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Background: Animal models are important for tuberculosis (TB) research, 
offering controlled settings to study disease mechanisms. However, their ability 
to replicate TB-induced metabolic responses in humans is uncertain. This 
systematic review evaluated the current use of animal models in metabolomics 
studies aimed at characterising active pulmonary TB.
Methods: PubMed, Scopus, and Web of Science were systematically searched 
for metabolomics studies of pulmonary TB in humans and animal models, 
following PRISMA guidelines. Eligible studies were screened, and quality was 
assessed using QUDOMICS and STAIR tools. Data were synthesised by species, 
sample matrix, experimental design, and reported differential metabolites. 
Differential metabolite names were compared between species and subjected 
to pathway analysis in MetaboAnalyst 6.0.
Results: Of the 80 eligible studies, nine involved animal models, predominantly 
mice. These models captured only 4.7% of human TB-associated differential 
metabolites, with the highest overlap (3.8%) in mouse lung tissue. Despite low 
concordance at metabolite level, conserved disruptions were observed in amino 
acid, glutathione, and one-carbon metabolism pathways. Interspecies variation 
was evident, influenced by host species, sample matrix, infection protocol, and 
analytical method.
Conclusion: Animal models partially replicated key metabolic features of human 
TB, particularly at the pathway level. However, variability across studies hampers 
current translational interpretation. Broader model use, standardised protocols, 
and integrated multi-platform omics approaches are needed to improve the 
relevance and comparability of animal models in TB metabolomics research.
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1 Introduction

Despite ongoing global efforts, pulmonary tuberculosis (TB), 
caused by Mycobacterium tuberculosis (Mtb), remains a major health 
challenge. An improved understanding of TB’s underlying biological 
mechanisms, and how these vary between individuals, is essential 
for improving disease detection and deepening our understanding 
of TB pathogenesis.

“OMICS” approaches (including genomics, proteomics, 
transcriptomics and metabolomics) have been extensively 
applied to investigate the complex biological mechanisms of 
TB, aiming to collectively analyse the structure, function, and 
interactions of various molecular components in a biological 
system (Omenn et al., 2012). Metabolomics involves the 
systematic identification and quantification of small-molecule 
metabolites within biological matrices such as blood, urine, or 
tissues, reflecting the body’s current physiological state (Asante-
Poku et al., 2024). Due to its strong correlation to the observed 
phenotype, metabolomics is increasingly employed in disease 
characterisation, which involves identifying distinct metabolomic 
patterns that reflect the presence, stage or progression of 
a disease (Akyol et al., 2023).

However, metabolomics data can be challenging to interpret 
due to high biological variability. Factors such as age, sex, diet, 
co-morbidities, microbiome composition, circadian rhythms, 
and stress can influence metabolite levels (Omenn et al., 
2012). For example, it has been reported that older TB 
patients exhibit distinct metabolic profiles compared to children 
(Namdeo et al., 2020; Tornheim et al., 2022), while some 
studies have observed baseline metabolite level differences 
between males and females infected with TB (Beukes et al., 
2023; Carranza et al., 2022). Additionally, inter-individual 
variations in diet and microbiota composition have been 
shown to influence short-chain fatty acid and amino acid 
levels (Du Preez et al., 2017). HIV co-infection has also 
been shown to significantly alter TB-associated metabolomic 
signatures (Beukes et al., 2023; Olivier and Luies, 2023). Such 
variability is often mitigated by using animal models under 
tightly controlled experimental conditions. By standardising 
factors like disease severity, environmental influence, genetics, 
age and nutrition, these models enable more consistent and 
reproducible investigations (Dube et al., 2020; Singh and Gupta, 
2018; Trifonova et al., 2023; Zhan et al., 2017).

Animal models have been widely used in TB research to 
investigate various aspects of the disease, including pathogenesis, 
latency, treatment effects and vaccination (Dube et al., 2020; 
Zhan et al., 2017). However, their application in TB metabolomics 
is still evolving, with only a limited number of animal model-
based studies focusing on the characterisation of TB-induced host 
metabolome changes (Du Preez et al., 2019). However, metabolome 
alterations in animal models may differ inherently from those 
in humans due to interspecies differences and variations in TB 
pathology. Therefore, it is of particular importance to investigate 
whether these models can accurately reflect human metabolic 
responses during Mtb infection.

This review aims to summarise and evaluate the use of 
animal models in TB metabolomics to date, with a particular 
focus on how well TB-induced metabolite profiles in these 

models reflect host metabolic changes observed during active 
pulmonary TB in humans. We explore these studies based 
on study design, sample types, analytical methods, and the 
biological relevance of the reported metabolites, ultimately aiming 
to identify promising approaches and highlight key limitations 
in the field. 

2 Methods

A systematic review of pulmonary TB metabolomics studies 
in human and animal models was conducted in accordance with 
the PRISMA (Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) standards (Page et al., 2021). The completed 
PRISMA checklist is available in Supplementary Table S1. The 
systematic review protocol was registered in the International 
Prospective Register of Systematic Reviews (PROSPERO) under the 
registration number CRD420251038286. This study was approved 
by the Research Ethics Committee of the North-West University 
(NWU-00780-24-A5). 

2.1 Data sources and search strategy

Three electronic databases—PubMed, Web of Science 
and Scopus databases—were searched using tailored 
search strings aligned with each database’s syntax, as 
outlined in Supplementary Section 1.1. To ensure a comprehensive 
search, no language or date restrictions were applied during the 
initial database searches. Reference lists of all publications included 
in this review, as well as all relevant review articles, were manually 
screened for additional studies not captured by the primary search. 
Authors were contacted directly if required data were missing or if 
study materials were not publicly accessible. 

2.2 Eligibility criteria

2.2.1 Time period and language
Original research studies published in English up to 02 July 2025 

were included. 

2.2.2 Study and document type
Eligible study designs included cohort, case-control, and 

cross-sectional studies, regardless of whether they analysed fresh 
(prospective) or frozen/biobank (retrospective) samples. Case 
reports, clinical trials, grey literature, commentaries, letters to the 
editor, abstracts, and conference proceedings were excluded. 

2.2.3 Research model TB type and sample matrix
All studies using metabolomics to investigate metabolome 

alterations in symptomatic humans and/or animal hosts due to 
pulmonary infection with any drug-susceptible Mtb strains were 
reviewed. Studies exclusively addressing latent TB infections (LTBI), 
multidrug-resistant TB (MDR-TB), treatment response, co-morbid 
conditions, extrapulmonary TB, or vaccine development were 
excluded. Only in vivo biological sample matrices were considered; 
in vitro bacteriological culture studies were excluded. 
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2.2.4 Ethics approval
Studies were required to demonstrate ethical clearance through 

institutional approval, documented informed consent, or the use of 
anonymised or secondary data. Studies lacking appropriate ethical 
oversight, consent procedures, or those using identifiable data 
without approval were excluded. 

2.3 Screening and study selection

Two reviewers independently conducted the database search 
and research study screening. Database search results were exported 
in a comma-separated values (CSV) format, which included the 
bibliographic metadata for each study, and merged into one 
Microsoft Excel workbook. Duplicate entries were removed based 
on digital object identifiers (DOIs), with those lacking DOIs 
assigned temporary numbers and manually checked using title and 
author metadata. Title and abstract screening were conducted using 
the stepwise exclusion criteria outlined in Section 2.2. Full-text 
screening was performed to further assess studies that could not 
be definitively included or excluded during the title and abstract 
screening step. Disagreements or uncertainties were resolved 
through discussion with two additional reviewers. 

2.4 Data extraction and quality control

2.4.1 Data extraction
A structured Microsoft Form was developed to standardise data 

extraction across studies. This form captured key features including 
research model characteristics and experimental approaches (details 
provided in Supplementary Table S2). Differential metabolites 
(defined as those showing statistically significant differences 
between experimental groups as reported by each study) were 
recorded in an Excel workbook along with the study citation, 
comparison groups, reference groups, sample types, Mtb strain, 
and direction of regulation. 

2.4.2 Metabolite nomenclature harmonisation
To standardise metabolite annotation across studies and enable 

meaningful comparison of differential metabolites, all reported 
differential metabolite names were harmonised against the Human 
Metabolome Database (HMDB, https://hmdb.ca). The aim was to 
assign a uniform nomenclature using HMDB’s common names 
where possible.

Initially, all reported metabolite names extracted from the 
reviewed studies were compared to HMDB entries and their known 
synonyms using an SQL query in a locally hosted PostgreSQL 
database. The database included HMDB metabolite names, 
synonyms, accession numbers, and taxonomic classifications. 
To support fuzzy matching, the pg_trgm extension was enabled 
to calculate similarity scores between reported names and 
HMDB entries.

A similarity search was then performed using a trigram-based 
matching approach to identify the closest HMDB synonym for 
each reported metabolite. All matches were manually reviewed 
to determine whether an appropriate HMDB match could be 
confidently assigned. Metabolites without acceptable HMDB 

matches were annotated with the name as reported in the 
original study. 

2.4.3 Study quality and risk of bias assessment
All included studies were subjected to quality and risk 

of bias assessment using an adapted version of the Quality 
Assessment of Diagnostic Accuracy Assessment (QUDOMICS) tool 
(Lumbreras et al., 2008), designed for omics studies (Whiting et al., 
2003). Additionally, the Stroke Therapy Academic Industry 
Roundtable (STAIR) tool (Fisher et al., 2009) was applied to all 
animal model studies.

The assessment used a quality assurance (QA) scoring system 
based on 15 criteria for human studies and 22 for animal studies, 
detailed in Supplementary Table S3. Each criterion was rated as: 
“Yes” (2 points), “No” (0 points), “Unclear” (1 point), and “Not 
applicable” (1 point). Human studies scoring ≥25 were classified 
as high quality, 15–24 as intermediate, and ≤14 as low. Animal 
studies scoring ≥30 were rated high quality, 18–29 intermediate, 
and ≤17 low. Only studies with intermediate or high quality were 
included in the final analysis, as low QA studies pose a risk of 
reporting unreliable, non-reproducible and biased findings, making 
it challenging to integrate and compare the findings with those of 
other studies (Whiting et al., 2003). 

2.5 Data synthesis and analysis approach

Data were manually extracted and processed using Microsoft 
365 platforms (Forms, Excel, and Power BI) and R version 4.2.3. A 
three-stage analysis strategy was applied.

First, general study characteristics, including cohort 
composition and animal model details, were summarised. All TB-
associated differential metabolites were compiled and stratified 
by model type and sample matrix. Overlaps between human and 
animal model metabolites were identified. These comparisons 
considered metabolites detected across different sample matrices 
and experimental conditions. It is important to note that the 
reported overlap percentages depend heavily on the specific 
differential metabolites captured in each study, which in turn are 
influenced by the experimental design, analytical platforms, sample 
types, and study populations.

Second, pathway analysis (PA) was conducted using 
MetaboAnalyst 6.0 (Pang et al., 2024) for each model and 
sample matrix. The harmonised compound names of differential 
metabolites were uploaded to the platform, and targeted pathway 
analysis was performed. The hypergeometric test was used 
for pathway enrichment against the MetaboAnalyst reference 
metabolome, with relevance-betweenness centrality applied for 
topology evaluation. Species-specific pathway libraries were 
assigned based on the sample origin: Homo sapiens for human 
and guinea pig data due to key metabolic similarities that are more 
closely related than to rats or mice (Schyman et al., 2021); Mus 
musculus for mice data; and Bos indicus for yellow cattle. Metabolic 
pathways were deemed significantly altered if both the p-value and 
FDR were ≤0.05 with an impact value >0.02.

Third, specific metabolite variations were mapped and 
interpreted for their potential biological and translational relevance 
in the context of active pulmonary TB. 
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FIGURE 1
PRISMA flow diagram illustrating the study selection process for the systematic review, outlining the number of publications (studies) and 
supplementary information (referred to as “reports”) included for full review.

3 Results

3.1 Search results

The study selection process is summarised in the PRISMA 
flowchart (Figure 1). The initial database search identified 808 
publications. After removing duplicates and conducting an initial 
title screening based on the criteria outlined in Section 2.2, 290 
publications remained. An additional 22 publications were identified 
through manual screening of citations from included publications 
and relevant review publications, resulting in a total of 312 
publications for further screening.

The most common reasons for study exclusion were the 
use of cultured samples, primary focus on drug mechanisms or 
resistance, investigation of other Mycobacterium species, a focus 
on extrapulmonary TB, or studies evaluating the bioactivity of 
specific compounds. A total of 80 studies were eligible according 
to the inclusion and exclusion criteria and were selected for data 
extraction and synthesis. Supplementary Data from 38 studies were 

also reviewed to obtain relevant information not reported in the 
main manuscripts. 

3.2 Quality assessment results

The quality assessment (Supplementary Table S4) revealed that 
most studies were of intermediate quality (n = 54), with a 
smaller number scoring as high-quality (n = 26). Notably, no 
studies received a low-quality score, indicating that all included 
studies met the minimum quality criteria required for inclusion
in this review.

Cohort sizes varied considerably (Supplementary Table S5). In 
human studies, participant numbers ranged from 3 to 694, reflecting 
the heterogeneity of study designs across different clinical and 
geographical contexts. Animal studies generally had smaller sample 
sizes, ranging from 6 to 40. Although guidelines recommend at 
least 10 observations per variable (Memon et al., 2020), sample 
size requirements in metabolomics research often depend on 
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study context, sample type, and availability. For human studies, 
20–30 samples per variable are typically required, although larger 
cohorts are preferred for clinical studies to enable robust biomarker 
discovery (Rakusanova and Cajka, 2024). However, biological 
and non-biological variability, costs, and recruitment challenges 
frequently limit cohort size. In contrast, animal studies benefit 
from a controlled environment, making it feasible to use smaller 
sample sizes (5–10 samples per variable) while balancing ethical 
considerations (Rakusanova and Cajka, 2024).

A significant gap in the animal studies was the lack of 
transparency regarding sample size determination. None of the 
animal studies reported how their sample sizes were calculated, 
nor did they state whether any animals were excluded from 
analysis. Only one animal study provided explicit inclusion 
and exclusion criteria (Fernández-García et al., 2020). The lack 
of power calculations raises concerns regarding the risk of 
underpowered analyses and the potential for both Type I and Type 
II errors (Memon et al., 2020). 

3.3 Data generated from the search

3.3.1 General study characteristics
Based on the affiliation information of all authors listed in each 

study, most study contributions were made by researchers from the 
People’s Republic of China (PRC), followed by the United States 
of America (USA), South Africa, and India (Figure 2A). Country 
assignment was not limited to the first or corresponding author 
but included all listed affiliations per study. The earliest eligible 
publications included in this review were published in 2007 in the 
USA (Jain et al., 2007) (Figure 2B). From 2009 onward, the number 
of studies steadily increased.

This systematic review included 71 studies (88.8%) 
involving human participants and nine studies (11.3%) using 
animal models (Figure 2C).

The metabolome comparisons between TB-positive and TB-
negative groups in each study were classified into two categories: 
TB versus healthy controls (HC) and TB versus non-TB groups 
(Figure 2D). Table 1 summarises the group definitions used 
throughout the review.

3.3.2 Research model characteristics
3.3.2.1 Human participants used in TB metabolomics

Among the eligible human studies, the predominant focus was 
on participants aged 18–59 years (Figure 3A). This aligns with the 
global burden of TB, as this age group is most affected by the 
disease (Yang et al., 2024). Furthermore, most studies (84.5%) 
included both males and females (Figure 3B). A diverse range 
of populations was investigated across the reviewed studies, with 
the majority encompassing participants from PRC (33.8%) and 
South Africa (21.1%) (Figure 3D). This population distribution 
aligns closely with the locations of the associated research sites 
mentioned in Section 3.3.1, highlighting regional focuses in TB 
metabolomics research.

3.3.2.2 Animal models used in TB metabolomics
Among the nine eligible animal studies, mice were the 

predominant species used (66.7%), followed by guinea pigs (22.2%) 

and cattle (11.1%) (Figure 4A). Regarding sex distribution, 44.4% of 
the animal studies used female animals, 44.4% did not specify sex, 
and only 11.1% included both male and female animals (Figure 4B). 
The majority of animal studies investigated TB versus HC (88.9%), 
followed by TB versus non-TB (11.1%) comparisons (Figure 4C).

3.3.2.2.1 Mouse models. In this review, the C57BL/6 
strain was the most used mouse strain, appearing in three 
studies (33.3%) (Table 2). Other strains, including humanised NSG-
SGM3, BALB/c, and specific pathogen-free (SPF) C57BL/6, were 
each used in only one study (11.1%).

C57BL/6 and BALB/c mice are among the most used strains in 
TB research. While these strains exhibit distinct immune responses 
to Mtb infection, both models typically develop inflammatory, 
non-necrotic pulmonary lesions in which bacilli are primarily 
contained within host cells. This differs from human TB disease 
and certain other animal models, where necrotic granulomas form 
and bacilli predominantly accumulate extracellularly within these 
structures (Singh and Gupta, 2018).

Furthermore, C57BL/6 mice tend to be more resistant to Mtb, 
showing prolonged survival and reduced bacterial burden after the 
onset of adaptive immunity (Li and Li, 2023; Singh and Gupta, 2018). 
In contrast, BALB/c mice are more susceptible and thus useful for 
studying disease progression and immune responses. However, their 
limited capacity to model latency poses a challenge, as infection 
typically results in mild local inflammation, strong systemic immune 
activation, poor bacterial control, and progressive lung damage (Li 
and Li, 2023; Zhang et al., 2023).

Humanised NSG-SGM3 mice, which express human cytokines, 
support full immune cell differentiation and exhibit immune 
responses more similar to humans, making them particularly 
valuable for studying human-specific immune responses and 
evaluating human-targeted therapies (Bohórquez et al., 2024; Li 
and Li, 2023).

Interestingly, two of the C57BL/6 mouse studies 
(Chaudhary et al., 2024; Zhang et al., 2024b) exclusively used 
female mice, while one study (Fernández-García et al., 2020) 
included both male and female mice (Figure 4B). Notably, sex-
based differences in TB progression have been observed in mice, 
highlighting the importance of reporting and considering sex 
as a biological variable in study design. For example, Bini et al. 
(2014) found that male C57BL/6 mice were more susceptible to Mtb
H37Rv infection via the intratracheal route than females. The study 
suggested that testosterone may modulate immune responses, as 
castration reduced this increased susceptibility. Supporting these 
findings, Dibbern et al. (2017) reported that male mice experienced 
more rapid disease progression, higher bacterial loads, and increased 
morbidity and mortality. This was associated with an early and 
exaggerated pulmonary inflammatory response, resulting in more 
severe pathology.

Additionally, one study used an SPF female mouse model 
(Shin et al., 2011) (Table 2). SPF models are raised in controlled 
environments free from known pathogens, reducing confounding 
factors such as natural infections, microbiota variability, and 
baseline immune activation. This ensures that the immune and 
metabolic responses observed in experiments are primarily 
due to the disease under investigation and the experimental 
interventions applied (Huggins et al., 2019). 
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FIGURE 2
Summary of study characteristics. (A) Geographic distribution of studies based on author affiliations. (B) Publications per year, categorised by human 
and animal model studies. (C) Total number of studies using human participants or animal models, along with species used across all animal studies.
(D) Types of group comparisons investigated in each eligible study. Abbreviations: HC, healthy controls; non-TB, non-tuberculosis controls; PRC, 
People’s Republic of China; TB, tuberculosis.

3.3.2.2.2 Guinea pigs. Guinea pigs were used in only two TB 
metabolomics studies to date (Figure 4A), both conducted by the 
same research group (Somashekar et al., 2011; Somashekar et al., 
2012) (Table 2), highlighting their marked underutilisation. This 
limited use may stem from practical challenges in housing and 
maintaining guinea pigs compared to murine models. Guinea 
pigs require larger enclosures, a specialised diet, and tighter 
environmental controls—particularly in terms of temperature and 
humidity—to ensure their health and welfare (Weichbrod et al., 

2018). Only one of the two studies reported the sex, indicating 
that female guinea pigs were used. The study did not provide 
a rationale for using females, and no direct link was found 
in the literature. This omission limits interpretation, as sex-
related physiological differences may influence immune and
metabolic responses.

The two studies used different guinea pig strains: SPF Albino 
Hartley and outbred Hartley guinea pigs (Table 2). SPF Albino 
Hartley guinea pigs are inbred, pathogen-free, and genetically 
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TABLE 1  Group definitions of human and animal studies investigating tuberculosis.

Abbreviation Full term Description of participants or experimental models

TB-positive

Mtb infection

TB Tuberculosis Active, drug-susceptible pulmonary TB caused by Mtb infection

TB_Dxx
TB_Wxx

TB (duration specified) Active Mtb infection assessed at defined time points post-experimental infection. Time points are denoted by D 
(days) or W (weeks); e.g., TB_D15 refers to 15 days, and TB_W4 to 4 weeks after infection

TB-negative (controls)

Healthy controls

HC Healthy controls No history of Mtb infection or other major health conditions. Animal models were not infected

HHC Healthy household contacts Close contacts of active TB patients without evidence of Mtb infection or active disease

Non-TB controls

Non-TB Non-tuberculosis infection Displaying TB-like symptoms but negative diagnostic test results for Mtb infection; also include unconfirmed 
LTBI, NTM, and other respiratory diseases

NTM Non-tuberculous mycobacterial Infected with a mycobacterial strain other than Mtb

LTBI Latent TB infection Confirmed infection with Mtb without clinical signs of active disease

Abbreviations: Mtb, Mycobacterium tuberculosis; NTM, non-tuberculous mycobacterial TB, tuberculosis.

FIGURE 3
Summary of the 71 human cohort study characteristics. (A) Age distribution of participants across all human studies. (B) Sex distribution of human 
participants. (C) Group comparisons investigated in human studies. (D) Country-wise population distribution of human TB studies. Abbreviations: HC, 
healthy controls; Mtb, Mycobacterium tuberculosis; non-TB, non-tuberculosis; PRC, People’s Republic of China; TB, tuberculosis.
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FIGURE 4
Summary of the nine animal model studies’ cohort characteristics. (A) Species used across all animal studies. (B) Sex distribution of animals used. (C)
Group comparisons investigated in animal studies. Abbreviations: HC, healthy controls; TB, tuberculosis.

TABLE 2  Summary of Mtb infection characteristics used in animal studies.

Animal species strain Mtb infection Study citation

Strain Dose Route Duration

Cattle

Yellow H37Rv Very high (>10,000 CFU) Intratracheal 33 weeks Chen et al. (2013)

Guinea pigs

Out-bred Hartley H37Rv Very high (>10,000 CFU) Aerosol 15, 30 and 60 days Somashekar et al. (2011)

SPF Albino Hartley W-Beijing strain Low (20–120 CFU) Aerosol 3 weeks Somashekar et al. (2012)

Mice

BALB/c Erdman strain High (100–10,000 CFU) Aerosol 19 days Jain et al. (2007)

C57BL/6 H37Rv Low (20–120 CFU) Aerosol 3 weeks Chaudhary et al. (2024)

C57BL/6 H37Rv Very high (>10,000 CFU) Tail vein 10 weeks Zhang et al. (2024b)

C57BL/6 H37Rv Very high (>10,000 CFU) Intratracheal 4 and 9 weeks Fernández-García et al. (2020)

Humanised NSG-SGM3 H37Rv Low (20–120 CFU) Aerosol 15 days; 4 and 5 weeks Bohórquez et al. (2024)

SPF C57BL/6 H37Rv Moderate (120–1,000 CFU) Aerosol 4 weeks Shin et al. (2011)

CFU, colony forming unit; Mtb, Mycobacterium tuberculosis; SPF, specific pathogen free.

uniform, making them suitable for experiments requiring strict 
control over biological variability. In contrast, outbred Hartley 
guinea pigs offer greater genetic diversity and are not bred under 
pathogen-free conditions, potentially better reflecting the biological 
heterogeneity seen in human populations (Lan et al., 2020). 

3.3.2.2.3 Cattle. One reviewed study used cattle (unspecified sex) 
as an animal model in TB metabolomics research (Chen et al., 2013) 
(Figure 4A). Cattle are natural hosts for Mycobacterium bovis (M. 
bovis) and offer unique advantages for studying TB pathogenesis and 
evaluating therapeutic interventions (Li and Li, 2023). In the study 
by Chen et al. (2013) (Table 2), cattle were experimentally infected 
with Mtb H37Rv, a clinical Mtb strain, and M. bovis to investigate 
differences in virulence among these Mtb strains. 

3.3.2.3 Mtb infection characteristics
In animal models, infection-related variables—including 

Mtb strain, dose, route of administration, and infection 
duration—significantly influence disease severity, immune 
responses, and, in turn, the host metabolome. These characteristics 
are summarised in Table 2.

The laboratory strain H37Rv, isolated in 1905 (Koch, 1884), 
was used in seven of the nine reviewed studies (Table 2). 
While phenotypically similar to the original Mtb strain (Koch, 
1884), H37Rv differs from many clinical strains, which typically 
grow faster and produce greater quantities of the Early 
Secreted Antigenic Target 6 kDa (ESAT-6) virulence factor, 
known to modulate both host immunity and metabolism
(Chiner-Oms et al., 2018).
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The Erdman strain, also used in one reviewed study (Table 2), is 
characterised by consistent virulence in mice and robust granuloma 
formation, making it suitable for vaccine and pathogenesis research 
(Via et al., 2013). The W-Beijing strain, associated with MDR-TB and 
hypervirulence, is particularly valuable in studies of drug resistance, 
transmission, and immune evasion (Hanekom et al., 2011).

Infection in animal models is typically induced via aerosol, 
intranasal, or intratracheal routes to replicate natural human 
transmission (Li and Li, 2023). Among the reviewed animal model 
studies, aerosol infection was most common (66.7%), followed by 
intratracheal (22.2%) and tail vein (11.1%) administration (Table 2).

Both the infection dose and route can significantly impact 
disease pathology and host immune responses (Li and Li, 2023). 
For instance, intravenous infection in mice often results in higher 
bacterial loads and more severe pathology compared to aerosol 
infection (Nikonenko et al., 2004). C57BL/6J mice infected via 
aerosol typically exhibit contained infection, characterised by 
necrotic lesions, low bacterial loads, and limited inflammation (Li 
and Li, 2023). In contrast, BALB/c mice tend to require higher 
intratracheal infectious doses and develop more severe pathology, 
including progressive lung consolidation, fibrosis, elevated T-cell 
infiltration, and increased anti-inflammatory cytokine expression 
(Li and Li, 2023). This aligns with the reviewed studies involving 
C57BL/6 and humanised NSG-SGM3 mice. Aerosol doses ranged 
from low (20–120 CFU) to moderate (120–1,000 CFU), while very 
high doses (>10,000 CFU) were administered via intratracheal or tail 
vein routes (Table 2). Controversially, the BALB/c model received a 
high infectious dose even via the aerosol route.

In guinea pigs, aerosol infection leads to granulomas that closely 
resemble human TB histopathology (Li and Li, 2023). Disease 
progression in this model is also dose-dependent. Somashekar et al. 
(2012) used both a low infection dose to investigate metabolic 
signatures for non-invasive diagnostic or prognostic purposes, as 
well as a very high dose to characterise broader metabolomic 
alterations (Somashekar et al., 2011) (Table 2). Low-dose infections 
tend to result in chronic, slowly progressing disease, whereas high-
dose exposures accelerate progression and increase mortality risk (Li 
and Li, 2023). However, high-dose models may not accurately 
reflect natural transmission, potentially limiting their translational 
relevance.

In cattle, infection is typically induced using very high-dose 
aerosol (as is the case in the included cattle study, Table 2) or 
intratracheal administration, compensating for the low natural 
shedding of M. bovis. Lesions primarily affect the lungs and 
lymph nodes and are often caseous and mineralised. As in other 
models, lesion distribution and severity are influenced by both 
route and dose (Li and Li, 2023). 

3.3.3 Metabolomics study flow
The choice of metabolomics approach, analytical platform, 

sample matrix and data analysis method can significantly 
impact the metabolomics signatures detected during Mtb
infection. To illustrate the range of methods used, general 
workflows from the reviewed studies are summarised in 
Figures 5A–D, while Supplementary Table S5 details the specific 
characteristics of each study.

Some studies reported multiple experimental parameters, for 
example, using more than one metabolomics approach, sample 

matrix, or analytical platform (Supplementary Table S5). Each 
unique instance was recorded separately, resulting in a total number 
of entries exceeding the number of reviewed studies (n = 80). 
Accordingly, the percentages reported in this section represent the 
distribution of recorded parameters within each category, rather 
than the total number of studies.

Cohort size was also documented for each study, given 
its influence on statistical power, reliability, and reproducibility 
(Supplementary Table S5). A small sample size can increase the 
likelihood of false positives or negatives, while overly large studies 
without adequate design can lead to unnecessary cost and data 
complexity (Dunn et al., 2015). 

3.3.3.1 Metabolomics approach
Metabolomics studies usually follow untargeted, targeted, or 

semi-targeted approaches. Here, most reviewed cases (71.4%) 
used an untargeted approach, suggesting a strong emphasis 
on exploratory, hypothesis-generating research (Figure 5A). 
This method captures a broad spectrum of metabolites 
without prior selection, offering the potential to uncover novel 
biomarkers relevant to TB diagnosis and disease characterisation 
(Du Preez et al., 2019; Roach et al., 2024). In contrast, targeted 
metabolomics—used in 25.0% of cases (all human) — focuses on 
the precise quantification of predefined metabolites (Figure 5A). 
Despite its narrower scope, this approach improves sensitivity and 
specificity through the optimisation and enhancement of specific 
preparation and analysis methods (Roach et al., 2024).

Only 3.6% of cases used a semi-targeted approach (Figure 5A), 
combining features from both untargeted and targeted strategies. 
This approach enables the identification and quantification 
of groups of metabolites within specific pathways, without 
the prior knowledge of the exact metabolites of interest 
(Billet et al., 2020; Roach et al., 2024). 

3.3.3.2 Analytical platforms
High-resolution analytical platforms such as mass spectrometry 

(MS), often coupled with various separation systems, and nuclear 
magnetic resonance (NMR), remain the most widely used in 
metabolomics (Wishart et al., 2022). In this review, liquid 
chromatography coupled to MS (LC-MS) was the predominantly 
used analytical platform (51.2%), followed by gas chromatography-
mass spectrometry (GC-MS, 27.9%) and NMR (16.3%)
(Figure 5B).

MS, specifically when coupled with chromatography, offers 
high sensitivity and specificity, making it ideal for targeted 
analyses (Munjal et al., 2022). However, it requires extensive 
sample preparation and is destructive to biological samples. In 
contrast, NMR is non-destructive, requires minimal preparation, 
and is highly reproducible, though it has lower sensitivity and 
limited resolution in complex samples like those encountered in 
TB studies (Munjal et al., 2022).

Less commonly used platforms included capillary 
electrophoresis mass spectrometry (CE-MS), ion cyclotron 
resonance mass spectrometry (ICR-MS), and nanoparticle-
enhanced laser desorption/ionisation MS (NPELDI-MS), 
showing the vast number of analytical platforms available in 
metabolomics (Figure 5B). 
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FIGURE 5
Summary of the metabolomics workflows used in the reviewed studies. The total represents the number of recorded parameters within each category 
as reported across all 80 reviewed studies. (A) Distribution of metabolomics approaches across all studies. (B) Analytical platforms used in the reviewed 
studies. (C) Sample matrices used for metabolomics analysis across all studies. (D) Summary of sample and data analysis variables used mostly in the 
reviewed studies (detail given in supplementary information) Abbreviations: BALF, bronchoalveolar lavage fluid; CE-MS, capillary electrophoresis mass 
spectrometry; GC-MS, gas chromatography mass spectrometry; ICR MS, ion cyclotron resonance mass spectrometry; LC-MS, liquid chromatography 
mass spectrometry; NMR, nuclear magnetic resonance; NPELDI MS, nanoparticle-enhanced laser desorption/ionisation mass spectrometry; QC-CV, 
quality control coefficient of variation; PCA, principal component analysis; PLS-DA, partial least squares discriminant analysis; o-PLSDA, orthogonal 
partial least squares discriminant analysis.
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3.3.3.3 Sample matrices
Biological sample matrices used in metabolomics range 

from non-invasive or minimally invasive types such as breath, 
stool, and urine, to more invasive ones like sputum, blood, 
and tissue samples (Smith et al., 2020). Each matrix provides 
distinct metabolic profiles influenced by physiological function 
and excretion mechanisms.

Blood is the most frequently used matrix in TB metabolomics 
studies due to standardised collection methods and its ability 
to reflect systemic changes during infection and treatment 
(Du Preez et al., 2019). Among the reviewed studies, including 
human and animal model studies, serum was used in 26 
cases (28.6%), plasma in 16 (17.6%) and whole blood in only 
two (2.2%) (Figure 5C).

Urine, used in 11 cases (12.1%) (Figure 5C), is a non-invasive, 
readily available matrix that requires minimal sample preparation 
and reflects host metabolism, although it contains few mycobacterial 
metabolites. Urine samples, however, present challenges with 
metabolite normalisation due to natural variability in individual 
excretion rates (Du Preez et al., 2019), necessitating correction of 
metabolite levels to creatinine concentration (Nam et al., 2020).

Stool, used in just 6 cases (6.6%) (Figure 5C), is still 
considered an emerging matrix in TB research, particularly 
for investigating gut-lung immune interactions and potential 
diagnostic markers (Luo et al., 2023).

Although sputum samples offer direct access to the infection 
site, providing valuable metabolomics information about 
both the bacteria and the host, it was used in only 6 cases 
(6.6%) (Figure 5C). This is likely due to challenges in the 
collection—especially in children and immunocompromised 
patients—and the high viscosity of sputum, which complicates 
sample processing (Du Preez et al., 2019).

Tissue samples, used in 15 cases (16.5%), offer insights into 
localised metabolic changes at the infection site (Figure 5C). 
However, collection is highly invasive and, for lung tissue, limited 
to pulmonary TB research (Du Preez et al., 2019). Expectedly, 
most tissue samples were lung tissue (53.3%), with only one 
human study included (Figure 5C). Alternatively, pleural and 
bronchoalveolar lavage fluid (BALF) are considered less invasive 
alternatives for assessing localised pathological processes in 
human participants. BALF, for example, provides access to the 
alveolar lining fluid without the need for a pleural puncture
(Tokar et al., 2017).

Breath samples, used in 5 cases (5.5%) (Figure 5C), represent 
a non-invasive matrix ideal for detecting volatile compounds, 
including in vulnerable populations. However, their use is limited 
by dilute metabolite concentrations and the lack of standardised 
sampling and processing procedures (Du Preez et al., 2019). 
Collection from animal models remains especially challenging, 
thus limiting use to human studies. Interestingly, skin was 
more recently used (3.3%) (Figure 5C) to identify metabolic 
biomarkers differentiating TB patients from HC, demonstrating 
its potential use in future research (Makhubela et al., 2023; 
Vishinkin et al., 2021; Wooding et al., 2025), albeit this sample 
matrix’s use in TB animal model metabolomic studies is
not yet clear.

3.3.3.4 Sample preparation, quality control and data 
analysis variables

Depending on the specific metabolomics approach, analytical 
platform, and sample matrix, different strategies are followed to 
identify and analyse the metabolomes of interest. These strategies 
include procedures for sample preparation, quality control during 
analysis, and peak identification and quantification. Additionally, 
the study aims and cohort design influence the selection of data-
cleaning methods, statistical analyses, and threshold cut-offs applied 
to identify differential metabolites. Figure 5D provides an overview 
of the most frequently used methods across these workflow steps, 
as identified in the reviewed studies. A detailed summary of study-
specific methodologies is presented in Supplementary Table S5. 

3.3.4 TB-induced differential metabolites
A total of 7,770 differential metabolite entries associated 

with TB characterisation were captured across all reviewed 
studies. Of these, 6924 metabolite entries originated from 
human studies, representing 3657 distinct metabolites after 
harmonising metabolite nomenclature (detailed per sample 
matrix in Supplementary Table S6). Animal model studies 
contributed 828 metabolite entries, corresponding to 417 distinct 
metabolites following nomenclature harmonisation (detailed per 
sample matrix in Supplementary Table S7).

A comparison between human and animal model studies 
revealed limited overlap in reported differential metabolites. Of 
the 3657 distinct TB-associated metabolites identified in human 
studies (across all sample matrices), only 172 (4.7%) were also 
reported in animal models (Supplementary Table S7). This overlap 
varied by species. Mouse models demonstrated the highest degree 
of concordance, with 3.8% of human metabolites also identified 
in mouse lung tissue (Supplementary Table S7). In contrast, guinea 
pig and cattle models showed minimal overlap, which may reflect 
species-specific metabolic responses or the limited number of 
available studies for these models. 

3.3.4.1 Pathway analysis
To assess the specific host metabolic alterations induced by 

Mtb, pathway analysis (PA) was performed on the harmonised 
differential metabolite annotated list in TB versus control groups 
across multiple biological matrices. Breath and various mouse 
tissues (including heart and thigh) were excluded from PA due 
to insufficient metabolite coverage, while meaningful enrichment 
results were obtained for matrices such as blood, urine, BALF, 
stool, and various animal tissues analysed (lung, liver and spleen) 
(Table 3). A comprehensive table with statistical significance is 
depicted in Supplementary Table S8. Although sample matrices, 
including skin, sputum, and mouse blood, kidney and brain tissue, 
were included in the PA, they did not reveal any significantly altered 
pathways and are thus not shown here.

PA revealed metabolic pathways consistently disrupted across 
both human and animal models, including: 1) alanine, aspartate and 
glutamate metabolism; 2) arginine biosynthesis; 3) glycine, serine 
and threonine metabolism; 4) glutathione metabolism; 5) glyoxylate 
and dicarboxylate metabolism; and 6) one-carbon pool by folate 
metabolism (Table 3).
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TABLE 3  Significantly enriched metabolic pathways based on pathway analysis of differential metabolites comparing TB-positive and TB-negative 
(control) groups across multiple biological matrices. Values indicate the number of differential metabolites detected relative to the total number of 
known compounds in each pathway.

Significantly affected pathways Percentage of differential metabolites identified within 
each pathway (n = total metabolites in the pathway)

Human Cattle Guinea pig Mice

Alanine, aspartate and glutamate metabolism n = 28

BALF 39.3% - - -

Blood∗ 35.7% - 14.3% -

Lung tissue - - 10.7% 35.7%

Spleen tissue - - - 21.4%

Stool 35.7% - - -

Urine 28.6% - - -

Arginine and proline metabolism n = 36

BALF 36.1% - - -

Blood∗ 27.7% - - -

Lung tissue - - - 25%

Arginine biosynthesis n = 14

BALF 64.3% - - -

Blood∗ 71.4% - 21.4% -

Lung tissue - - - 50%

Spleen tissue - - - 28.6%

Stool 50% - - -

Urine 42.9% - - -

β-Alanine metabolism n = 21

BALF 38.1% - - -

Lung tissue - - - 28.6%

Urine 33.3% - - -

Cysteine and methionine metabolism n = 33

Urine 21.2% - - -

Galactose metabolism n = 27

BALF 29.6% - - -

Blood∗ 33.3% - - -

Glutathione metabolism n = 28

BALF 32.1% - - -

(Continued on the following page)
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TABLE 3  (Continued) Significantly enriched metabolic pathways based on pathway analysis of differential metabolites comparing TB-positive and 
TB-negative (control) groups across multiple biological matrices. Values indicate the number of differential metabolites detected relative to the total 
number of known compounds in each pathway.

Significantly affected pathways Percentage of differential metabolites identified within 
each pathway (n = total metabolites in the pathway)

Human Cattle Guinea pig Mice

Blood∗ 32.1% - - -

Lung tissue - - 14.3% 32.1%

Glycerophospholipid metabolism n = 36

Blood∗ 27.8% - - -

Lung tissue - - - 27.8%

Glycine, serine and threonine metabolism n = 33 n = 34 n = 33 n = 34

BALF 30.3%

Blood∗ 36.4% 8.8% - -

Lung tissue - - 12.1% 26.5%

Urine 27.3% - - -

Glyoxylate and dicarboxylate metabolism n = 32

BALF 25% - - -

Blood∗ 25% 9.4% - -

Lung tissue - - - 28.1%

Urine 21.9% - - -

Histidine metabolism n = 16

Lung tissue - - - 31.3%

Stool 50% - - -

Urine 43.8% - - -

Linoleic acid metabolism n = 5

Blood∗ 80% - - -

Nicotinate and nicotinamide metabolism n = 15

Blood∗ 40%

Liver tissue - - - 20%

Spleen tissue - - - 20%

Stool 46.7% - - -

Urine 40% - - -

One carbon pool by folate n = 26

BALF 30.8% - - -

(Continued on the following page)
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TABLE 3  (Continued) Significantly enriched metabolic pathways based on pathway analysis of differential metabolites comparing TB-positive and 
TB-negative (control) groups across multiple biological matrices. Values indicate the number of differential metabolites detected relative to the total 
number of known compounds in each pathway.

Significantly affected pathways Percentage of differential metabolites identified within 
each pathway (n = total metabolites in the pathway)

Human Cattle Guinea pig Mice

Blood∗ 30.8% 11.5% - -

Lung tissue - - 11.5% 26.9%

Stool 38.5% - - -

Urine 26.9% - - -

Pantothenate and CoA biosynthesis n = 20

BALF 35%

Urine 35% - - -

Phenylalanine, tyrosine and tryptophan biosynthesis n = 4

Liver tissue - - - 50%

Spleen tissue - - - 50%

Purine metabolism n = 70

BALF 28.6% - - -

Stool 24.3% - - -

Pyrimidine metabolism n = 39

BALF 30.8% - - -

Pyruvate metabolism n = 23

Blood∗ - - 13% -

Lung tissue - - - 30.4%

Sphingolipid metabolism n = 32

Blood∗ 31.3% - - -

Tricarboxylic acid (TCA) cycle n = 20

BALF 30% - - -

Lung tissue - - - 30%

Liver tissue - - - 15%

Spleen tissue - - - 15%

Urine 30% - - -

Valine, leucine and isoleucine degradation n = 40

Liver tissue - - - 10%

Spleen tissue - - - 10%

Blood ∗includes whole blood, serum, and plasma. “-” indicates no data available, not analysed, or no significant enrichment. “n” indicates the total metabolites assigned to the pathway 
(species-specific pathway size according to MetaboAnalyst). Total compounds in pathways may differ between species due to species-specific pathway coverage in MetaboAnalyst. 
Abbreviations: BALF, bronchoalveolar lavage fluid.
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3.3.4.2 Metabolite variations
Despite the overlap in significant pathways detected, the 

direction of metabolite changes within these shared pathways was 
not always conserved across studies. Supplementary Tables S9A–V 
provides a detailed summary of the directional changes and study-
specific characteristics for each metabolite identified within the 
significant pathways across all research models and sample matrices. 

4 Discussion

The comparison of differential metabolites between human and 
animal model studies revealed relatively low overlap percentages 
(collectively 4.7%). However, these results should be interpreted 
with caution. The observed overlap is inherently dependent on the 
metabolites captured by individual studies, which are shaped by 
factors including experimental design, choice of analytical platform, 
sample matrices analysed, and biological variability. Importantly, 
a considerably larger number of metabolomic studies have been 
conducted in humans compared to animal models, resulting in an 
asymmetry of data availability. Consequently, the limited overlap 
and small coverage observed for animal models likely reflect not a 
lack of biological relevance or translational potential, but rather the 
current paucity and heterogeneity of animal metabolomic studies.

The following sections explore some of these variables in 
more detail to clarify their influence on study outcomes and the 
interpretation of cross-species metabolomic data. 

4.1 Species-specific observations

Mtb infection is known to induce metabolic alterations in its 
host (Ding et al., 2020). Host-directed changes, including altered 
glycolysis and amino acid metabolism, support antimicrobial 
responses, cytokine production, and immune cell activation 
(Kumar et al., 2019; Shi et al., 2016). In contrast, Mtb can 
manipulate lipid and amino acid pathways to evade immune 
clearance and create a niche for persistence (Borah Slater et al., 
2023; Kumar et al., 2019; Shi et al., 2016).

Comparative analyses across species suggest some conserved 
metabolic responses to Mtb infection. From PA, reduced circulating 
amino acid levels were consistently observed across research models, 
particularly in alanine, aspartate, and glutamate metabolism, as 
well as glycine, serine, and threonine metabolism (Table 3). These 
pathways are central to Mtb pathogenesis: alanine, aspartate, and 
glutamate metabolism serve as essential carbon and nitrogen 
sources for Mtb amino acid biosynthesis, whereas disruption of 
glycine, serine, and threonine metabolism, together with cysteine 
and methionine metabolism, may reflect host strategies to restrict 
nutrient availability (Borah Slater et al., 2023).

Furthermore, PA also highlighted consistent disruptions across 
all research models in the one-carbon pool by folate metabolism, 
underpinned by altered serine, glycine, and cysteine pathways 
(Table 3). Such disruptions may both restrict nutrients essential 
for Mtb growth and enhance pro-inflammatory immune responses 
(Borah Slater et al., 2023). In addition, guinea pigs and mice 
exhibited similar disrupted arginine biosynthesis and glutathione 
metabolism compared to human studies (Table 3). Both of these 

pathways are important for host defence against Mtb-induced 
oxidative stress (McKell et al., 2021; Young et al., 2018).

Tissue-specific alterations were also evident in mice, with 
disruptions in pyruvate metabolism, tricarboxylic acid (TCA) cycle 
pathways, and valine, leucine and isoleucine degradation pathways 
(Table 3). During TB infection, immune cells undergo a Warburg-
like shift from oxidative phosphorylation to glycolysis to sustain 
activation and survival (Chaudhary et al., 2024; Shin et al., 2011). 
This shift disrupts pyruvate metabolism and remodels the TCA 
cycle, characterised by succinate accumulation, which drives pro-
inflammatory signalling (Yu et al., 2023), alongside changes in 
citrate and malate (Chaudhary et al., 2024; Shin et al., 2011). 
Branched-chain amino acid metabolism is also affected, reflecting 
both Mtb’s use of isoleucine, leucine, and valine for growth and the 
host’s attempt to limit nutrient access (Chaudhary et al., 2024).

In contrast, cattle (included in only one study) showed 
fewer disrupted pathways, though glyoxylate and dicarboxylate 
metabolism [linked to altered energy metabolism (Rahman and 
Schellhorn, 2023)] was similarly affected as observed in both human 
and mouse studies (Table 3).

Among the animal models, mice appear to have the highest 
degree of disrupted pathway overlap with humans. This aligns 
with the distinct metabolite profiles, where mouse lung tissue 
captured the largest subset of overlapping TB-associated differential 
metabolites (3.8%), followed by guinea pig serum and lung tissue, 
both with 0.5% overlap (Supplementary Table S7).

Further examination of metabolite-specific variation within 
these pathways highlighted important interspecies differences. For 
instance, glutamine levels (a key precursor in arginine biosynthesis) 
were mostly decreased in Mtb-infected guinea pigs (aligned with 
observations in human patients) but increased in mice (Figure 6; 
Supplementary Table S9A). This divergence may reflect species-
specific differences in arginine precursor pathways, where humans 
rely more on glutamine and proline, while mice favour arginine and 
ornithine (Marini, 2012; Morris, 2016).

4.2 Variances based on different group 
comparisons

In animal model studies, group comparisons are commonly 
made between Mtb-infected animals and HC, which is fundamental 
for understanding TB processes (Li and Li, 2023; Omenn et al., 
2012; Singh and Gupta, 2018). This study design is preferred because 
it isolates the effects of Mtb infection by using HC as a baseline, 
allowing for more confident attribution of observed changes—such 
as shifts in metabolism (Weiner 3rd et al., 2012), immune responses, 
or tissue pathology (Li and Li, 2023; Omenn et al., 2012; Singh and 
Gupta, 2018) — directly to the infection itself. This approach helps 
to minimise confounding variables (Fernández-García et al., 2020) 
and ensures that experimental differences are due to the infection 
itself rather than unrelated physiological or environmental factors.

In contrast, human studies often incorporate group comparisons 
between TB patients and either HC or non-TB individuals. This 
approach not only enables investigation into disease mechanisms 
but also facilitates the development of clinically relevant biomarkers 
for differentiating TB from other conditions or diseases presenting 
with overlapping symptoms (Weiner 3rd et al., 2012).
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FIGURE 6
Overview of differential metabolite changes in arginine biosynthesis during Mtb infection across human and animal models. Created in Biorender, 
https://BioRender.com/bj25qqj.

Interestingly, a few metabolites—such as adenine, 
asparagine, lactic acid, leucine, methionine, phenylalanine, 
phosphocholines—showed similar directional changes in both 
animal model TB-infected lung tissue (Fernández-García et al., 
2020; Shin et al., 2011; Somashekar et al., 2011; Somashekar et al., 
2012; Zhang et al., 2024b) and BALF (Li et al., 2024), 
compared to HC (Supplementary Tables S9A,E,H,L,N,P,Q,S,V).

However, discrepancies were observed between these 
matrices for other metabolites, including alanine, aspartic 
acid, citrulline, creatine, glutamine, pyroglutamic acid, 
succinic acid, tyrosine, uracil, and xanthine (Fernández-
García et al., 2020; Li et al., 2024; Shin et al., 2011; 
Somashekar et al., 2011; Somashekar et al., 2012; Zhang et al., 
2024b) (Supplementary Tables S9A,B,C,D,G,I,J,K,M,N,O,P,Q,R,U). 
Interestingly, several differential BALF metabolites—including 
betaine, choline, cysteine, glyceric acid, methionine, proline, 
and sphingosine—showed opposite trends for the different 
comparison groups used (TB vs. HC controls and TB vs. non-TB) 
(Li et al., 2024) (Supplementary Tables S9B,E,G,H,I,J,N,O,T).

From these observations, it is notable that contrasting trends 
were frequently observed between comparisons to different 
control groups, namely HC and non-TB. In this review, the 

term non-TB was broadly defined to include symptomatic TB 
suspects who tested negative, individuals with other diseases, 
and cases of non-tuberculous mycobacterial (NTM) infections 
(Table 1). Li et al. (2024) explored the interplay between lung 
microbial communities and infections by Mtb and NTM. They 
deduced that NTM infections induce distinct shifts in the lung 
microbiota and disrupt metabolism to support a niche environment 
for persistent NTM infection, distinct from that observed during
Mtb infection.

Serine is another notable example. This metabolite showed 
consistent increases across nearly all studies comparing TB 
to control groups (Conde et al., 2022; Deng et al., 2021; 
Fernández-García et al., 2020; Rai et al., 2023; Sa et al., 2024; 
Vrieling et al., 2019; Yu et al., 2024; Zhang et al., 2024a) (Figure 7; 
Supplementary Table S9E). However, one study reported decreased 
plasma serine levels in TB vs. non-TB controls (Sun et al., 2016). 
This study focused on paediatric TB (children under 14 years), 
while others included adults (aged 17–69; Zhang et al. (2024a) 
did not specify age). Given the diagnostic challenges in children 
and emerging evidence suggesting age-related differences in TB 
biomarkers, this discrepancy may be related to such age-related 
variations (Sun et al., 2016).
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FIGURE 7
Overview of differential metabolite changes in Tricarboxylic acid (TCA) cycle metabolism during Mtb infection across human and animal model studies. 
Created in Biorender, https://BioRender.com/k14ouej.

Altogether, these findings highlight the complexity 
and importance of control group selection in comparative 
metabolomics. Non-TB populations are inherently heterogeneous 
and may harbour undiagnosed infections or other metabolic 
disturbances that confound interpretation. 

4.3 Variation due to induced Mtb infection 
protocols

Another important consideration when using animal models in 
TB metabolomics studies is the infection characteristics of Mtb itself, 
as these factors could contribute to variation in the TB-induced 
metabolome observed.

In the reviewed studies, some conserved metabolite responses 
were observed despite differences in animal species, species 
strains, and Mtb infection strains. For instance, aspartic acid 
levels were consistently increased in two independent studies 
involving C57BL/6 mice infected with Mtb H37Rv, compared 
to controls (Fernández-García et al., 2020; Zhang et al., 2024b) 
(Supplementary Table S9A). Similarly, metabolites such as glycine 
and glutathione showed similar changes in both mice and guinea 
pigs, across different species strains infected with either Mtb
H37Rv and W-Beijing strains (Fernández-García et al., 2020; 
Shin et al., 2011; Somashekar et al., 2011; Somashekar et al., 
2012) (Supplementary Tables S9G, I). Furthermore, glutamic acid, 
glutamine, succinic acid, and oxaloacetic acid exhibited similar 
directional variation in liver and lung tissues from mice and 
guinea pigs infected with Mtb H37Rv (Supplementary Table S9A) 
(Fernández-García et al., 2020; Shin et al., 2011; Somashekar et al., 
2011; Somashekar et al., 2012; Zhang et al., 2024b).

However, the infectious strains used in these studies represent 
only two of the eight recognised Mtb lineages: H37Rv and 

Erdman, both belong to Lineage 4 (Euro-American), while W-
Beijing represents Lineage 2 (East Asian) (Luo et al., 2015). This 
raises concerns about the broader representativeness of these 
strains, particularly the widely used H37Rv strain, in reflecting the 
species diversity observed in human TB. To enhance translational 
relevance, it has been recommended that future animal model 
studies incorporate a more diverse set of Mtb strains (Chiner-
Oms et al., 2018; O'Toole and Gautam, 2017).

The route of infection is also recognised as a factor that can 
significantly affect disease pathology and immune responses (Flynn, 
2006). To date, however, no studies have specifically explored the 
metabolic responses associated with different infection routes in 
TB metabolomics. Furthermore, due to the considerable variability 
in experimental designs among the nine animal model studies 
included in this review, the impact of the infection route could not 
be meaningfully evaluated across studies.

Beyond infection strain and route, both infection duration and 
dose are additional variables that can affect the metabolic responses 
observed in TB. Some discrepancies in the differential metabolites 
detected in animal models could reflect different stages of disease 
progression. Fumaric acid, a key intermediate in the TCA cycle, 
showed temporal variation in both mouse and guinea pig models 
(Fernández-García et al., 2020; Shin et al., 2011; Somashekar et al., 
2012) (Figure 7; Supplementary Table S9U). In one mouse study, 
fumaric acid was decreased at 4 weeks post-infection (TB_W4), 
attributed to succinate dehydrogenase and malate dehydrogenase 
inhibition. This coincided with the accumulation of succinic acid 
and malic acid, reflecting a pro-inflammatory metabolic profile 
(Fernández-García et al., 2020). Notably, between four and 9 weeks 
post-infection (TB_W4 to TB_W9), fumaric acid levels increased 
while succinic acid and malic acid levels decreased, a pattern 
interpreted as either inflammation resolution or a metabolic shift 
associated with chronic infection (Fernández-García et al., 2020). 
Coinciding with the four-week time point, similar decreases in 
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fumaric acid were observed in mouse lung and spleen tissue 
(Shin et al., 2011) and in guinea pig serum (Somashekar et al., 2012) 
at approximately 4 weeks post-infection. 

4.4 Metabolomics workflow variables

In addition to species differences, the choice of sample matrix 
had a marked impact on the metabolic signatures observed 
in TB. Compared to human studies, the reviewed animal 
model studies showed limited diversity in sample matrices. 
However, animal models offered the advantage of using tissue 
samples, particularly from the lung, enabling direct investigation 
of organ-specific pathology and TB-associated metabolic
alterations.

Certain pathways appeared to be exclusively altered in 
specific sample matrices. For example, cysteine and methionine 
metabolism were significantly altered in urine, while pyrimidine 
metabolism showed significant changes in BALF. Linoleic 
acid and sphingolipid metabolism were significantly altered 
in blood (Table 3). Additionally, branched-chain amino acid 
metabolism (Valine, leucine and isoleucine degradation) and 
phenylalanine, tyrosine and tryptophan biosynthesis were 
indicated to significantly alter only in mice liver and spleen
tissues (Table 3).

Variations in metabolites and the directionality of metabolic 
alterations across different matrices (blood, sputum, urine, and 
stool) reflect the fact that the metabolic response to Mtb infection 
involves both localised and systemic effects. Local changes, such 
as those observed in sputum, reflect lung-specific alterations, while 
systemic responses are captured in blood, urine, and stool, indicating 
broader physiological effects.

Interestingly, metabolites from mouse lung tissue often 
aligned with findings from human BALF, particularly 
within pathways such as alanine, aspartate and glutamate 
metabolism; arginine and proline metabolism; glutathione 
metabolism; and glycine, serine and threonine metabolism 
(Table 3; Supplementary Table S9). This suggests that, despite 
differences in sample matrices, meaningful comparative insights can 
still be drawn when matrices reflect related biological compartments 
or processes. Such cross-matrix comparisons may be particularly 
valuable in bridging findings between animal models and
human studies.

Beyond matrix selection, the specific metabolomics approach 
and analytical platforms used also significantly influence which 
metabolites are detected in animal models. In hypothesis-
generating research, untargeted, multi-platform approaches are 
particularly valuable when broad metabolite coverage is desired. For 
example, Fernández-García et al. (2020) employed an untargeted, 
multi-platform approach combining CE-MS, GC-MS, and LC-
MS, which enabled high metabolite coverage in mouse lung 
tissue and facilitated the discovery of novel disease mechanisms 
(Supplementary Table S5). Conversely, for research targeting 
specific metabolite classes or pathways, targeted or semi-targeted 
approaches may be more appropriate. This was demonstrated in 
the mouse model study by Jain et al. (2007), where a semi-targeted 
approach was employed to extract and analyse lipids in the context 
of lipid metabolism. 

4.5 Animal model selection: advantages, 
limitations, and future prospects

Several factors contribute to the limited use of animal models 
in metabolomics studies aimed at TB characterisation. A major 
challenge lies in the translational relevance of many animal models, 
as the pathological manifestations of TB in most models do not fully 
reflect the complexity observed in human disease.

In addition to translational constraints, logistical and practical 
constraints also likely discourage animal-based metabolomics 
studies. In contrast to human studies, which can leverage existing 
biobanks or clinic-derived samples, animal studies require time-
consuming and costly infection protocols and husbandry prior 
to sample collection. These requirements increase costs and 
reduce feasibility for large-scale or longitudinal metabolomic 
profiling. Moreover, metabolic processes are inherently sensitive to 
environmental influences. While controlled conditions in animal 
facilities help reduce variability, they may inadvertently omit 
key host-environment interactions that contribute to disease 
manifestation in human populations. Thus, controlled environments 
represent both a strength and a limitation, depending on the specific 
research question.

Despite these challenges, the choice of animal model 
remains a critical determinant of metabolomic results. 
Different species capture distinct aspects of TB pathology 
and host–pathogen interactions, and their careful selection is 
essential to maximise both biological insight and translational
relevance.

Mouse models are widely used in TB metabolomics to 
investigate disease characteristics, drug mechanisms, and potential 
toxicities (Du Preez et al., 2019). They offer major practical 
advantages, such as cost-effectiveness, ease of handling, and 
availability of inbred strains (Corleis et al., 2023). However, a key 
limitation is their inability to fully replicate human TB pathology, 
particularly the absence of caseating granulomas and cavitary 
lesions, which are characteristic of human TB (Gong et al., 2020;
Singh and Gupta, 2018).

Guinea pigs are more susceptible to Mtb than many other animal 
models, requiring only a small bacterial inoculum to establish 
infection (Clark et al., 2014; Li and Li, 2023). Upon infection, 
they develop granulomas with central necrosis surrounded by 
lymphocytes, macrophages, and multinucleated giant cells enclosed 
by a fibrotic capsule—closely resembling human TB pathology. 
This histopathological similarity makes guinea pigs valuable for 
evaluating TB pathogenicity, as well as for testing candidate 
treatments and vaccines (Dharmadhikari and Nardell, 2008). For 
instance, Palanisamy et al. (2008) assessed the virulence of different 
Mtb strains in guinea pigs by comparing survival time, bacterial 
loads in organs like the lungs, spleen, and lymph nodes, and the 
severity of pulmonary and extrapulmonary lesions. Guinea pigs do, 
however, lack many human-specific immune reagents important 
for investigating underlying TB mechanisms and they do not 
manifest the full clinical spectrum, including LTBI (Li and Li, 2023;
Zhan et al., 2017).

Cattle also represent a highly translational model, as M. 
bovis infection closely mimics Mtb infection in humans. Both 
species develop granulomatous lesions featuring caseous necrosis, 
mineralisation, and fibrosis, predominantly in the lungs and 
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regional lymph nodes (Pollock et al., 2006). The bovine immune 
response is Th1-dominant, with CD4+ and CD8+ T-cells promoting 
IFN-γ production for bacterial control, while γδ T-cells play 
a role in early containment of infection. Lesion progression 
in cattle follows a timeline that is comparable to human 
disease following Mtb infection (Pollock et al., 2006). Cattle, 
therefore, serve as a valuable translational bridge between small 
animal models and human clinical studies, particularly in the 
context of vaccine development and host-pathogen interaction 
research (Pollock et al., 2006). Moreover, the availability of well-
characterised immunological reagents for bovine TB supports 
detailed, reproducible investigations. Cattle also enable the 
collection of large-volume blood samples, which is particularly 
advantageous for metabolomics. However, their use in large-scale 
TB metabolomics research remains limited due to the considerable 
logistical demands, housing requirements and high associated costs
(Li and Li, 2023).

The current limited use of animal models in metabolomics does, 
however, restrict the ability to identify the most suitable animal 
model and optimise experimental designs for TB metabolomics. 
Further investigation is therefore required, including exploring 
alternative animal models that have demonstrated value in TB 
pathogenesis research, such as the New Zealand rabbit, Cynomolgus 
macaque or Rhesus monkey, Chinese tree shrew, and Wistar 
rat (Zhan et al., 2014; Zhan et al., 2017). At the same time, 
systematic evaluation of variables such as infection route, strain, 
dose, and duration will be critical for determining how experimental 
conditions shape metabolomic profiles and their translational 
relevance to human TB.

Beyond the selection and optimisation of animal models, 
the choice of sample matrix and metabolomics approach 
also plays a pivotal role in shaping the insights gained and 
can further enhance the translational value of these models. 
In line with established practices in hypothesis-generating 
research, untargeted metabolomics strategies covering diverse 
metabolite classes are especially valuable for uncovering 
unknown or novel disease mechanisms. Greater metabolome 
coverage can be achieved using multi-platform metabolomics 
approaches and by incorporating diverse sample matrices, 
enabling the investigation of both systemic and local metabolic
changes.

Furthermore, multi-omics approaches that integrate 
metabolomics, transcriptomics, and proteomics are emerging 
as powerful tools to deepen understanding of TB pathogenesis. 
For example, Duffy et al. (2019) demonstrated the value 
of combining metabolomics and transcriptomics datasets 
from HHCs across multiple African sites, some of whom 
developed TB while others remained TB-negative. This integrated 
approach provided complementary insights into TB progression. 
Incorporating immunometabolic pathways, the researchers 
developed biologically interpretable multi-omics signatures that 
outperformed existing models in predicting TB-related pathology 
and bacterial load in rhesus macaque vaccine challenge studies. 
Applying similarly comprehensive datasets from animal models 
infected with Mtb could reveal correlative insights that enrich 
current knowledge of host-pathogen interactions and disease
mechanisms. 

5 Conclusion

Collectively, these findings suggest that animal models can, 
to some extent, recapitulate key metabolic features of human TB, 
although outcomes depend heavily on species, strain, sample type, and 
the chosen metabolomics approach. Despite their underutilisation, 
these models hold considerable potential for metabolomics-based TB 
disease characterisation. This is supported by insights from the limited 
number of TB-focused studies reviewed here, as well as from broader 
metabolomics research applying animal models to other human 
diseases. Altogether, this systematic review provides a comprehensive 
overview of the current use of animal models in TB metabolomics 
for disease characterisation and highlights key considerations for 
advancing these models toward translational relevance. 
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