a pre-cleaned glass 
coverslip. Cultures were maintained at 30 °C with shaking at 50 rpm 
for 24 h to facilitate surface adhesion and biofilm development. 
Following incubation, planktonic cultures were discarded, and the 
coverslips were rinsed three times with deionized water to eliminate 
non-adherent cells. Coverslips were subsequently air-dried under 
sterile conditions for 48 h. Thereafter, samples were subjected to 
a 10-min treatment with a drop of 2% ionic liquid, 1-butyl-3-
methylimidazolium tetrafluoroborate (Sigma, St. Louis, Mo, United 
States), to improve conductivity, and surplus liquid was blotted with 
Kimwipes. The dried and processed samples were sputter-coated 
with gold utilizing a Gatan Model SSI High Resolution Ion Beam 
Coater (Gatan, Pleasanton, California, United States). Imaging was 
conducted utilizing a Hitachi SU7000 Field Emission Scanning 
Electron Microscope (Hitachi, Japan). All assays were performed in 
triplicate for both WT and Δhnox strains. 

Sample preparation for targeted 
metabolomics analysis

For metabolomics experiments, CaCl2 supplementation was 
omitted as excess Ca2+ may interfere with ion-pair chromatography 
and electrospray ionization in the triple quadrupole LC-MS/MS 
platform. WT and Δhnox P. denitrificans starter cultures were 
adjusted to OD600 = 0.05 in LB media and maintained at 30 °C 
with shaking at 100 rpm. Cells were harvested at OD600 = 0.6, 2.0, 
or 4.0, which required approximately 18–72 h growth under these 
conditions (Supplementary Figure S1). Four biological replicate 
samples were used at each cell density. Cells were collected using 
centrifugation at 4,300 × g for 20 min at 4 °C. Media was carefully 
removed by pipette, and the cell pellets were immediately weighed 
and subjected to three washes with 1 mL of ice-cold phosphate-
buffered saline (PBS) immediately followed by resuspension in 
ice-cold methanol containing internal standard (10 μmol L-1 of L-
methionine sulfone). Samples were homogenized by sonication for 
2 min, followed by three freeze-thaw cycles in liquid nitrogen to 
guarantee complete extraction. Samples were centrifuged at 12,000 
× g for 10 min at 4 °C and supernatants were transferred to 15 mL 
conical tubes. Phase separation was executed by incorporating 
0.5 mL of deionized water and 1 mL of chloroform into each 
sample followed by centrifugation at 4,000 × g for 15 min at 4 °C. 
The top aqueous phase was extracted for subsequent processing. 
The samples were filtered using pre-washed 3-kDa molecular 
weight cutoff filters (Millipore, Tokyo, Japan) via centrifugation to 

eliminate protein impurities. The filtrates were lyophilized overnight 
at 4 °C and subsequently kept at −80 °C until analysis. Dried 
metabolites were reconstituted in 100 μL of deionized water for triple 
quadrupole mass spectrometry analysis. Metabolite concentrations 
were adjusted according to cell pellet wet weight. 

Triple-quadrupole mass spectrometry 
analysis

The analysis method used was the Primary Metabolites 
LC/MS/MS method package developed by Shimadzu with some 
modifications (Kubo et al., 2011). The Primary Metabolites 
package utilizes an ion-pairing reagent (i.e., tributylamine) in order 
to enhance retention of metabolites and an internal standard 
(L-methionine sulfone) to perform semi-quantitative analysis 
between the WT and Δhnox samples. Extracts were analyzed 
using a Shimadzu LCMS-8050 instrument which couples liquid 
chromatography (LC) with a triple-quadrupole mass spectrometry 
(MS) instrument (Shimadzu Scientific Instruments, Columbia, MD, 
United States). The LC column was the Mastro 2 (Shimadzu, C18, 
3 μm, 150 × 2 mm) and mobile phases were water (A: 15 mM 
acetic acid, 5 mM tributylamine-water) and methanol (B). The LC 
gradient program was as follows: 0% B (0.5 min) - 25% B (8.0 min) 
- 98% B (12.0–15.0 min) - 0% B (15.1–20.0 min). Flow rate was 
0.30 mL/min and the column temperature was kept at 40 °C during 
each run. Nebulizing and drying gas were kept at 2.0 and 10 L/min, 
respectively. The desolvation line and heat block temperatures 
were kept at 250 °C and 400 °C, respectively. The LCMS-8050 was 
operated using negative (−) mode electrospray ionization with 
multiple-reaction-monitoring (MRM) for each of the compounds as 
described in the Primary Metabolites package (Kubo et al., 2011). 

AI-based proteome prediction

To predict protein expression at OD600 = 2 for both WT and 
Δhnox P. denitrificans, we used a data set of metabolomics profile 
at OD600 = 0.6 and 2.0, as well as proteomics data at OD600 = 
0.6 (Islam et al., 2024). Supervised ML models were trained on 
this multi-omics dataset to quantify metabolite abundance and 
proteome expression. ML models like Partial Least Squares (PLS), 
Ridge regression, Lasso regression, Random Forest, and XGBoost 
were used in the current study (Samin et al., 2024; Greener et al., 
2022). For comparability, all features were scaled before model 
training. Leave-one-out cross-validation (LOOCV) was used to 
evaluate each model’s prediction performance under limited-
sample settings. For the classical machine learning models (Partial 
Least Squares, Ridge, Lasso, Random Forest, XGBoost), we used 
the scikit-learn (v1.2.2) and XGBoost (v1.7.6) implementations 
with the following specifications: Data preprocessing: all features 
were scaled (standardization for proteomics, MinMax scaling for 
metabolomics). Cross-validation: Leave-One-Out Cross Validation 
(LOOCV). Ridge/Lasso: optimized using default coordinate 
descent solvers; regularization parameters were tuned using grid 
search. Random Forest: 100 estimators, Gini criterion, max depth 
unrestricted. XGBoost: learning rate 0.1, max depth 6, 200 
estimators. For the graph neural network (GNN) framework 
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(PyTorch Geometric v2.3.1), we implemented a two-layer Graph 
Attention Network (GAT) with hidden dimension of 128 and four 
attention heads per layer. Batch Normalization and dropout layers 
(dropout rate = 0.3) were included to improve generalization. 
The Exponential Linear Unit (ELU) activation function was 
used throughout. Models were trained with the Adam optimizer 
(learning rate = 0.001), coupled with a StepLR scheduler (step 
size = 100, γ = 0.5). Mean Squared Error (MSE) was employed 
as the loss function, and training proceeded for 300 epochs 
until convergence, as monitored by loss stabilization with no 
signs of overfitting. The GNN architecture explicitly incorporated 
topological linkages among biological entities, thereby capturing 
context-dependent interactions and pathway-level organization 
within the metabolomics-proteomics network (Scarselli et al., 2009). 
All ML analyses were performed in Python 3.10.12 on Google 
Colab, a cloud-based environment for reproducible and scalable 
computation (Bisong, 2019). The following package versions were 
used: NumPy 1.23.5; pandas 1.5.3; scikit-learn 1.2.2; PyTorch 
2.0.1; PyTorch Geometric 2.3.1; torch-scatter 2.1.1; torch-sparse 
0.6.17; XGBoost 1.7.6; Matplotlib 3.7.1; and Seaborn 0.12.2. Scikit-
learn and XGBoost supported data preprocessing and classical 
ML training, while PyTorch and PyTorch Geometric were used for 
GNN implementation. Model performance and predictions were 
visualized with Matplotlib and Seaborn. Links to the code used are 
provided in the Data Availability section. 

Proteomics sample preparation and data 
analysis

WT and Δhnox P. denitrificans PD1222 were grown in 10 mL LB 
media supplemented with 10 mM CaCl2 at 30 °C with shaking at 
100 rpm until OD600 reached 2.0. At this point, cells were collected 
via centrifugation, rinsed, lysed by sonication in buffer containing 
6 M urea, 2 M thiourea, 25 mM NH4HCO3, and protease inhibitor, 
and subsequently cleared using centrifugation to isolate soluble 
proteins. Protein extraction and tryptic digestion were conducted 
according to a previously established methodology (Cox et al., 2014). 
Proteomic analyses were performed on four independent biological 
replicates per condition, without additional technical replication. 
The resultant peptides were examined utilizing an Orbitrap Eclipse 
Tribrid mass spectrometer (Thermo Fisher Scientific, Waltham, 
MA, United States). RAW proteome data were analyzed with 
MaxQuant (v2.2.0.0) against the P. denitrificans UniprotKB database 
(UP000000361) (Cox and Mann, 2008). Carbamidomethylation 
of cysteine was designated as a permanent modification, whereas 
oxidation of methionine and N-terminal acetylation were classified 
as variable modifications. A 1% false discovery rate threshold was 
implemented for the identification of peptides and proteins. Data 
visualizations were executed in Python. 

Statistical analysis

All metabolomics and proteomics data were subjected to analysis 
utilizing Python 3.10, along with the libraries NumPy, pandas, 
Matplotlib, and Seaborn. Metabolite and protein comparisons between 
WT and Δhnox strains were conducted using two-tailed Student’s 

t-tests. Metabolites were considered significant if they exhibited p 
< 0.05 (Graf et al., 2019; Wang R. et al., 2022; Wang et al., 2025) 
and an absolute log2 fold change ≥0.58, which corresponds to a 
1.5-fold change. In addition, Storey’s q-values (false discovery rate 
estimates) were computed and are presented alongside the raw p-
values in the result tables for reference but were not used as the primary 
basis for determining statistical significance. The metabolomics and 
proteomics datasets were each generated from four independent 
biological replicates per condition. For proteomics, a 1% false discovery 
rate (FDR) threshold was applied for peptide and protein identification 
in MaxQuant (v2.2.0.0). For machine learning analyses, all features 
were scaled, leave-one-out cross-validation (LOOCV) was used, and 
model performance was assessed by mean squared error (MSE). 
Figures were generated using Python libraries Matplotlib and Seaborn. 
For pathway-level interpretation, significantly altered metabolites 
(normalized and scaled) were projected onto PCA-based biplots 
using pathway annotations to visualize clustering and separation of 
metabolites by functional categories. 

Results

P. denitrificans Δhnox is biofilm deficient

Previous work showed that deletion of hnox had no significant 
effect on P. denitrificans growth in microplates but essentially 
abrogated its ability to form biofilms in 50 mL plastic culture tubes 
at OD600 = 0.6 (Islam et al., 2024). Here we have expanded to 
monitor growth and biofilm formation across cell densities ranging 
from OD600 = 0.6–4.0. The hnox deletion had no influence on 
growth in 50 mL plastic culture tubes (Supplementary Figure S1), 
but it significantly impaired biofilm formation at all cell densities 
tested (Figure 1A). However, normalizing CV staining by OD600
reveals that relative biofilm formation in the WT is greatest at 
OD600 = 0.6 and decreases with increasing cell density. This is 
roughly anticorrelated with C16 AHL concentration (Islam et al., 
2024), consistent with previous data (Morinaga et al., 2018) 
showing this autoinducer to be a negative regulator of biofilm in P 
denitrificans. Conversely, normalized biofilm in the Δhnox remains 
nearly constant across different cell densities (Figure 1B).

To elucidate the structural consequences of the hnox deletion 
on bacterial communities, we utilized scanning electron microscopy 
(SEM) to analyze and compare WT and Δhnox P. denitrificans. In 
the WT strain, we observe a highly organized network of bacterial 
cells with large empty regions corresponding to gaps between tightly 
packed microcolonies in the thin biofilm layer of P. denitrificans
(Figure 1C). The discontinuous surface population is consistent with 
what has been measured by confocal microscopy (Morinaga et al., 
2020), although perhaps sparser than some analyses (Yoshida et al., 
2017), which may be a consequence of differences in sample 
preparation. Nevertheless, both techniques yield data consistent 
with a monolayer or near-monolayer biofilm of densely packed cells 
with very little evidence of an extensive EPS matrix (Wang N. et al., 
2022). Conversely, very few Δhnox cells were found adhered to the 
surface and these in small, isolated microcolonies (Figure 1D). This 
is consistent with the markedly diminished biofilm biomass in this 
strain compared to WT as quantified through crystal violet staining 
(Kumar and Spiro, 2017; Islam et al., 2024). 
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FIGURE 1
Biofilm formation in WT and Δhnox P. denitrificans. CV staining for cultures at different cell densities (A) as raw data and (B) normalized by OD600. Error 
bars represent standard deviation (n = 3;∗∗∗p < 0.01 and∗∗∗∗p < 0.0001 by Student’s t test for pairwise comparisons). SEM images for surface-attached
(C) WT and (D) Δhnox P. denitrificans. Imaging was performed using the SU7000 Field Emission SEM and the scale bar represents 30 µm.

Targeted metabolomics at OD600 = 0.6

To investigate the effect of hnox deletion on central carbon 
metabolism, we performed targeted metabolomics analysis at 
OD600 = 0.6 using an ion-pairing liquid chromatography–mass 
spectrometry (LC-MS) method optimized for central carbon 
metabolites (Kubo et al., 2011). This time point was selected 
based on our previous proteomics study, which revealed significant 
changes in protein expression linked to metabolic pathways in 
Δhnox P. denitrificans (Islam et al., 2024). A total of 73 metabolites 
associated with central carbon metabolism were identified by this 
method (Supplementary Table S1). Principal Component Analysis 
(PCA) demonstrated clear separation between WT and Δhnox
samples, signifying a distinct metabolic profile in the absence of 
hnox (Figure 2A). We conducted a statistical comparison between 
Δhnox and WT strains to identify metabolites with significant 
differential abundance as shown in the volcano plot (Figure 2B). 
A total of 26 metabolites showed significant changes (|log2 fold 
change| ≥ 0.58, p < 0.05). Several intermediates of the PPP 
and glycolysis including erythrose 4-phosphate, glyceraldehyde 3-
phosphate, sedoheptulose 7-phosphate, phosphoenolpyruvic acid, 
glucose 6-phosphate, and fructose 6-phosphate were significantly 
more abundant in Δhnox samples (Figure 2C). In contrast, 7 
amino acids (valine, leucine, tyrosine, phenylalanine, isoleucine, 
methionine, and asparagine) were decreased in abundance and one 
(aspartate) was observed only in WT samples. Acetyl coenzyme 
A and NADP were also decreased in abundance. Finally, pyruvic 
acid was consistently detected in WT samples but was undetectable 

in Δhnox samples while lactic acid abundance was significantly 
increased in Δhnox samples.

Next, we performed a metabolite PCA-based pathway 
projection to investigate the pathway-level organization of 
the altered metabolites. The significantly changed candidates 
were categorized into key metabolic routes, including amino 
acid metabolism, glycolysis, the PPP, the TCA cycle, and 
NAD/NADP+ biosynthesis (Figure 2D). The first principal 
component (PC1) accounts for 91.42% of the variance, effectively 
distinguishing metabolites associated with amino acid metabolism 
(e.g., asparagine, valine) and the PPP (e.g., sedoheptulose 7-
phosphate, erythrose 4-phosphate) from those related to glycolysis 
(e.g., fructose 6-phosphate, glucose 6-phosphate) and cofactor 
biosynthesis (e.g., FAD, NADP+). PC2 accounts for 5.78% of the 
variance and facilitates the differentiation between amino acids and 
PPP metabolites. The amino acids in particular cluster distinctly 
from other metabolite classes, reaffirming altered amino acid 
metabolism in the Δhnox strain. 

Targeted metabolomics at OD600 = 2.0

Next we conducted targeted metabolomics profiling of P. 
denitrificans at OD600 = 2.0. In total, 88 metabolites were detected 
(Supplementary Table S2). PCA revealed a distinct separation 
between WT and Δhnox samples (Figure 3A), suggesting that the 
deletion of hnox induces specific metabolic remodeling during this 
growth phase. The differential abundance analysis conducted via a 
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FIGURE 2
Metabolomic changes in Δhnox P. denitrificans at OD600 = 0.6. (A) PCA of metabolite profiles distinguishes WT and Δhnox samples, indicating distinct 
metabolic states. (B) Volcano plot showing the differential abundance of metabolites between Δhnox and WT strains. The x-axis represents the log2

fold change (Δhnox/WT), and the y-axis shows the –log10 (p-value). Metabolites with increased abundance in Δhnox vs. WT are indicated as yellow 
dots while metabolites with decreased abundance are indicated as gray dots. (C) Bar plot of relative abundance for significantly altered metabolites in
Δhnox relative to WT colored as in B. (D) PCA biplot of significantly altered metabolites based on pathway annotations. Metabolites are colored by their 
associated pathway.

volcano plot identified 21 metabolites with significant alterations 
(|log2 fold change| ≥ 0.58, p < 0.05) when comparing Δhnox to WT 
(Figure 3B). Abundance of glyceraldehyde 3-phosphate continues 
to be increased while several other intermediates from the PPP 
and glycolysis were modestly decreased, including sedoheptulose 
7-phosphate, erythrose 4-phosphate, phosphoenolpyruvate. 
Additionally, we observed a reduction in coenzyme A, nicotinic 
acid, NAD+, xanthosine monophosphate, xanthine, and guanosine 
triphosphate (GTP) (Figure 3C). Conversely, a small subset of 
metabolites exhibited increased abundance in the Δhnox strain. 
These include guanosine 3′,5′-cyclic monophosphate (cGMP) and 
xylulose 5-phosphate.

The initial PC1 of the PCA-based biplot (Figure 3D) accounted 
for 97.02% of the variance and effectively categorized essential 
metabolites according to their respective pathway classes. Except for 
phosphoenolpyruvate, the intermediates of glycolysis and the PPP 

formed a cohesive cluster, distinct from UDP-glucose and the amino 
acids threonine and glutamate, which were modestly increased and 
decreased in abundance, respectively. 

Targeted metabolomics at OD600 = 4.0

To examine the impact of hnox deletion on metabolism during 
extended growth periods, we performed targeted metabolomics 
profiling of P. denitrificans at OD600 = 4.0. A total of 80 
metabolites were identified in both WT and Δhnox strains 
(Supplementary Table S3). PCA demonstrated a global separation 
between WT and Δhnox samples (Figure 4A). The profile at 
OD600 = 4.0 was distinctly marked by the upregulation of all 
significantly altered metabolites in the Δhnox mutant relative to 
the WT (Figure 4B). Intermediates of PPP and glycolysis were 
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FIGURE 3
Metabolomic changes in Δhnox P. denitrificans at OD600 = 2.0. (A) PCA of metabolite profiles distinguishes WT and Δhnox samples, indicating distinct 
metabolic states. (B) Volcano plot showing the differential abundance of metabolites between Δhnox and WT strains. The x-axis represents the log2

fold change (Δhnox/WT), and the y-axis shows the –log10 (p-value). Metabolites with increased abundance in Δhnox vs. WT are indicated as yellow 
dots while metabolites with decreased abundance are indicated as gray dots. (C) Bar plot of relative abundance for significantly altered metabolites in
Δhnox relative to WT colored as in B. (D) PCA biplot of significantly altered metabolites based on pathway annotations. Metabolites are colored by their 
associated pathway.

again identified as were the redox active cofactors NAD(H), 
NADPH, and FMN, as well as the nucleotide monophosphates 
xanthosine monophosphate (XMP) and adenosine monophosphate 
(AMP) (Figure 4C). The biplot (Figure 4D) demonstrated that PPP 
and glycolytic intermediates, such as sedoheptulose 7-phosphate, 
erythrose 4-phosphate, and DHAP, formed a close cluster suggesting 
coordinated regulation of these pathways.

The global impact of hnox deletion on 
metabolism across different growth phases

Figure 5 combines the metabolomic profile data from WT and 
Δhnox P. denitrificans at OD600 = 0.6, 2.0, and 4.0. PCA demonstrates 
a clear distinction between samples at varying ODs (Figure 5A), 
signifying divergent metabolic states as cell density increases. 
Although Δhnox and WT samples were distinguishable at every 
time point, their relative locations exhibited a similar pattern 

throughout the development phases. This indicates that global 
metabolic changes are driven by growth phase with more subtle 
differences dependent upon hnox status.

A Venn diagram of all significantly modified metabolites 
across all three growth phases (Figure 5B) shows that five 
metabolites—erythrose 4-phosphate, glyceraldehyde 3-phosphate, 
phosphoenolpyruvic acid, sedoheptulose 7-phosphate, and 
dihydroxyacetone phosphate—were consistently differentially 
abundant at all three optical densities. Other metabolites were 
modified only at certain growth phases. Figure 5C shows normalized 
log2 fold changes of significantly changed metabolites across cell 
densities to reveal phase-specific expression patterns. 

Proteomics at OD600 = 2.0

To further enable correlation of metabolomic and proteomic 
changes across cell densities, we performed total proteomics 
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FIGURE 4
Metabolomic changes in Δhnox P. denitrificans at OD600 = 4.0. (A) PCA of metabolite profiles distinguishes WT and Δhnox samples, indicating distinct 
metabolic states. (B) Volcano plot showing the differential abundance of metabolites between Δhnox and WT strains. The x-axis represents the log2

fold change (Δhnox/WT), and the y-axis shows the –log10 (p-value). Metabolites with increased abundance in Δhnox vs. WT are indicated as yellow 
dots while metabolites with decreased abundance are indicated as gray dots. (C) Bar plot of relative abundance for significantly altered metabolites in
Δhnox relative to WT colored as in B. (D) PCA biplot of significantly altered metabolites based on pathway annotations. Metabolites are colored by their 
associated pathway.

at OD600 = 2.0 to add to our existing dataset at OD600
= 0.6 (Islam et al., 2024). A label-free approach identified 
more than 1,600 proteins with 35 differentially expressed 
between WT and Δhnox strains (Supplementary Table S4;
Figure 6).

The data quality and distribution of protein intensities were 
first assessed using violin plots, as shown in Figure 6A. Both 
WT and Δhnox samples displayed comparable distributions with 
overlapping ranges, confirming consistent protein detection and 
reproducibility. PCA was then applied to capture global variation in 
proteome profiles (Figure 6B). The first two principal components 
accounted for more than 50% of the variance, and samples clustered 
tightly within their respective groups, while WT and Δhnox were 
clearly separated along PC1, indicating distinct strain-specific 
proteomic signatures. Finally, volcano plot analysis was performed 
to highlight proteins showing significant changes between the 
two strains (Figure 6C). Several proteins including Pden_4037, 
Pden_0243, Pden_2001 and Pden_0510 with strong statistical 
support and high fold changes were annotated directly on the plot, 
underscoring candidate proteins most affected by H-NOX deletion.

Prediction of proteome expression at 
OD600 = 2.0 using multi-OMICs integration 
and artificial intelligence-based models

Implementing our current established dataset, which included 
metabolomics profiles at OD600 = 0.6 and 2.0, alongside proteomics 
data at OD600 = 0.6 (Islam et al., 2024), we aimed to forecast 
differentially expressed proteins at an OD600 = 2.0 in Δhnox 
P. denitrificans relative to the WT strain. We applied various 
supervised ML models, including PLS, Ridge regression, Lasso 
regression, Random Forest, and XGBoost, to establish predictive 
relationships between metabolite levels and protein expression. 
LOOCV was used to evaluate the performance of the model. Of 
all the models evaluated, Ridge regression yielded the lowest mean 
squared error, thereby establishing it as the most effective method 
in this context (Supplementary Figure S2). Models such as PLS 
and Random Forest exhibited satisfactory performance. However, 
XGBoost demonstrated increased variability and error, indicating 
that it may not be optimally suited for our dataset in its present 
configuration. Alongside the conventional ML models, we also 
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FIGURE 5
Comparative metabolomic analysis across growth phases in Δhnox vs. WT P. denitrificans. (A) PCA of metabolite profiles of WT and Δhnox at OD600 = 
0.6, 2.0, and 4.0. (B) Venn diagram of significantly altered metabolites in Δhnox versus WT across all three ODs. (C) Heatmap showing normalized log2

fold changes of metabolites significantly altered at OD600 = 0.6, 2.0 or 4.0.

FIGURE 6
Proteomics comparison of Δhnox vs. WT P. denitrificans at OD600 = 2.0. (A) Violin plots showing the distribution of protein intensity values across 
biological replicates of WT (n = 4) and Δhnox (n = 4) strains. Median and quartile ranges are indicated by dashed lines. (B) PCA plot illustrating 
separation of WT (red) and Δhnox (green) proteome profiles. PC1 (30.6%) and PC2 (23.8%) capture the major variance between conditions. (C) Volcano 
plot comparing Δhnox versus WT proteomes. The x-axis represents log2 fold change, and the y-axis represents–log10 p-value. Significantly 
downregulated proteins (p ≤ 0.05, FC ≤ −0.58) are shown in gray, while significantly upregulated proteins (p ≤ 0.05, FC ≥ 0.58) are shown in orange. 
Selected candidate proteins are labeled.
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employed a GNN, which is a deep learning architecture specifically 
developed to leverage the relationships and structural characteristics 
inherent in biological data.

The GNN methodology successfully produced predictions for 20 
proteins in both WT and Δhnox strains at OD600 = 2.0 (Figure 7; 
Supplementary Table S5). In this analysis, we focused on a targeted 
metabolomics dataset centered on central carbon metabolism. Since 
the GNN models were trained on a defined set of metabolites 
with known pathway associations, the predictions were naturally 
limited to proteins closely connected to these metabolites. This 
resulted in a focused set of proteins, reflecting a deliberate strategy to 
capture biologically relevant changes rather than broad, proteome-
wide predictions. A comparison of the predicted log2 fold changes 
(Δhnox vs. WT) with the experimentally obtained values shows 
superior predictive performance of the GNN model over ML 
(Figure 7; Supplementary Table S5). While all of the models exhibit 
certain limitations as discussed below, this methodology presents 
a valuable framework for predicting proteomic dynamics and 
investigating metabolic regulation within bacterial systems.

Discussion

It is now thought that most bacterial species inhabit biofilms, 
and that this is their primary mode of existence (Flemming and 
Wuertz, 2019). Thus, biofilm formation is among the most common 
biological processes on earth, yet its molecular underpinnings 
remain murky, due in part to the tremendous variety of structures, 
signaling pathways, and metabolic remodeling accompanying 
biofilm formation in different species. Biofilm formation in 
Paracoccus dentirificans is unusual for several reasons as discussed 
above and provides an opportunity to explore the diversity of 
this process.

Here we have exploited the biofilm-deficient Δhnox strain 
to track biological changes during growth that may promote 
or repress biofilm formation using a multi-omics approach. The 
results suggest that early, H-NOX-dependent signaling events tune 
metabolism to allow biofilm initiation and development. The 
genomic context of hnox suggests that this may occur by inhibition 
of c-di-GMP synthesis. As cell densities increase, quorum sensing 
promotes biofilm dispersal in WT P. denitrificans. Below, we discuss 
metabolomics and proteomics changes and how they are correlated 
at these different growth phases. We also provide an example of how 
the integration of metabolomics and proteomics data with ML and 
GNN-based models enables prediction of proteomic shifts. 

H-NOX signaling at low cell density

The role of H-NOX proteins as NO-sensors regulating 
biofilm formation and dispersal in various species has been 
extensively reviewed (Plate and Marletta, 2012; Williams et al., 
2018; Bacon et al., 2017; Guo and Marletta, 2019; Williams and 
Boon, 2019; Lee-Lopez and Yukl, 2022). While there are species-
specific differences, a common mechanism is that NO-bound H-
NOX regulates c-di-GMP levels either by interacting directly with 
DGC and/or phosphodiesterase (PDE) enzymes or indirectly by 
regulating kinases that phosphorylate them. The former pathway is 

used in Legionella pneumophila (Carlson et al., 2010) and Shewanella 
woodyi (Liu et al., 2012) where NO-bound H-NOX represses c-di-
GMP production or stimulates its degradation, thereby favoring 
biofilm dispersal. NO-bound H-NOX in Shewanella oneidensis and 
Vibrio cholerae inhibits a His kinase, which phosphorylates and 
activates a PDE (Plate and Marletta, 2012). By inhibiting an activator 
of PDE, H-NOX signaling increases intracellular c-di-GMP and 
favors biofilm formation. Either case conforms with the prevailing 
view that c-di-GMP is a biofilm promoter. The opposite seems to 
be true in P. denitrificans where deletion of dgc genes leads to a 
hyperbiofilm phenotype (Kumar and Spiro, 2017). By this model, 
H-NOX inhibits c-di-GMP synthesis by the neighboring dgcA
gene product, thus promoting biofilm formation. Unfortunately, 
we have been unable to support this mechanism by direct c-di-GMP 
quantitation. Extraction of this compound from P. denitrificans is 
consistently below the detection limit for either mass spectrometry 
or ELISA workflows in our hands.

Whether through c-di-GMP signaling or by other means, 
we show here that H-NOX signaling influences central carbon 
metabolism in P. denitrificans at OD600 = 0.6, prior to high AHL 
production (Islam et al., 2024). Specifically, we see a notable 
decrease of abundance in multiple amino acids and acetyl-CoA 
and a corresponding increase in PPP and glycolysis intermediates 
in the Δhnox strain. Further, we observe detectable pyruvate only 
in WT at this OD, consistent with our previous observation of 
decreased pyruvate in Δhnox, and an increased abundance of lactate 
in the mutant. All of this points to inhibition of the last step of 
glycolysis catalyzed by pyruvate kinase (PK) and/or a transition 
to fermentative metabolism (Figure 8). Depletion of pyruvate or 
inactivation of lactate dehydrogenase (LDH) has been shown to 
impair biofilm formation in Pseudomonas aeruginosa, an effect 
thought to stem from the necessity of redox-balancing in the 
reductive stress environment found within biofilms (Petrova et al., 
2012; Goodwine et al., 2019). Further, since it catalyzes an 
irreversible step in glycolysis, PK is allosterically regulated, even in 
bacteria (Sakai et al., 1986; Zoraghi et al., 2010; She et al., 2025).

Our previous proteomics data showed downregulation of both 
carbohydrate and amino acid transporters in the mutant strain 
as well as components of the f0f1 ATP synthase (Islam et al., 
2024). Additionally, a downregulation of an oxoacid dehydrogenase 
analogous to pyruvate dehydrogenase was noted, albeit with an 
unconfirmed function. These changes correlate with metabolomics 
changes, although not always in predictable ways. What was not 
observed was a change to any enzyme convincingly annotated as 
a LDH or PK. Nevertheless, these enzymes may still be regulated 
post-translationally through mechanisms that depend on H-NOX 
and potentially c-di-GMP signaling to facilitate biofilm formation 
and maintenance. 

H-NOX and quorum sensing at high cell 
density

Several studies have investigated quorum sensing in P. 
denitrificans and its influence on biofilm formation. At high cell 
densities, C16 AHL is synthesized through the enzyme PdnI and 
detected by the transcriptional regulator PdeR (Zhang et al., 2018). 
The PdeR regulon comprises hundreds of genes including those 
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FIGURE 7
Comparison of predicted and experimental proteome expression (Δhnox vs. WT) at OD600 = 2.0. (A) Line plot showing log2 fold change of 20 selected 
proteins as predicted by the GNN model (blue), ML model (orange), and measured by mass spectrometry (MS) (green). (B) Table comparing the protein 
expression changes (Δhnox vs. WT) from GNN predictions and MS based experimental data (p < 0.05). Red arrows indicate downregulation, gray arrows 
represent minimal or no change. Values are given as log2 fold changes.

involved in iron acquisition and ATP synthesis (Wang N. et al., 2022) 
as well as pdeI and pdeR themselves. Deletion of pdeI or treatment 
with exogenous C16 HSL inhibits biofilm formation (Toyofuku et al., 
2017; Morinaga et al., 2018) while overexpression of PdeR enhances 
it (Wang N. et al., 2022). At OD600 = 2 and 4, C16 HSL levels 
rise precipitously (Islam et al., 2024), correlating with decreased 
relative biofilm in WT P. denitrificans (Figure 1B) and supporting 

a role in biofilm dispersal for QS in this species. These levels are 
higher in the Δhnox strain, which exhibits roughly the same low 
relative level of biofilm across all cell densities. QS and c-di-GMP 
signaling are tightly integrated in other species (Römling et al., 
2013), suggesting that dysregulation of c-di-GMP production 
in the mutant strain may drive subsequent dysregulation
of QS.
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FIGURE 8
Central metabolic remodeling in Δhnox Paracoccus denitrificans. Central carbon metabolism in P. denitrificans highlighting metabolite changes in the
Δhnox mutant across three growth phases (OD600 = 0.6, 2.0, and 4.0). Arrows colored according to OD600 indicate significantly increased (↑) or 
decreased (↓) abundance in Δhnox compared to WT.

Given the large size of the PdeR regulon, metabolomic and 
proteomic changes at high cell densities would presumably be 
dominated by QS targets. However, we did not observe any of the 
iron transporters shown to be differentially transcribed in the pdeR
or pdeI deletion strains (Zhang et al., 2018) in our proteomics 
dataset at OD600 = 2.0. Although PdeR and BapA were identified, 
neither was differentially abundant between WT and Δhnox. As the 
name implies, QS occurs above a threshold concentration (Platt and 
Fuqua, 2010; Waters and Bassler, 2005), and the lack changes in 
expression to known PdeR regulon proteins may indicate that this 
threshold has been reached in both strains. However, changes in 
metabolic enzymes and transporters are still observed. Perhaps most 
conspicuous among these are a decrease in a number of metabolic 

dehydrogenase enzymes including acyl-CoA and 3-hydroxyacyl-
CoA dehydrogenases involved in fatty acid beta-oxidation. These are 
intriguing in that they suggest changes to fatty acid metabolism not 
captured in our targeted metabolomics approach.

In the metabolomics data, we observe increased abundance 
of glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, and 
xylulose 5-phosphate in Δhnox strains at OD600 = 2.0. These are 
intermediates of glycolysis and/or PPP (Figure 8), continuing the 
trend observed at OD600 = 0.6, although other intermediates in 
these pathways are modestly decreased in abundance at OD600 = 
2.0. In Burkholderia glumae, transcription of glycolytic enzymes 
as well as abundance of glycolytic and PPP metabolites are 
decreased by quorum sensing (An et al., 2014). However, it is 
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worth noting that AHL QS in the closely related Burkholderia 
cenocepacia stimulates biofilm (Aguilar et al., 2014) in contrast 
to what we observe in P. denitrificans. We continue to observe 
higher abundances of glycolytic and PPP metabolites at OD600 = 4.0 
with concomitant increases in redox cofactors NAD(H), FMN, and 
NADP. These may indicate a disruption in redox homeostasis that 
could also impair biofilm formation and maintenance. 

AI-driven proteomics prediction and its 
biological implications

This work illustrates that bacterial cell density has a substantial 
influence on central metabolism, and relatively small changes in 
metabolism can have significant consequences for phenotypes 
such as biofilm formation. This is especially evident from how 
the metabolic profiles of WT and Δhnox P. denitrificans cluster 
tightly at various OD values (Figure 5A), yet these strains 
exhibit dramatic differences in biofilm formation. Controlling 
for cell density is clearly important when drawing mechanistic 
conclusions from -omics data, making predictive tools especially 
valuable in this context. The datasets collected here and in our 
previous work (Islam et al., 2024) provide an excellent opportunity to 
test the ability of ML and GNN models to predict protein expression 
from existing -omics data from a different cell density. The GNN 
model in particular demonstrated significant predictive ability for 
a small subset of proteins identified as differentially abundant 
by mass spectrometry. Interestingly, the majority of predicted 
proteins are NAD(H)-dependent dehydrogenases, suggesting that 
the observed differential abundance of this cofactor at OD600 = 
2.0 drives predictive decisions in the model. Xanthine-guanine 
phosphoribosyl transferase is also identified, which transfers a 
phosphoribosyl group to guanine or xanthine, resulting in the 
formation of GMP or XMP, respectively. Presumably, changes in 
guanine and xanthine nucleotides XMP, GTP, and cGMP drives 
identification of this enzyme, which was correctly predicted to be 
unchanged in abundance.

The examination of various ML and AI models yields significant 
insights applicable to multi-omics research. Models characterized 
by simplicity, such as Ridge regression, demonstrate robust 
performance in small-sample contexts by reducing overfitting. In 
contrast, more intricate methodologies, such as GNNs have the 
capacity to leverage pathway topology and identify non-linear 
relationships, thereby attaining enhanced biological concordance. 
This underscores the necessity of employing benchmarking across 
various models, instead of depending on a singular methodology, as 
a recommended practice for predictive omics research. Comparative 
analyses assure the transparency of methodological choices and 
ensure that conclusions derived from AI-driven models are 
reliable and biologically meaningful. For this data, the GNN-
predicted fold changes agreed best with MS-validated data, 
exhibiting a moderate positive correlation (Pearson’s r = 0.47). 
While this model captures part of the biological signal, predictive 
power remains limited by sample size and model simplicity. 
The small sample size also heightens the risk of overfitting, 
especially in deep learning approaches like graph neural networks. 
We employed leave-one-out cross-validation to optimize data 

utilization, while recognizing its established variance in small-
sample contexts. Consequently, our ML analysis should be viewed 
as a proof-of-concept demonstration of feasibility rather than as a 
conclusive predictive model. The observed concordance between 
predicted and experimentally measured fold-changes indicates 
the potential of this integrative approach, while emphasizing the 
necessity for larger datasets and additional time points in future
research.

Conclusion

This comprehensive analysis of metabolomics and proteomics, 
augmented by AI-based modeling, expands on the prior literature 
of unusual biofilm formation and signaling in P. denitrificans. H-
NOX influences central carbon metabolism at relatively low cell 
densities, potentially by regulating c-di-GMP metabolism. Deletion 
of hnox results in decreased amino acid abundance and increases 
in glycolytic and PPP metabolites, potentially indicating inhibition 
of late glycolytic enzymes and/or promotion of fermentation. QS 
occurs at higher cell densities, which we have confirmed to promote 
biofilm dispersal in this organism. Despite significant differences 
in the quantity of C16 AHL between the strains at these densities, 
we did not observe differential expression of known QS targets, 
suggesting that signaling threshold had been reached in both strains. 
However, changes to metabolic enzymes and metabolites persisted, 
particularly in PPP and glycolytic pathways. Finally, metabolomic 
and proteomic data sets were used to test AI/ML models for 
predicting proteome changes from metabolomic data. Despite 
limitations of sample size, a GNN model demonstrated moderate 
correlation between predicted and experimental fold changes, 
providing a proof-of-concept validation for using metabolomic 
data to anticipate proteomic outcomes. Collectively, these findings 
enhance our understanding of metabolic regulation in Paracoccus 
denitrificans that may be useful for future applications in microbial 
engineering and environmental biotechnology.
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