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Heme-nitric oxide/oxygen binding (H-NOX) proteins function as critical sensors
for nitric oxide in many bacterial species. However, their physiological functions
are surprisingly diverse, and most have yet to be thoroughly investigated. Here,
we investigate the impact of hnox deletion in Paracoccus denitrificans, a species
known for its metabolic versatility and the formation of unusually thin biofilm
structures. Time-resolved targeted metabolomics across three growth phases
(ODggp = 0.6, 2.0, and 4.0) indicates that the deletion of hnox is consistently
associated with disruptions in central carbon metabolism. At early stages, the
Ahnox strain exhibits increased abundance of glycolytic and pentose phosphate
pathway metabolites accompanied by decreases in amino acids, suggesting
dysregulation in late glycolysis or promotion of fermentative metabolism. Higher
cell densities are characterized by increased quorum sensing, which is shown
to promote biofilm dispersal in the WT but had little effect on the Ahnox
strain. Metabolomics changes at these stages continue to highlight the pentose
phosphate and glycolytic metabolites along with redox cofactors, implicating
changes in energy metabolism or oxidative stress response. Total proteomics
at ODgyp = 2.0 were collected to explore connections between metabolism
and proteome dynamics, and to provide an opportunity to test several machine
learning (ML) models for predicting proteomic changes from metabolomic
profiles. While constrained by limited sample size, these exploratory models
showed biologically meaningful concordance with experimentally observed
proteome shifts, highlighting both the promise and the current limitations of
artificial intelligence (Al)-based methods in non-model microbial systems.
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Introduction

Paracoccus denitrificans is a Gram-negative, facultatively
anaerobic bacterium capable of complete denitrification, a
biochemical process that entails the sequential reduction of nitrate
to nitrogen gas via intermediates such as nitrite, nitric oxide, and
nitrous oxide (Baker et al., 1998; Xia et al., 2018; Stouthamer et al.,
1997). Understanding this process is crucial for addressing the
buildup of harmful nitrogenous compounds in the environment
and has important implications for wastewater management and
environmental engineering (Pascual et al., 2020; Assefa et al., 2019;
Strauss et al,, 2012). Furthermore, P denitrificans possesses the
potential for a range of biotechnological applications, including
bioremediation and the enhancement of sustainable agricultural
practices (Puri et al., 2022; Yang et al., 2013; Kojima et al., 2004;
Lycus et al, 2018; Gomez-Acata et al., 2018; Zhao et al., 2015;
Olaya-Abril et al., 2018; Islam et al., 2024).

Practical application of P. denitrificans in these processes may
be improved by or even require the formation of a monoculture
or mixed-species biofilms (Nisha et al., 2015; Singh et al., 2015;
Kiely et al., 2010). Biofilms are structured communities of cells
encased within a self-produced extracellular polymeric substance
(EPS), which confers tolerance to antimicrobials and various
environmental stresses such as changes in pH, mechanical shear,
osmolarity, and nutrient availability (Mishra et al, 2023). P
denitrificans is noted for its unusually thin biofilms consisting of
densely packed cells in what is nearly a monolayer (Yoshida et al.,
2017; Singh et al., 2015), which contrasts with the large “mushroom”
structures of EPS and cells formed by well-studied biofilm
producers such as Pseudomonas aeruginosa (Sauer et al., 2002;
Sauer et al, 2022). The processes of surface adhesion and EPS
production during the planktonic to sessile transition are tightly
regulated by environmental cues and both inter- and intracellular
signaling pathways, although these may differ substantially between
species (Costerton et al., 1999; Flemming and Wingender, 2010;
Flemming et al, 2016). In P denitrificans, biofilm formation
requires the calcium-dependent adhesin BapA (Kumar and
Spiro, 2017; Yoshida et al, 2017) and is regulated through a
quorum sensing (QS) circuit with enzymes Pdel and PdeR acting
as acylhomoserine lactone (AHL) synthase and transcription
factor/response regulator, respectively (Zhang et al, 2018).
Deletion of pdel promoted biofilm formation while exogenous
addition of C16 AHL inhibited it, suggesting an inhibitory
role for QS in this organism (Morinaga et al, 2018). However,
pdeR overexpression was shown to promote biofilm formation
(Wang N. et al., 2022), perhaps suggesting distinct roles for PdeR
alone and in complex with AHL. There is also data suggesting that
cyclic diguanosine monophosphate (c-di-GMP) inhibits biofilm
formation as deletion of the two annotated diguanylate cyclase
(DGC) genes results in increased biofilm formation (Kumar and
Spiro, 2017). This is unusual in that c-di-GMP generally signals for
biofilm development (Romling et al., 2013).

Adjacent to one of the DGC genes (dgcA) is a gene encoding
a heme-nitric oxide/oxygen binding protein (H-NOX). H-NOX
proteins are known to modulate communal behaviors such as
biofilm formation and quorum sensing in response to NO, often
acting upstream of cyclic-di-GMP regulatory pathways (Plate
and Marletta, 2013). Indeed, the Ahnox mutant of P. denitrificans
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displays a markedly biofilm-deficient phenotype and elevated
levels of AHL relative to the WT at high cell densities (Kumar
and Spiro, 2017; Islam et al., 2024). Moreover, a comprehensive
proteomics study of Ahnox P denitrificans showed altered
abundance of proteins involved in central carbon and energy
metabolism occurring at cell densities (ODg,, = 0.6) that precede
dysregulation of AHL (Islam et al., 2024). These findings suggest a
role for H-NOX in coordinating metabolism with biofilm formation
in this organism.

In the present study, we explored this regulatory role more deeply
by focusing on how core metabolic pathways—including glycolysis,
the pentose phosphate pathway (PPP), and the tricarboxylic acid
(TCA) cycle—contribute to biofilm development in P. denitrificans.
We performed targeted metabolomic profiling comparing WT and
Ahnox P. denitrificans across different stages of bacterial growth,
which revealed changes in the abundance of metabolites associated
with amino acid metabolism, glycolysis, and PPP. Furthermore,
by integrating metabolomic and proteomic data from cultures at
0Dy = 0.6, we employed an Al learning framework to successfully
predict protein expression profiles at ODgy, = 2. The application
of supervised ML algorithms and graph neural networks (GNN)
predicted correlations between metabolite abundance and protein
output that were largely verified by mass spectrometry. Al-based
methodologies have demonstrated growing effectiveness in the field
of systems biology, especially in the modeling of high-dimensional
omics data, the inference of regulatory interactions, and the prediction
of phenotypic outcomes in response to genetic or environmental
perturbations (Camacho etal., 2018; Maetal.,2018; Chingetal., 2018).
Collectively, our data suggest that hnox deletion induces alterations
in metabolic regulation, disrupting biofilm development at low cell
densities and manifesting persistent changes in energy metabolism
and oxidative stress response at high cell densities.

Materials and methods
Bacterial strains and culture conditions

WT and Ahnox P. denitrificans PD1222 strains were a kind gift
from Dr. Stephen Spiro at the University of Texas Dallas (Kumar
and Spiro, 2017). As noted below, strains were grown in LB
medium (Formula/liter: Tryptone 10 g, Yeast extract 5 gand Sodium
Chloride 10 g) with or without supplementation with 10 mM CaCl,
at 30 °C with shaking at 50-100 rpm.

Bacterial growth and crystal violet staining

For growth experiments, overnight cultures in LB medium were
diluted to ODgy, = 0.05 in 12mL of fresh LB in 50 mL plastic
culture tubes without CaCl, supplementation to match conditions
used for metabolomics samples (see below). Three replicate samples
were maintained at 30 °C with shaking at 100 rpm and ODg,
was measured every 4 h. Crystal violet (CV) staining experiments
were performed in the same way except that LB was supplemented
with 10 mM CaCl, and shaking was at 50 rpm to facilitate biofilm
formation (Kumar and Spiro, 2017). Samples were monitored until
they reached the desired ODyg, (3 replicates for each OD), at which
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point media and planktonic cells were discarded, and the tubes were
rinsed 3 times with deionized water and air dried. 12 mL 0f 0.1% w/v
CV was added and shaken at room temperature for 1 h. Stain was
discarded, and the tubes were again rinsed 3 times with deionized
water and allowed to dry. Finally, CV was dissolved with 12 mL of
100% DMSO and absorbance at 570 nm was measured.

Scanning electron microscopy (SEM)
sample preparation and imaging

Overnight starter cultures were adjusted to ODgy, = 0.05 in
3 mL of fresh LB medium supplemented with 10 mM CaCl, in
sterile polystyrene Petri plates, each bearing a pre-cleaned glass
coverslip. Cultures were maintained at 30 °C with shaking at 50 rpm
for 24 h to facilitate surface adhesion and biofilm development.
Following incubation, planktonic cultures were discarded, and the
coverslips were rinsed three times with deionized water to eliminate
non-adherent cells. Coverslips were subsequently air-dried under
sterile conditions for 48 h. Thereafter, samples were subjected to
a 10-min treatment with a drop of 2% ionic liquid, 1-butyl-3-
methylimidazolium tetrafluoroborate (Sigma, St. Louis, Mo, United
States), to improve conductivity, and surplus liquid was blotted with
Kimwipes. The dried and processed samples were sputter-coated
with gold utilizing a Gatan Model SSI High Resolution Ion Beam
Coater (Gatan, Pleasanton, California, United States). Imaging was
conducted utilizing a Hitachi SU7000 Field Emission Scanning
Electron Microscope (Hitachi, Japan). All assays were performed in
triplicate for both WT and Ahnox strains.

Sample preparation for targeted
metabolomics analysis

For metabolomics experiments, CaCl, supplementation was
omitted as excess Ca** may interfere with ion-pair chromatography
and electrospray ionization in the triple quadrupole LC-MS/MS
platform. WT and Ahnox P. denitrificans starter cultures were
adjusted to ODgy, = 0.05 in LB media and maintained at 30 °C
with shaking at 100 rpm. Cells were harvested at ODg, = 0.6, 2.0,
or 4.0, which required approximately 18-72 h growth under these
conditions (Supplementary Figure S1). Four biological replicate
samples were used at each cell density. Cells were collected using
centrifugation at 4,300 x g for 20 min at 4 °C. Media was carefully
removed by pipette, and the cell pellets were immediately weighed
and subjected to three washes with 1 mL of ice-cold phosphate-
buffered saline (PBS) immediately followed by resuspension in
ice-cold methanol containing internal standard (10 pmol L™ of L-
methionine sulfone). Samples were homogenized by sonication for
2 min, followed by three freeze-thaw cycles in liquid nitrogen to
guarantee complete extraction. Samples were centrifuged at 12,000
x g for 10 min at 4 °C and supernatants were transferred to 15 mL
conical tubes. Phase separation was executed by incorporating
0.5mL of deionized water and 1 mL of chloroform into each
sample followed by centrifugation at 4,000 x g for 15 min at 4 °C.
The top aqueous phase was extracted for subsequent processing.
The samples were filtered using pre-washed 3-kDa molecular
weight cutoff filters (Millipore, Tokyo, Japan) via centrifugation to
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eliminate protein impurities. The filtrates were lyophilized overnight
at 4°C and subsequently kept at —80 °C until analysis. Dried
metabolites were reconstituted in 100 pL of deionized water for triple
quadrupole mass spectrometry analysis. Metabolite concentrations
were adjusted according to cell pellet wet weight.

Triple-quadrupole mass spectrometry
analysis

The analysis method used was the Primary Metabolites
LC/MS/MS method package developed by Shimadzu with some
modifications (Kubo et al, 2011). The Primary Metabolites
package utilizes an ion-pairing reagent (i.e., tributylamine) in order
to enhance retention of metabolites and an internal standard
(L-methionine sulfone) to perform semi-quantitative analysis
between the WT and Ahnox samples. Extracts were analyzed
using a Shimadzu LCMS-8050 instrument which couples liquid
chromatography (LC) with a triple-quadrupole mass spectrometry
(MS) instrument (Shimadzu Scientific Instruments, Columbia, MD,
United States). The LC column was the Mastro 2 (Shimadzu, C18,
3 um, 150 x 2 mm) and mobile phases were water (A: 15 mM
acetic acid, 5 mM tributylamine-water) and methanol (B). The LC
gradient program was as follows: 0% B (0.5 min) - 25% B (8.0 min)
- 98% B (12.0-15.0 min) - 0% B (15.1-20.0 min). Flow rate was
0.30 mL/min and the column temperature was kept at 40 °C during
each run. Nebulizing and drying gas were kept at 2.0 and 10 L/min,
respectively. The desolvation line and heat block temperatures
were kept at 250 °C and 400 °C, respectively. The LCMS-8050 was
operated using negative (-) mode electrospray ionization with
multiple-reaction-monitoring (MRM) for each of the compounds as
described in the Primary Metabolites package (Kubo et al., 2011).

Al-based proteome prediction

To predict protein expression at ODg,, = 2 for both WT and
Ahnox P. denitrificans, we used a data set of metabolomics profile
at ODgy, = 0.6 and 2.0, as well as proteomics data at ODg, =
0.6 (Islam et al., 2024). Supervised ML models were trained on
this multi-omics dataset to quantify metabolite abundance and
proteome expression. ML models like Partial Least Squares (PLS),
Ridge regression, Lasso regression, Random Forest, and XGBoost
were used in the current study (Samin et al., 2024; Greener et al.,
2022). For comparability, all features were scaled before model
training. Leave-one-out cross-validation (LOOCV) was used to
evaluate each model’s prediction performance under limited-
sample settings. For the classical machine learning models (Partial
Least Squares, Ridge, Lasso, Random Forest, XGBoost), we used
the scikit-learn (v1.2.2) and XGBoost (v1.7.6) implementations
with the following specifications: Data preprocessing: all features
were scaled (standardization for proteomics, MinMax scaling for
metabolomics). Cross-validation: Leave-One-Out Cross Validation
(LOOCYV). Ridge/Lasso: optimized using default coordinate
descent solvers; regularization parameters were tuned using grid
search. Random Forest: 100 estimators, Gini criterion, max depth
unrestricted. XGBoost: learning rate 0.1, maxdepth 6, 200
estimators. For the graph neural network (GNN) framework
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(PyTorch Geometric v2.3.1), we implemented a two-layer Graph
Attention Network (GAT) with hidden dimension of 128 and four
attention heads per layer. Batch Normalization and dropout layers
(dropout rate
The Exponential Linear Unit (ELU) activation function was

= 0.3) were included to improve generalization.
used throughout. Models were trained with the Adam optimizer
(learning rate = 0.001), coupled with a StepLR scheduler (step
size = 100, y = 0.5). Mean Squared Error (MSE) was employed

as the loss function, and training proceeded for 300 epochs
until convergence, as monitored by loss stabilization with no
signs of overfitting. The GNN architecture explicitly incorporated
topological linkages among biological entities, thereby capturing
context-dependent interactions and pathway-level organization
within the metabolomics-proteomics network (Scarselli et al., 2009).
All ML analyses were performed in Python 3.10.12 on Google
Colab, a cloud-based environment for reproducible and scalable
computation (Bisong, 2019). The following package versions were
used: NumPy 1.23.5; pandas 1.5.3; scikit-learn 1.2.2; PyTorch
2.0.1; PyTorch Geometric 2.3.1; torch-scatter 2.1.1; torch-sparse
0.6.17; XGBoost 1.7.6; Matplotlib 3.7.1; and Seaborn 0.12.2. Scikit-
learn and XGBoost supported data preprocessing and classical
ML training, while PyTorch and PyTorch Geometric were used for
GNN implementation. Model performance and predictions were
visualized with Matplotlib and Seaborn. Links to the code used are
provided in the Data Availability section.

Proteomics sample preparation and data
analysis

WT and Ahnox P. denitrificans PD1222 were grown in 10 mL LB
media supplemented with 10 mM CaCl, at 30 °C with shaking at
100 rpm until ODg, reached 2.0. At this point, cells were collected
via centrifugation, rinsed, lysed by sonication in buffer containing
6 M urea, 2 M thiourea, 25 mM NH,HCO;, and protease inhibitor,
and subsequently cleared using centrifugation to isolate soluble
proteins. Protein extraction and tryptic digestion were conducted
according to a previously established methodology (Cox etal., 2014).
Proteomic analyses were performed on four independent biological
replicates per condition, without additional technical replication.
The resultant peptides were examined utilizing an Orbitrap Eclipse
Tribrid mass spectrometer (Thermo Fisher Scientific, Waltham,
MA, United States). RAW proteome data were analyzed with
MaxQuant (v2.2.0.0) against the P. denitrificans UniprotKB database
(UP000000361) (Cox and Mann, 2008). Carbamidomethylation
of cysteine was designated as a permanent modification, whereas
oxidation of methionine and N-terminal acetylation were classified
as variable modifications. A 1% false discovery rate threshold was
implemented for the identification of peptides and proteins. Data
visualizations were executed in Python.

Statistical analysis

All metabolomics and proteomics data were subjected to analysis
utilizing Python 3.10, along with the libraries NumPy, pandas,
Matplotlib, and Seaborn. Metabolite and protein comparisons between
WT and Ahnox strains were conducted using two-tailed Students
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t-tests. Metabolites were considered significant if they exhibited p
< 0.05 (Graf et al, 2019; Wang R. et al,, 2022; Wang et al,, 2025)
and an absolute log, fold change >0.58, which corresponds to a
1.5-fold change. In addition, Storey’s g-values (false discovery rate
estimates) were computed and are presented alongside the raw p-
values in the result tables for reference but were not used as the primary
basis for determining statistical significance. The metabolomics and
proteomics datasets were each generated from four independent
biological replicates per condition. For proteomics, a 1% false discovery
rate (FDR) threshold was applied for peptide and protein identification
in MaxQuant (v2.2.0.0). For machine learning analyses, all features
were scaled, leave-one-out cross-validation (LOOCV) was used, and
model performance was assessed by mean squared error (MSE).
Figures were generated using Python libraries Matplotlib and Seaborn.
For pathway-level interpretation, significantly altered metabolites
(normalized and scaled) were projected onto PCA-based biplots
using pathway annotations to visualize clustering and separation of
metabolites by functional categories.

Results
P. denitrificans Ahnox is biofilm deficient

Previous work showed that deletion of hnox had no significant
effect on P denitrificans growth in microplates but essentially
abrogated its ability to form biofilms in 50 mL plastic culture tubes
at ODgyy = 0.6 (Islam et al., 2024). Here we have expanded to
monitor growth and biofilm formation across cell densities ranging
from ODgy, = 0.6-4.0. The hnox deletion had no influence on
growth in 50 mL plastic culture tubes (Supplementary Figure S1),
but it significantly impaired biofilm formation at all cell densities
tested (Figure 1A). However, normalizing CV staining by ODg,
reveals that relative biofilm formation in the WT is greatest at
ODgjp = 0.6 and decreases with increasing cell density. This is
roughly anticorrelated with C16 AHL concentration (Islam et al.,
2024), consistent with previous data (Morinaga et al., 2018)
showing this autoinducer to be a negative regulator of biofilm in P
denitrificans. Conversely, normalized biofilm in the Ahnox remains
nearly constant across different cell densities (Figure 1B).

To elucidate the structural consequences of the hnox deletion
on bacterial communities, we utilized scanning electron microscopy
(SEM) to analyze and compare WT and Ahnox P. denitrificans. In
the WT strain, we observe a highly organized network of bacterial
cells with large empty regions corresponding to gaps between tightly
packed microcolonies in the thin biofilm layer of P. denitrificans
(Figure 1C). The discontinuous surface population is consistent with
what has been measured by confocal microscopy (Morinaga et al.,
2020), although perhaps sparser than some analyses (Yoshida et al.,
2017), which may be a consequence of differences in sample
preparation. Nevertheless, both techniques yield data consistent
with a monolayer or near-monolayer biofilm of densely packed cells
with very little evidence of an extensive EPS matrix (Wang N. et al.,
2022). Conversely, very few Ahnox cells were found adhered to the
surface and these in small, isolated microcolonies (Figure 1D). This
is consistent with the markedly diminished biofilm biomass in this
strain compared to WT as quantified through crystal violet staining
(Kumar and Spiro, 2017; Islam et al., 2024).
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FIGURE 1

Biofilm formation in WT and Ahnox P. denitrificans. CV staining for cultures at different cell densities (A) as raw data and (B) normalized by ODg. Error
bars represent standard deviation (n = 3;***p < 0.01 and****p < 0.0001 by Student's t test for pairwise comparisons). SEM images for surface-attached
(C) WT and (D) Ahnox P. denitrificans. Imaging was performed using the SU7000 Field Emission SEM and the scale bar represents 30 pm.

Targeted metabolomics at ODgy = 0.6

To investigate the effect of hnox deletion on central carbon
metabolism, we performed targeted metabolomics analysis at
ODg, = 0.6 using an ion-pairing liquid chromatography-mass
spectrometry (LC-MS) method optimized for central carbon
metabolites (Kubo et al., 2011). This time point was selected
based on our previous proteomics study, which revealed significant
changes in protein expression linked to metabolic pathways in
Ahnox P. denitrificans (Islam et al., 2024). A total of 73 metabolites
associated with central carbon metabolism were identified by this
method (Supplementary Table S1). Principal Component Analysis
(PCA) demonstrated clear separation between WT and Ahnox
samples, signifying a distinct metabolic profile in the absence of
hnox (Figure 2A). We conducted a statistical comparison between
Ahnox and WT strains to identify metabolites with significant
differential abundance as shown in the volcano plot (Figure 2B).
A total of 26 metabolites showed significant changes (|log, fold
change| > 0.58, p < 0.05). Several intermediates of the PPP
and glycolysis including erythrose 4-phosphate, glyceraldehyde 3-
phosphate, sedoheptulose 7-phosphate, phosphoenolpyruvic acid,
glucose 6-phosphate, and fructose 6-phosphate were significantly
more abundant in Ahnox samples (Figure2C). In contrast, 7
amino acids (valine, leucine, tyrosine, phenylalanine, isoleucine,
methionine, and asparagine) were decreased in abundance and one
(aspartate) was observed only in WT samples. Acetyl coenzyme
A and NADP were also decreased in abundance. Finally, pyruvic
acid was consistently detected in WT samples but was undetectable
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in Ahnox samples while lactic acid abundance was significantly
increased in Ahnox samples.

Next, we performed a metabolite PCA-based pathway
projection to investigate the pathway-level organization of
the altered metabolites. The significantly changed candidates
were categorized into key metabolic routes, including amino
acid metabolism, glycolysis, the PPP, the TCA cycle, and
NAD/NADP* (Figure 2D). The first principal
component (PCI) accounts for 91.42% of the variance, effectively

biosynthesis

distinguishing metabolites associated with amino acid metabolism
(e.g., asparagine, valine) and the PPP (e.g., sedoheptulose 7-
phosphate, erythrose 4-phosphate) from those related to glycolysis
(e.g., fructose 6-phosphate, glucose 6-phosphate) and cofactor
biosynthesis (e.g., FAD, NADP"). PC2 accounts for 5.78% of the
variance and facilitates the differentiation between amino acids and
PPP metabolites. The amino acids in particular cluster distinctly
from other metabolite classes, reaffirming altered amino acid
metabolism in the Ahnox strain.

Targeted metabolomics at ODgyp = 2.0

Next we conducted targeted metabolomics profiling of P,
denitrificans at ODg, = 2.0. In total, 88 metabolites were detected
(Supplementary Table S2). PCA revealed a distinct separation
between WT and Ahnox samples (Figure 3A), suggesting that the
deletion of hnox induces specific metabolic remodeling during this
growth phase. The differential abundance analysis conducted via a
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volcano plot identified 21 metabolites with significant alterations
(|log, fold change| > 0.58, p < 0.05) when comparing Ahnox to WT
(Figure 3B). Abundance of glyceraldehyde 3-phosphate continues
to be increased while several other intermediates from the PPP
and glycolysis were modestly decreased, including sedoheptulose
7-phosphate, 4-phosphate,  phosphoenolpyruvate.
Additionally, we observed a reduction in coenzyme A, nicotinic
acid, NAD", xanthosine monophosphate, xanthine, and guanosine
triphosphate (GTP) (Figure 3C). Conversely, a small subset of
metabolites exhibited increased abundance in the Ahnox strain.

These include guanosine 3',5'-cyclic monophosphate (cGMP) and

erythrose

xylulose 5-phosphate.

The initial PC1 of the PCA-based biplot (Figure 3D) accounted
for 97.02% of the variance and effectively categorized essential
metabolites according to their respective pathway classes. Except for
phosphoenolpyruvate, the intermediates of glycolysis and the PPP
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formed a cohesive cluster, distinct from UDP-glucose and the amino
acids threonine and glutamate, which were modestly increased and
decreased in abundance, respectively.

Targeted metabolomics at ODgpo = 4.0

To examine the impact of hnox deletion on metabolism during
extended growth periods, we performed targeted metabolomics
profiling of P denitrificans at ODgy, = 4.0. A total of 80
metabolites were identified in both WT and Ahnox strains
(Supplementary Table S3). PCA demonstrated a global separation
between WT and Ahnox samples (Figure4A). The profile at
ODyyy = 4.0 was distinctly marked by the upregulation of all
significantly altered metabolites in the Ahnox mutant relative to
the WT (Figure 4B). Intermediates of PPP and glycolysis were
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associated pathway.

again identified as were the redox active cofactors NAD(H),
NADPH, and FMN, as well as the nucleotide monophosphates
xanthosine monophosphate (XMP) and adenosine monophosphate
(AMP) (Figure 4C). The biplot (Figure 4D) demonstrated that PPP
and glycolytic intermediates, such as sedoheptulose 7-phosphate,
erythrose 4-phosphate, and DHAP, formed a close cluster suggesting
coordinated regulation of these pathways.

The global impact of hnox deletion on
metabolism across different growth phases

Figure 5 combines the metabolomic profile data from WT and
Ahnox P, denitrificans at ODg = 0.6, 2.0, and 4.0. PCA demonstrates
a clear distinction between samples at varying ODs (Figure 5A),
signifying divergent metabolic states as cell density increases.
Although Ahnox and WT samples were distinguishable at every
time point, their relative locations exhibited a similar pattern

Frontiers in Molecular Biosciences

07

throughout the development phases. This indicates that global
metabolic changes are driven by growth phase with more subtle
differences dependent upon hnox status.

A Venn diagram of all significantly modified metabolites
across all three growth phases (Figure 5B) shows that five
metabolites—erythrose 4-phosphate, glyceraldehyde 3-phosphate,
acid, sedoheptulose 7-phosphate,

phosphoenolpyruvic and

dihydroxyacetone phosphate—were consistently differentially
abundant at all three optical densities. Other metabolites were
modified only at certain growth phases. Figure 5C shows normalized
log, fold changes of significantly changed metabolites across cell

densities to reveal phase-specific expression patterns.
Proteomics at ODgyp = 2.0
To further enable correlation of metabolomic and proteomic

changes across cell densities, we performed total proteomics
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at ODgy = 2.0 to add to our existing dataset at ODgy,
0.6 (Islam et al, 2024). A label-free approach identified
more than 1,600 proteins with 35 differentially expressed
between WT
Figure 6).

and Ahnox strains (Supplementary Table S4;

The data quality and distribution of protein intensities were
first assessed using violin plots, as shown in Figure 6A. Both
WT and Ahnox samples displayed comparable distributions with
overlapping ranges, confirming consistent protein detection and
reproducibility. PCA was then applied to capture global variation in
proteome profiles (Figure 6B). The first two principal components
accounted for more than 50% of the variance, and samples clustered
tightly within their respective groups, while WT and Ahnox were
clearly separated along PCl, indicating distinct strain-specific
proteomic signatures. Finally, volcano plot analysis was performed
to highlight proteins showing significant changes between the
two strains (Figure 6C). Several proteins including Pden_4037,
Pden_0243, Pden_2001 and Pden_0510 with strong statistical
support and high fold changes were annotated directly on the plot,
underscoring candidate proteins most affected by H-NOX deletion.
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Prediction of proteome expression at
ODgqp = 2.0 using multi-OMICs integration
and artificial intelligence-based models

Implementing our current established dataset, which included
metabolomics profiles at ODg, = 0.6 and 2.0, alongside proteomics
data at ODgy = 0.6 (Islam et al, 2024), we aimed to forecast
differentially expressed proteins at an ODg,, = 2.0 in Ahnox
P denitrificans relative to the WT strain. We applied various
supervised ML models, including PLS, Ridge regression, Lasso
regression, Random Forest, and XGBoost, to establish predictive
relationships between metabolite levels and protein expression.
LOOCYV was used to evaluate the performance of the model. Of
all the models evaluated, Ridge regression yielded the lowest mean
squared error, thereby establishing it as the most effective method
in this context (Supplementary Figure S2). Models such as PLS
and Random Forest exhibited satisfactory performance. However,
XGBoost demonstrated increased variability and error, indicating
that it may not be optimally suited for our dataset in its present
configuration. Alongside the conventional ML models, we also
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employed a GNN, which is a deep learning architecture specifically
developed to leverage the relationships and structural characteristics
inherent in biological data.

The GNN methodology successfully produced predictions for 20
proteins in both WT and Ahnox strains at ODg, = 2.0 (Figure 7;
Supplementary Table S5). In this analysis, we focused on a targeted
metabolomics dataset centered on central carbon metabolism. Since
the GNN models were trained on a defined set of metabolites
with known pathway associations, the predictions were naturally
limited to proteins closely connected to these metabolites. This
resulted in a focused set of proteins, reflecting a deliberate strategy to
capture biologically relevant changes rather than broad, proteome-
wide predictions. A comparison of the predicted log, fold changes
(Ahmox vs. WT) with the experimentally obtained values shows
superior predictive performance of the GNN model over ML
(Figure 7; Supplementary Table S5). While all of the models exhibit
certain limitations as discussed below, this methodology presents
a valuable framework for predicting proteomic dynamics and
investigating metabolic regulation within bacterial systems.

Discussion

It is now thought that most bacterial species inhabit biofilms,
and that this is their primary mode of existence (Flemming and
Wuertz, 2019). Thus, biofilm formation is among the most common
biological processes on earth, yet its molecular underpinnings
remain murky, due in part to the tremendous variety of structures,
signaling pathways, and metabolic remodeling accompanying
biofilm formation in different species. Biofilm formation in
Paracoccus dentirificans is unusual for several reasons as discussed
above and provides an opportunity to explore the diversity of
this process.

Here we have exploited the biofilm-deficient Ahnox strain
to track biological changes during growth that may promote
or repress biofilm formation using a multi-omics approach. The
results suggest that early, H-NOX-dependent signaling events tune
metabolism to allow biofilm initiation and development. The
genomic context of hnox suggests that this may occur by inhibition
of ¢-di-GMP synthesis. As cell densities increase, quorum sensing
promotes biofilm dispersal in WT P. denitrificans. Below, we discuss
metabolomics and proteomics changes and how they are correlated
at these different growth phases. We also provide an example of how
the integration of metabolomics and proteomics data with ML and
GNN-based models enables prediction of proteomic shifts.

H-NOX signaling at low cell density

The role of H-NOX proteins as NO-sensors regulating
biofilm formation and dispersal in various species has been
extensively reviewed (Plate and Marletta, 2012; Williams et al.,
2018; Bacon et al,, 2017; Guo and Marletta, 2019; Williams and
Boon, 2019; Lee-Lopez and Yukl, 2022). While there are species-
specific differences, a common mechanism is that NO-bound H-
NOX regulates c-di-GMP levels either by interacting directly with
DGC and/or phosphodiesterase (PDE) enzymes or indirectly by
regulating kinases that phosphorylate them. The former pathway is
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used in Legionella pneumophila (Carlson et al., 2010) and Shewanella
woodyi (Liu et al., 2012) where NO-bound H-NOX represses c-di-
GMP production or stimulates its degradation, thereby favoring
biofilm dispersal. NO-bound H-NOX in Shewanella oneidensis and
Vibrio cholerae inhibits a His kinase, which phosphorylates and
activates a PDE (Plate and Marletta, 2012). By inhibiting an activator
of PDE, H-NOX signaling increases intracellular c-di-GMP and
favors biofilm formation. Either case conforms with the prevailing
view that ¢-di-GMP is a biofilm promoter. The opposite seems to
be true in P, denitrificans where deletion of dgc genes leads to a
hyperbiofilm phenotype (Kumar and Spiro, 2017). By this model,
H-NOX inhibits c-di-GMP synthesis by the neighboring dgcA
gene product, thus promoting biofilm formation. Unfortunately,
we have been unable to support this mechanism by direct c-di-GMP
quantitation. Extraction of this compound from P. denitrificans is
consistently below the detection limit for either mass spectrometry
or ELISA workflows in our hands.

Whether through c-di-GMP signaling or by other means,
we show here that H-NOX signaling influences central carbon
metabolism in P denitrificans at ODygy, = 0.6, prior to high AHL
production (Islam et al, 2024). Specifically, we see a notable
decrease of abundance in multiple amino acids and acetyl-CoA
and a corresponding increase in PPP and glycolysis intermediates
in the Ahnox strain. Further, we observe detectable pyruvate only
in WT at this OD, consistent with our previous observation of
decreased pyruvate in Ahnox, and an increased abundance of lactate
in the mutant. All of this points to inhibition of the last step of
glycolysis catalyzed by pyruvate kinase (PK) and/or a transition
to fermentative metabolism (Figure 8). Depletion of pyruvate or
inactivation of lactate dehydrogenase (LDH) has been shown to
impair biofilm formation in Pseudomonas aeruginosa, an effect
thought to stem from the necessity of redox-balancing in the
reductive stress environment found within biofilms (Petrova et al.,
2012; Goodwine et al, 2019). Further, since it catalyzes an
irreversible step in glycolysis, PK is allosterically regulated, even in
bacteria (Sakai et al., 1986; Zoraghi et al., 2010; She et al., 2025).

Our previous proteomics data showed downregulation of both
carbohydrate and amino acid transporters in the mutant strain
as well as components of the fyf; ATP synthase (Islam et al,
2024). Additionally, a downregulation of an oxoacid dehydrogenase
analogous to pyruvate dehydrogenase was noted, albeit with an
unconfirmed function. These changes correlate with metabolomics
changes, although not always in predictable ways. What was not
observed was a change to any enzyme convincingly annotated as
a LDH or PK. Nevertheless, these enzymes may still be regulated
post-translationally through mechanisms that depend on H-NOX
and potentially c-di-GMP signaling to facilitate biofilm formation
and maintenance.

H-NOX and quorum sensing at high cell
density

Several studies have investigated quorum sensing in P
denitrificans and its influence on biofilm formation. At high cell
densities, C16 AHL is synthesized through the enzyme PdnI and
detected by the transcriptional regulator PdeR (Zhang et al., 2018).
The PdeR regulon comprises hundreds of genes including those
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FIGURE 7

Comparison of predicted and experimental proteome expression (Ahnox vs. WT) at ODgp, = 2.0. (A) Line plot showing log, fold change of 20 selected
proteins as predicted by the GNN model (blue), ML model (orange), and measured by mass spectrometry (MS) (green). (B) Table comparing the protein
expression changes (Ahnox vs. WT) from GNN predictions and MS based experimental data (p < 0.05). Red arrows indicate downregulation, gray arrows

represent minimal or no change. Values are given as log, fold changes.

involved in iron acquisition and ATP synthesis (Wang N. et al., 2022)
as well as pdel and pdeR themselves. Deletion of pdel or treatment
with exogenous C16 HSL inhibits biofilm formation (Toyofuku et al.,
2017; Morinaga et al., 2018) while overexpression of PdeR enhances
it (Wang N. et al., 2022). At ODgy, = 2 and 4, C16 HSL levels
rise precipitously (Islam et al., 2024), correlating with decreased
relative biofilm in WT P. denitrificans (Figure 1B) and supporting
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a role in biofilm dispersal for QS in this species. These levels are
higher in the Ahnox strain, which exhibits roughly the same low
relative level of biofilm across all cell densities. QS and c-di-GMP
signaling are tightly integrated in other species (Romling et al.,
2013), suggesting that dysregulation of c-di-GMP production
in the mutant strain may drive subsequent dysregulation
of QS.
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Central metabolic remodeling in Ahnox Paracoccus denitrificans. Central carbon metabolism in P. denitrificans highlighting metabolite changes in the
Ahnox mutant across three growth phases (ODgg = 0.6, 2.0, and 4.0). Arrows colored according to ODgqq indicate significantly increased (T) or

decreased (]) abundance in Ahnox compared to WT.

Given the large size of the PdeR regulon, metabolomic and
proteomic changes at high cell densities would presumably be
dominated by QS targets. However, we did not observe any of the
iron transporters shown to be differentially transcribed in the pdeR
or pdel deletion strains (Zhang et al., 2018) in our proteomics
dataset at ODg,, = 2.0. Although PdeR and BapA were identified,
neither was differentially abundant between WT and Ahnox. As the
name implies, QS occurs above a threshold concentration (Platt and
Fuqua, 2010; Waters and Bassler, 2005), and the lack changes in
expression to known PdeR regulon proteins may indicate that this
threshold has been reached in both strains. However, changes in
metabolic enzymes and transporters are still observed. Perhaps most
conspicuous among these are a decrease in a number of metabolic
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dehydrogenase enzymes including acyl-CoA and 3-hydroxyacyl-
CoA dehydrogenases involved in fatty acid beta-oxidation. These are
intriguing in that they suggest changes to fatty acid metabolism not
captured in our targeted metabolomics approach.

In the metabolomics data, we observe increased abundance
of glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, and
xylulose 5-phosphate in Ahnox strains at ODg, = 2.0. These are
intermediates of glycolysis and/or PPP (Figure 8), continuing the
trend observed at ODg,, = 0.6, although other intermediates in
these pathways are modestly decreased in abundance at ODg, =
2.0. In Burkholderia glumae, transcription of glycolytic enzymes
as well as abundance of glycolytic and PPP metabolites are
decreased by quorum sensing (An et al, 2014). However, it is
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worth noting that AHL QS in the closely related Burkholderia
cenocepacia stimulates biofilm (Aguilar et al., 2014) in contrast
to what we observe in P denitrificans. We continue to observe
higher abundances of glycolytic and PPP metabolites at ODy, = 4.0
with concomitant increases in redox cofactors NAD(H), FMN, and
NADP. These may indicate a disruption in redox homeostasis that
could also impair biofilm formation and maintenance.

Al-driven proteomics prediction and its
biological implications

This work illustrates that bacterial cell density has a substantial
influence on central metabolism, and relatively small changes in
metabolism can have significant consequences for phenotypes
such as biofilm formation. This is especially evident from how
the metabolic profiles of WT and Ahnox P. denitrificans cluster
tightly at various OD values (Figure 5A), yet these strains
exhibit dramatic differences in biofilm formation. Controlling
for cell density is clearly important when drawing mechanistic
conclusions from -omics data, making predictive tools especially
valuable in this context. The datasets collected here and in our
previous work (Islam et al., 2024) provide an excellent opportunity to
test the ability of ML and GNN models to predict protein expression
from existing -omics data from a different cell density. The GNN
model in particular demonstrated significant predictive ability for
a small subset of proteins identified as differentially abundant
by mass spectrometry. Interestingly, the majority of predicted
proteins are NAD(H)-dependent dehydrogenases, suggesting that
the observed differential abundance of this cofactor at ODg,, =
2.0 drives predictive decisions in the model. Xanthine-guanine
phosphoribosyl transferase is also identified, which transfers a
phosphoribosyl group to guanine or xanthine, resulting in the
formation of GMP or XMP, respectively. Presumably, changes in
guanine and xanthine nucleotides XMP, GTP, and ¢cGMP drives
identification of this enzyme, which was correctly predicted to be
unchanged in abundance.

The examination of various ML and AI models yields significant
insights applicable to multi-omics research. Models characterized
by simplicity, such as Ridge regression, demonstrate robust
performance in small-sample contexts by reducing overfitting. In
contrast, more intricate methodologies, such as GNNs have the
capacity to leverage pathway topology and identify non-linear
relationships, thereby attaining enhanced biological concordance.
This underscores the necessity of employing benchmarking across
various models, instead of depending on a singular methodology, as
arecommended practice for predictive omics research. Comparative
analyses assure the transparency of methodological choices and
ensure that conclusions derived from Al-driven models are
reliable and biologically meaningful. For this data, the GNN-
predicted fold changes agreed best with MS-validated data,
0.47).
While this model captures part of the biological signal, predictive

exhibiting a moderate positive correlation (Pearsons r =
power remains limited by sample size and model simplicity.
The small sample size also heightens the risk of overfitting,
especially in deep learning approaches like graph neural networks.
We employed leave-one-out cross-validation to optimize data
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utilization, while recognizing its established variance in small-
sample contexts. Consequently, our ML analysis should be viewed
as a proof-of-concept demonstration of feasibility rather than as a
conclusive predictive model. The observed concordance between
predicted and experimentally measured fold-changes indicates
the potential of this integrative approach, while emphasizing the
necessity for larger datasets and additional time points in future
research.

Conclusion

This comprehensive analysis of metabolomics and proteomics,
augmented by Al-based modeling, expands on the prior literature
of unusual biofilm formation and signaling in P. denitrificans. H-
NOX influences central carbon metabolism at relatively low cell
densities, potentially by regulating c-di-GMP metabolism. Deletion
of hnox results in decreased amino acid abundance and increases
in glycolytic and PPP metabolites, potentially indicating inhibition
of late glycolytic enzymes and/or promotion of fermentation. QS
occurs at higher cell densities, which we have confirmed to promote
biofilm dispersal in this organism. Despite significant differences
in the quantity of C16 AHL between the strains at these densities,
we did not observe differential expression of known QS targets,
suggesting that signaling threshold had been reached in both strains.
However, changes to metabolic enzymes and metabolites persisted,
particularly in PPP and glycolytic pathways. Finally, metabolomic
and proteomic data sets were used to test AI/ML models for
predicting proteome changes from metabolomic data. Despite
limitations of sample size, a GNN model demonstrated moderate
correlation between predicted and experimental fold changes,
providing a proof-of-concept validation for using metabolomic
data to anticipate proteomic outcomes. Collectively, these findings
enhance our understanding of metabolic regulation in Paracoccus
denitrificans that may be useful for future applications in microbial
engineering and environmental biotechnology.
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