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Background: Animal models are important for tuberculosis (TB) research,
offering controlled settings to study disease mechanisms. However, their ability
to replicate TB-induced metabolic responses in humans is uncertain. This
systematic review evaluated the current use of animal models in metabolomics
studies aimed at characterising active pulmonary TB.

Methods: PubMed, Scopus, and Web of Science were systematically searched
for metabolomics studies of pulmonary TB in humans and animal models,
following PRISMA guidelines. Eligible studies were screened, and quality was
assessed using QUDOMICS and STAIR tools. Data were synthesised by species,
sample matrix, experimental design, and reported differential metabolites.
Differential metabolite names were compared between species and subjected
to pathway analysis in MetaboAnalyst 6.0.

Results: Of the 80 eligible studies, nine involved animal models, predominantly
mice. These models captured only 4.7% of human TB-associated differential
metabolites, with the highest overlap (3.8%) in mouse lung tissue. Despite low
concordance at metabolite level, conserved disruptions were observed in amino
acid, glutathione, and one-carbon metabolism pathways. Interspecies variation
was evident, influenced by host species, sample matrix, infection protocol, and
analytical method.

Conclusion: Animal models partially replicated key metabolic features of human
TB, particularly at the pathway level. However, variability across studies hampers
current translational interpretation. Broader model use, standardised protocols,
and integrated multi-platform omics approaches are needed to improve the
relevance and comparability of animal models in TB metabolomics research.
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1 Introduction

Despite ongoing global efforts, pulmonary tuberculosis (TB),
caused by Mycobacterium tuberculosis (Mtb), remains a major health
challenge. An improved understanding of TB’s underlying biological
mechanisms, and how these vary between individuals, is essential
for improving disease detection and deepening our understanding

of TB pathogenesis.
“OMICS” approaches (including genomics, proteomics,
transcriptomics and metabolomics) have been extensively

applied to investigate the complex biological mechanisms of
TB, aiming to collectively analyse the structure, function, and
interactions of various molecular components in a biological
system (Omenn et al, 2012). Metabolomics involves the
systematic identification and quantification of small-molecule
metabolites within biological matrices such as blood, urine, or
tissues, reflecting the body’s current physiological state (Asante-
Poku et al., 2024). Due to its strong correlation to the observed
phenotype, metabolomics is increasingly employed in disease
characterisation, which involves identifying distinct metabolomic
patterns that reflect the presence, stage or progression of
a disease (Akyol et al., 2023).

However, metabolomics data can be challenging to interpret
due to high biological variability. Factors such as age, sex, diet,
co-morbidities, microbiome composition, circadian rhythms,
and stress can influence metabolite levels (Omenn et al,
2012). For example, it has been reported that older TB
patients exhibit distinct metabolic profiles compared to children
(Namdeo et al, 2020; Tornheim et al, 2022), while some
studies have observed baseline metabolite level differences
between males and females infected with TB (Beukes et al.,
2023; Carranza et al, 2022). Additionally, inter-individual
variations in diet and microbiota composition have been
shown to influence short-chain fatty acid and amino acid
(Du Preez et 2017).
been shown to significantly alter TB-associated metabolomic
signatures (Beukes et al., 2023; Olivier and Luies, 2023). Such
variability is often mitigated by using animal models under

levels al., HIV co-infection has also

tightly controlled experimental conditions. By standardising
factors like disease severity, environmental influence, genetics,
age and nutrition, these models enable more consistent and
reproducible investigations (Dube et al., 2020; Singh and Gupta,
2018; Trifonova et al., 2023; Zhan et al., 2017).

Animal models have been widely used in TB research to
investigate various aspects of the disease, including pathogenesis,
latency, treatment effects and vaccination (Dube et al, 2020;
Zhan et al., 2017). However, their application in TB metabolomics
is still evolving, with only a limited number of animal model-
based studies focusing on the characterisation of TB-induced host
metabolome changes (Du Preez et al., 2019). However, metabolome
alterations in animal models may differ inherently from those
in humans due to interspecies differences and variations in TB
pathology. Therefore, it is of particular importance to investigate
whether these models can accurately reflect human metabolic
responses during Mtb infection.

This review aims to summarise and evaluate the use of
animal models in TB metabolomics to date, with a particular
focus on how well TB-induced metabolite profiles in these
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models reflect host metabolic changes observed during active
pulmonary TB in humans. We explore these studies based
on study design, sample types, analytical methods, and the
biological relevance of the reported metabolites, ultimately aiming
to identify promising approaches and highlight key limitations
in the field.

2 Methods

A systematic review of pulmonary TB metabolomics studies
in human and animal models was conducted in accordance with
the PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) standards (Page et al., 2021). The completed
PRISMA checklist is available in Supplementary Table S1. The
systematic review protocol was registered in the International
Prospective Register of Systematic Reviews (PROSPERO) under the
registration number CRD420251038286. This study was approved
by the Research Ethics Committee of the North-West University
(NWU-00780-24-A5).

2.1 Data sources and search strategy

Three electronic databases—PubMed, Web of Science
and  Scopus  databases—were  searched using tailored
search strings aligned with each database’s syntax, as

outlined in Supplementary Section 1.1. To ensure a comprehensive
search, no language or date restrictions were applied during the
initial database searches. Reference lists of all publications included
in this review, as well as all relevant review articles, were manually
screened for additional studies not captured by the primary search.
Authors were contacted directly if required data were missing or if
study materials were not publicly accessible.

2.2 Eligibility criteria

2.2.1 Time period and language
Original research studies published in English up to 02 July 2025
were included.

2.2.2 Study and document type

Eligible study designs included cohort, case-control, and
cross-sectional studies, regardless of whether they analysed fresh
(prospective) or frozen/biobank (retrospective) samples. Case
reports, clinical trials, grey literature, commentaries, letters to the
editor, abstracts, and conference proceedings were excluded.

2.2.3 Research model TB type and sample matrix

All studies using metabolomics to investigate metabolome
alterations in symptomatic humans and/or animal hosts due to
pulmonary infection with any drug-susceptible Mtb strains were
reviewed. Studies exclusively addressing latent TB infections (LTBI),
multidrug-resistant TB (MDR-TB), treatment response, co-morbid
conditions, extrapulmonary TB, or vaccine development were
excluded. Only in vivo biological sample matrices were considered;
in vitro bacteriological culture studies were excluded.
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2.2.4 Ethics approval

Studies were required to demonstrate ethical clearance through
institutional approval, documented informed consent, or the use of
anonymised or secondary data. Studies lacking appropriate ethical
oversight, consent procedures, or those using identifiable data
without approval were excluded.

2.3 Screening and study selection

Two reviewers independently conducted the database search
and research study screening. Database search results were exported
in a comma-separated values (CSV) format, which included the
bibliographic metadata for each study, and merged into one
Microsoft Excel workbook. Duplicate entries were removed based
on digital object identifiers (DOIs), with those lacking DOIs
assigned temporary numbers and manually checked using title and
author metadata. Title and abstract screening were conducted using
the stepwise exclusion criteria outlined in Section 2.2. Full-text
screening was performed to further assess studies that could not
be definitively included or excluded during the title and abstract
screening step. Disagreements or uncertainties were resolved
through discussion with two additional reviewers.

2.4 Data extraction and quality control

2.4.1 Data extraction

A structured Microsoft Form was developed to standardise data
extraction across studies. This form captured key features including
research model characteristics and experimental approaches (details
provided in Supplementary Table S2). Differential metabolites
(defined as those showing statistically significant differences
between experimental groups as reported by each study) were
recorded in an Excel workbook along with the study citation,
comparison groups, reference groups, sample types, Mtb strain,
and direction of regulation.

2.4.2 Metabolite nomenclature harmonisation

To standardise metabolite annotation across studies and enable
meaningful comparison of differential metabolites, all reported
differential metabolite names were harmonised against the Human
Metabolome Database (HMDB, https://hmdb.ca). The aim was to
assign a uniform nomenclature using HMDB’s common names
where possible.

Initially, all reported metabolite names extracted from the
reviewed studies were compared to HMDB entries and their known
synonyms using an SQL query in a locally hosted PostgreSQL
The included HMDB metabolite names,
synonyms, accession numbers, and taxonomic classifications.

database. database
To support fuzzy matching, the pg_trgm extension was enabled
to calculate similarity scores between reported names and
HMDB entries.

A similarity search was then performed using a trigram-based
matching approach to identify the closest HMDB synonym for
each reported metabolite. All matches were manually reviewed
to determine whether an appropriate HMDB match could be
confidently assigned. Metabolites without acceptable HMDB
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matches were annotated with the name as reported in the
original study.

2.4.3 Study quality and risk of bias assessment

All included studies were subjected to quality and risk
of bias assessment using an adapted version of the Quality
Assessment of Diagnostic Accuracy Assessment (QUDOMICS) tool
(Lumbreras et al., 2008), designed for omics studies (Whiting et al.,
2003). Additionally, the Stroke Therapy Academic Industry
Roundtable (STAIR) tool (Fisher et al., 2009) was applied to all
animal model studies.

The assessment used a quality assurance (QA) scoring system
based on 15 criteria for human studies and 22 for animal studies,
detailed in Supplementary Table S3. Each criterion was rated as:
“Yes” (2 points), “No” (0 points), “Unclear” (1 point), and “Not
applicable” (1 point). Human studies scoring =25 were classified
as high quality, 15-24 as intermediate, and <14 as low. Animal
studies scoring =30 were rated high quality, 18-29 intermediate,
and <17 low. Only studies with intermediate or high quality were
included in the final analysis, as low QA studies pose a risk of
reporting unreliable, non-reproducible and biased findings, making
it challenging to integrate and compare the findings with those of
other studies (Whiting et al., 2003).

2.5 Data synthesis and analysis approach

Data were manually extracted and processed using Microsoft
365 platforms (Forms, Excel, and Power BI) and R version 4.2.3. A
three-stage analysis strategy was applied.

First, study
composition and animal model details, were summarised. All TB-

general characteristics, including cohort
associated differential metabolites were compiled and stratified
by model type and sample matrix. Overlaps between human and
animal model metabolites were identified. These comparisons
considered metabolites detected across different sample matrices
and experimental conditions. It is important to note that the
reported overlap percentages depend heavily on the specific
differential metabolites captured in each study, which in turn are
influenced by the experimental design, analytical platforms, sample
types, and study populations.

Second, pathway analysis (PA) was conducted using
MetaboAnalyst 6.0 (Pang et al, 2024) for each model and
sample matrix. The harmonised compound names of differential
metabolites were uploaded to the platform, and targeted pathway
analysis was performed. The hypergeometric test was used
for pathway enrichment against the MetaboAnalyst reference
metabolome, with relevance-betweenness centrality applied for
topology evaluation. Species-specific pathway libraries were
assigned based on the sample origin: Homo sapiens for human
and guinea pig data due to key metabolic similarities that are more
closely related than to rats or mice (Schyman et al., 2021); Mus
musculus for mice data; and Bos indicus for yellow cattle. Metabolic
pathways were deemed significantly altered if both the p-value and
FDR were <0.05 with an impact value >0.02.

Third, specific metabolite variations were mapped and
interpreted for their potential biological and translational relevance
in the context of active pulmonary TB.

frontiersin.org


https://doi.org/10.3389/fmolb.2025.1688882
https://hmdb.ca
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

Caudron et al.

10.3389/fmolb.2025.1688882

'

Identification of studies via databases and registers

FIGURE 1
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PRISMA flow diagram illustrating the study selection process for the systematic review, outlining the number of publications (studies) and
supplementary information (referred to as “reports”) included for full review.

3 Results
3.1 Search results

The study selection process is summarised in the PRISMA
flowchart (Figure 1). The initial database search identified 808
publications. After removing duplicates and conducting an initial
title screening based on the criteria outlined in Section 2.2, 290
publications remained. An additional 22 publications were identified
through manual screening of citations from included publications
and relevant review publications, resulting in a total of 312
publications for further screening.

The most common reasons for study exclusion were the
use of cultured samples, primary focus on drug mechanisms or
resistance, investigation of other Mycobacterium species, a focus
on extrapulmonary TB, or studies evaluating the bioactivity of
specific compounds. A total of 80 studies were eligible according
to the inclusion and exclusion criteria and were selected for data
extraction and synthesis. Supplementary Data from 38 studies were
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also reviewed to obtain relevant information not reported in the

main manuscripts.
3.2 Quality assessment results
The quality assessment (Supplementary Table S4) revealed that

most studies were of intermediate quality (n 54), with a
smaller number scoring as high-quality (n = 26). Notably, no

studies received a low-quality score, indicating that all included
studies met the minimum quality criteria required for inclusion
in this review.

Cohort sizes varied considerably (Supplementary Table S5). In
human studies, participant numbers ranged from 3 to 694, reflecting
the heterogeneity of study designs across different clinical and
geographical contexts. Animal studies generally had smaller sample
sizes, ranging from 6 to 40. Although guidelines recommend at
least 10 observations per variable (Memon et al., 2020), sample
size requirements in metabolomics research often depend on
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study context, sample type, and availability. For human studies,
20-30 samples per variable are typically required, although larger
cohorts are preferred for clinical studies to enable robust biomarker
discovery (Rakusanova and Cajka, 2024). However, biological
and non-biological variability, costs, and recruitment challenges
frequently limit cohort size. In contrast, animal studies benefit
from a controlled environment, making it feasible to use smaller
sample sizes (5-10 samples per variable) while balancing ethical
considerations (Rakusanova and Cajka, 2024).

A significant gap in the animal studies was the lack of
transparency regarding sample size determination. None of the
animal studies reported how their sample sizes were calculated,
nor did they state whether any animals were excluded from
analysis. Only one animal study provided explicit inclusion
and exclusion criteria (Fernandez-Garcia et al., 2020). The lack
of power calculations raises concerns regarding the risk of
underpowered analyses and the potential for both Type I and Type
II errors (Memon et al., 2020).

3.3 Data generated from the search

3.3.1 General study characteristics

Based on the affiliation information of all authors listed in each
study, most study contributions were made by researchers from the
People’s Republic of China (PRC), followed by the United States
of America (USA), South Africa, and India (Figure 2A). Country
assignment was not limited to the first or corresponding author
but included all listed affiliations per study. The earliest eligible
publications included in this review were published in 2007 in the
USA (Jain et al., 2007) (Figure 2B). From 2009 onward, the number
of studies steadily increased.

This included 71 (88.8%)
involving human participants and nine studies (11.3%) using

systematic review studies
animal models (Figure 2C).

The metabolome comparisons between TB-positive and TB-
negative groups in each study were classified into two categories:
TB versus healthy controls (HC) and TB versus non-TB groups
(Figure 2D). Table 1 summarises the group definitions used

throughout the review.

3.3.2 Research model characteristics
3.3.2.1 Human participants used in TB metabolomics
Among the eligible human studies, the predominant focus was
on participants aged 18-59 years (Figure 3A). This aligns with the
global burden of TB, as this age group is most affected by the
disease (Yang et al, 2024). Furthermore, most studies (84.5%)
included both males and females (Figure 3B). A diverse range
of populations was investigated across the reviewed studies, with
the majority encompassing participants from PRC (33.8%) and
South Africa (21.1%) (Figure 3D). This population distribution
aligns closely with the locations of the associated research sites
mentioned in Section 3.3.1, highlighting regional focuses in TB
metabolomics research.

3.3.2.2 Animal models used in TB metabolomics

Among the nine eligible animal studies, mice were the
predominant species used (66.7%), followed by guinea pigs (22.2%)
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and cattle (11.1%) (Figure 4A). Regarding sex distribution, 44.4% of
the animal studies used female animals, 44.4% did not specify sex,
and only 11.1% included both male and female animals (Figure 4B).
The majority of animal studies investigated TB versus HC (88.9%),
followed by TB versus non-TB (11.1%) comparisons (Figure 4C).
3.3.2.2.1 Mouse models. In this review, the C57BL/6
strain was the most used mouse strain, appearing in three
studies (33.3%) (Table 2). Other strains, including humanised NSG-
SGM3, BALB/c, and specific pathogen-free (SPF) C57BL/6, were
each used in only one study (11.1%).

C57BL/6 and BALB/c mice are among the most used strains in
TB research. While these strains exhibit distinct immune responses
to Mtb infection, both models typically develop inflammatory,
non-necrotic pulmonary lesions in which bacilli are primarily
contained within host cells. This differs from human TB disease
and certain other animal models, where necrotic granulomas form
and bacilli predominantly accumulate extracellularly within these
structures (Singh and Gupta, 2018).

Furthermore, C57BL/6 mice tend to be more resistant to Mtb,
showing prolonged survival and reduced bacterial burden after the
onset of adaptive immunity (Liand Li, 2023; Singh and Gupta, 2018).
In contrast, BALB/c mice are more susceptible and thus useful for
studying disease progression and immune responses. However, their
limited capacity to model latency poses a challenge, as infection
typically results in mild local inflammation, strong systemic immune
activation, poor bacterial control, and progressive lung damage (Li
and Li, 2023; Zhang et al., 2023).

Humanised NSG-SGM3 mice, which express human cytokines,
support full immune cell differentiation and exhibit immune
responses more similar to humans, making them particularly
valuable for studying human-specific immune responses and
evaluating human-targeted therapies (Bohorquez et al., 2024; Li
and Li, 2023).

Interestingly, of the C57BL/6
(Chaudhary et al, 2024; Zhang et al., 2024b) exclusively used

two mouse  studies
female mice, while one study (Fernindez-Garcia et al, 2020)
included both male and female mice (Figure 4B). Notably, sex-
based differences in TB progression have been observed in mice,
highlighting the importance of reporting and considering sex
as a biological variable in study design. For example, Bini et al.
(2014) found that male C57BL/6 mice were more susceptible to Mtb
H37Ryv infection via the intratracheal route than females. The study
suggested that testosterone may modulate immune responses, as
castration reduced this increased susceptibility. Supporting these
findings, Dibbern et al. (2017) reported that male mice experienced
more rapid disease progression, higher bacterial loads, and increased
morbidity and mortality. This was associated with an early and
exaggerated pulmonary inflammatory response, resulting in more
severe pathology.

Additionally, one study used an SPF female mouse model
(Shin et al., 2011) (Table 2). SPF models are raised in controlled
environments free from known pathogens, reducing confounding
factors such as natural infections, microbiota variability, and
baseline immune activation. This ensures that the immune and
metabolic responses observed in experiments are primarily
due to the disease under investigation and the experimental
interventions applied (Huggins et al., 2019).
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FIGURE 2
Summary of study characteristics. (A) Geographic distribution of studies based on author affiliations. (B) Publications per year, categorised by human
and animal model studies. (C) Total number of studies using human participants or animal models, along with species used across all animal studies.
(D) Types of group comparisons investigated in each eligible study. Abbreviations: HC, healthy controls; non-TB, non-tuberculosis controls; PRC,
People's Republic of China; TB, tuberculosis.

3.3.2.2.2 Guinea pigs. Guinea pigs were used in only two TB
metabolomics studies to date (Figure 4A), both conducted by the
same research group (Somashekar et al., 2011; Somashekar et al.,
2012) (Table 2), highlighting their marked underutilisation. This
limited use may stem from practical challenges in housing and
maintaining guinea pigs compared to murine models. Guinea
pigs require larger enclosures, a specialised diet, and tighter
environmental controls—particularly in terms of temperature and

humidity—to ensure their health and welfare (Weichbrod et al,
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2018). Only one of the two studies reported the sex, indicating
that female guinea pigs were used. The study did not provide
a rationale for using females, and no direct link was found
in the literature. This omission limits interpretation, as sex-
related physiological differences may influence immune and
metabolic responses.

The two studies used different guinea pig strains: SPF Albino
Hartley and outbred Hartley guinea pigs (Table 2). SPF Albino
Hartley guinea pigs are inbred, pathogen-free, and genetically
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TABLE 1 Group definitions of human and animal studies investigating tuberculosis.

Abbreviation | Full term Description of participants or experimental models
TB-positive
Mtb infection
TB Tuberculosis Active, drug-susceptible pulmonary TB caused by Mtb infection
TB_Dxx TB (duration specified) Active Mtb infection assessed at defined time points post-experimental infection. Time points are denoted by D
TB_Wxx (days) or W (weeks); e.g., TB_D15 refers to 15 days, and TB_W4 to 4 weeks after infection

TB-negative (controls)

Healthy controls

HC Healthy controls No history of Mtb infection or other major health conditions. Animal models were not infected

HHC Healthy household contacts Close contacts of active TB patients without evidence of Mtb infection or active disease

Non-TB controls

Non-TB Non-tuberculosis infection Displaying TB-like symptoms but negative diagnostic test results for Mtb infection; also include unconfirmed
LTBI, NTM, and other respiratory diseases

NTM Non-tuberculous mycobacterial | Infected with a mycobacterial strain other than Mtb

LTBI Latent TB infection Confirmed infection with Mtb without clinical signs of active disease

Abbreviations: Mtb, Mycobacterium tuberculosis; NTM, non-tuberculous mycobacterial TB, tuberculosis.
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FIGURE 3

Summary of the 71 human cohort study characteristics. (A) Age distribution of participants across all human studies. (B) Sex distribution of human
participants. (C) Group comparisons investigated in human studies. (D) Country-wise population distribution of human TB studies. Abbreviations: HC,
healthy controls; Mtb, Mycobacterium tuberculosis; non-TB, non-tuberculosis; PRC, People’s Republic of China; TB, tuberculosis.
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FIGURE 4
Summary of the nine animal model studies’ cohort characteristics. (A) Species used across all animal studies. (B) Sex distribution of animals used. (C)
Group comparisons investigated in animal studies. Abbreviations: HC, healthy controls; TB, tuberculosis.

TABLE 2 Summary of Mtb infection characteristics used in animal studies.

Animal species strain Mtb infection Study citation
Strain Dose Route Duration

Cattle

Yellow H37Rv Very high (>10,000 CFU) Intratracheal 33 weeks Chen et al. (2013)

Guinea pigs

Out-bred Hartley H37Rv Very high (>10,000 CFU) Aerosol 15, 30 and 60 days Somashekar et al. (2011)

SPF Albino Hartley ‘W-Beijing strain Low (20-120 CFU) Aerosol 3 weeks Somashekar et al. (2012)

Mice

BALB/c Erdman strain High (100-10,000 CFU) Aerosol 19 days Jain et al. (2007)

C57BL/6 H37Rv Low (20-120 CFU) Aerosol 3 weeks Chaudhary et al. (2024)

C57BL/6 H37Rv Very high (>10,000 CFU) Tail vein 10 weeks Zhang et al. (2024b)

C57BL/6 H37Rv Very high (>10,000 CFU) Intratracheal 4 and 9 weeks Ferndndez-Garcia et al. (2020)

Humanised NSG-SGM3 H37Rv Low (20-120 CFU) Aerosol 15 days; 4 and 5 weeks Bohorquez et al. (2024)

SPF C57BL/6 H37Rv Moderate (120-1,000 CFU) Aerosol 4 weeks Shin et al. (2011)

CFU, colony forming unit; Mtb, Mycobacterium tuberculosis; SPF, specific pathogen free.

uniform, making them suitable for experiments requiring strict ~ 3.3.2.3 Mtb infection characteristics

control over biological variability. In contrast, outbred Hartley In animal models, infection-related variables—including
guinea pigs offer greater genetic diversity and are not bred under ~ Mtb strain, dose, route of administration, and infection
pathogen-free conditions, potentially better reflecting the biological ~ duration—significantly ~influence disease severity, immune

heterogeneity seen in human populations (Lan et al., 2020). responses, and, in turn, the host metabolome. These characteristics
are summarised in Table 2.
3.3.2.2.3 Cattle. One reviewed study used cattle (unspecified sex) The laboratory strain H37Ry, isolated in 1905 (Koch, 1884),

as an animal model in TB metabolomics research (Chen etal,, 2013)  was used in seven of the nine reviewed studies (Table 2).
(Figure 4A). Cattle are natural hosts for Mycobacterium bovis (M. ~ While phenotypically similar to the original Mtb strain (Koch,
bovis) and offer unique advantages for studying TB pathogenesisand ~ 1884), H37Rv differs from many clinical strains, which typically
evaluating therapeutic interventions (Li and Li, 2023). In the study =~ grow faster and produce greater quantities of the Early
by Chen et al. (2013) (Table 2), cattle were experimentally infected ~ Secreted Antigenic Target 6kDa (ESAT-6) virulence factor,
with Mtb H37Rv, a clinical Mtb strain, and M. bovis to investigate ~ known to modulate both host immunity and metabolism
differences in virulence among these M¢b strains. (Chiner-Oms et al., 2018).
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The Erdman strain, also used in one reviewed study (Table 2), is
characterised by consistent virulence in mice and robust granuloma
formation, making it suitable for vaccine and pathogenesis research
(Viaetal., 2013). The W-Beijing strain, associated with MDR-TB and
hypervirulence, is particularly valuable in studies of drug resistance,
transmission, and immune evasion (Hanekom et al., 2011).

Infection in animal models is typically induced via aerosol,
intranasal, or intratracheal routes to replicate natural human
transmission (Li and Li, 2023). Among the reviewed animal model
studies, aerosol infection was most common (66.7%), followed by
intratracheal (22.2%) and tail vein (11.1%) administration (Table 2).

Both the infection dose and route can significantly impact
disease pathology and host immune responses (Li and Li, 2023).
For instance, intravenous infection in mice often results in higher
bacterial loads and more severe pathology compared to aerosol
infection (Nikonenko et al.,, 2004). C57BL/6] mice infected via
aerosol typically exhibit contained infection, characterised by
necrotic lesions, low bacterial loads, and limited inflammation (Li
and Li, 2023). In contrast, BALB/c mice tend to require higher
intratracheal infectious doses and develop more severe pathology,
including progressive lung consolidation, fibrosis, elevated T-cell
infiltration, and increased anti-inflammatory cytokine expression
(Li and Li, 2023). This aligns with the reviewed studies involving
C57BL/6 and humanised NSG-SGM3 mice. Aerosol doses ranged
from low (20-120 CFU) to moderate (120-1,000 CFU), while very
high doses (>10,000 CFU) were administered via intratracheal or tail
vein routes (Table 2). Controversially, the BALB/c model received a
high infectious dose even via the aerosol route.

In guinea pigs, aerosol infection leads to granulomas that closely
resemble human TB histopathology (Li and Li, 2023). Disease
progression in this model is also dose-dependent. Somashekar et al.
(2012) used both a low infection dose to investigate metabolic
signatures for non-invasive diagnostic or prognostic purposes, as
well as a very high dose to characterise broader metabolomic
alterations (Somashekar et al., 2011) (Table 2). Low-dose infections
tend to result in chronic, slowly progressing disease, whereas high-
dose exposures accelerate progression and increase mortality risk (Li
and Li, 2023). However, high-dose models may not accurately
reflect natural transmission, potentially limiting their translational
relevance.

In cattle, infection is typically induced using very high-dose
aerosol (as is the case in the included cattle study, Table 2) or
intratracheal administration, compensating for the low natural
shedding of M. bovis. Lesions primarily affect the lungs and
lymph nodes and are often caseous and mineralised. As in other
models, lesion distribution and severity are influenced by both
route and dose (Li and Li, 2023).

3.3.3 Metabolomics study flow

The choice of metabolomics approach, analytical platform,
sample matrix and data analysis method can significantly
impact the metabolomics signatures detected during Mtb
infection. To illustrate the range of methods used, general
workflows from the reviewed studies are summarised in
Figures 5A-D, while Supplementary Table S5 details the specific
characteristics of each study.

Some studies reported multiple experimental parameters, for

example, using more than one metabolomics approach, sample
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matrix, or analytical platform (Supplementary Table S5). Each
unique instance was recorded separately, resulting in a total number
80).
Accordingly, the percentages reported in this section represent the

of entries exceeding the number of reviewed studies (n =
distribution of recorded parameters within each category, rather
than the total number of studies.

Cohort size was also documented for each study, given
its influence on statistical power, reliability, and reproducibility
(Supplementary Table S5). A small sample size can increase the
likelihood of false positives or negatives, while overly large studies
without adequate design can lead to unnecessary cost and data
complexity (Dunn et al., 2015).

3.3.3.1 Metabolomics approach

Metabolomics studies usually follow untargeted, targeted, or
semi-targeted approaches. Here, most reviewed cases (71.4%)
used an untargeted approach, suggesting a strong emphasis
(Figure 5A).
spectrum of metabolites

on exploratory, research
This method

without prior selection, offering the potential to uncover novel

hypothesis-generating
captures a broad
biomarkers relevant to TB diagnosis and disease characterisation
(Du Preez et al,, 2019; Roach et al, 2024). In contrast, targeted
metabolomics—used in 25.0% of cases (all human) — focuses on
the precise quantification of predefined metabolites (Figure 5A).
Despite its narrower scope, this approach improves sensitivity and
specificity through the optimisation and enhancement of specific
preparation and analysis methods (Roach et al., 2024).

Only 3.6% of cases used a semi-targeted approach (Figure 5A),
combining features from both untargeted and targeted strategies.
This approach enables the identification and quantification
of groups of metabolites within specific pathways, without
the prior knowledge of the exact metabolites of interest
(Billet et al., 2020; Roach et al., 2024).

3.3.3.2 Analytical platforms
High-resolution analytical platforms such as mass spectrometry

(MS), often coupled with various separation systems, and nuclear
magnetic resonance (NMR), remain the most widely used in
metabolomics (Wishart et al, 2022). In this review, liquid
chromatography coupled to MS (LC-MS) was the predominantly
used analytical platform (51.2%), followed by gas chromatography-
mass spectrometry (GC-MS, 27.9%) and NMR (16.3%)
(Figure 5B).

MS, specifically when coupled with chromatography, offers
high sensitivity and specificity, making it ideal for targeted
analyses (Munjal et al., 2022). However, it requires extensive
sample preparation and is destructive to biological samples. In
contrast, NMR is non-destructive, requires minimal preparation,
and is highly reproducible, though it has lower sensitivity and
limited resolution in complex samples like those encountered in
TB studies (Munjal et al., 2022).
used platforms included
spectrometry (CE-MS),
resonance mass spectrometry (ICR-MS), and nanoparticle-
MS (NPELDI-MS),
showing the vast number of analytical platforms available in

Less commonly capillary

electrophoresis mass ion cyclotron

enhanced laser desorption/ionisation

metabolomics (Figure 5B).
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FIGURE 5
Summary of the metabolomics workflows used in the reviewed studies. The total

studies. (C) Sample matrices used for metabolomics analysis across all studies. (D
reviewed studies (detail given in supplementary information) Abbreviations: BALF,

partial least squares discriminant analysis.

as reported across all 80 reviewed studies. (A) Distribution of metabolomics approaches across all studies. (B) Analytical platforms used in the reviewed

spectrometry; GC-MS, gas chromatography mass spectrometry; ICR MS, ion cyclotron resonance mass spectrometry; LC-MS, liquid chromatography
mass spectrometry; NMR, nuclear magnetic resonance; NPELDI MS, nanoparticle-
quality control coefficient of variation; PCA, principal component analysis; PLS-DA, partial least squares discriminant analysis; o-PLSDA, orthogonal

represents the number of recorded parameters within each category

) Summary of sample and data analysis variables used mostly in the
bronchoalveolar lavage fluid; CE-MS, capillary electrophoresis mass

enhanced laser desorption/ionisation mass spectrometry; QC-CV,
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3.3.3.3 Sample matrices

Biological sample matrices used in metabolomics range
from non-invasive or minimally invasive types such as breath,
stool, and urine, to more invasive ones like sputum, blood,
and tissue samples (Smith et al, 2020). Each matrix provides
distinct metabolic profiles influenced by physiological function
and excretion mechanisms.

Blood is the most frequently used matrix in TB metabolomics
studies due to standardised collection methods and its ability
to reflect systemic changes during infection and treatment
(Du Preez et al, 2019). Among the reviewed studies, including
human and animal model studies, serum was used in 26
cases (28.6%), plasma in 16 (17.6%) and whole blood in only
two (2.2%) (Figure 5C).

Urine, used in 11 cases (12.1%) (Figure 5C), is a non-invasive,
readily available matrix that requires minimal sample preparation
and reflects host metabolism, although it contains few mycobacterial
metabolites. Urine samples, however, present challenges with
metabolite normalisation due to natural variability in individual
excretion rates (Du Preez et al., 2019), necessitating correction of
metabolite levels to creatinine concentration (Nam et al., 2020).

Stool, used in just 6 cases (6.6%) (Figure5C), is still
considered an emerging matrix in TB research, particularly
for investigating gut-lung immune interactions and potential
diagnostic markers (Luo et al., 2023).

Although sputum samples offer direct access to the infection
site, providing valuable metabolomics information about
both the bacteria and the host, it was used in only 6 cases
(6.6%) (Figure 5C). This is likely due to challenges in the
collection—especially in children and immunocompromised
patients—and the high viscosity of sputum, which complicates
sample processing (Du Preez et al., 2019).

Tissue samples, used in 15 cases (16.5%), offer insights into
localised metabolic changes at the infection site (Figure 5C).
However, collection is highly invasive and, for lung tissue, limited
to pulmonary TB research (Du Preez et al, 2019). Expectedly,
most tissue samples were lung tissue (53.3%), with only one
human study included (Figure 5C). Alternatively, pleural and
bronchoalveolar lavage fluid (BALF) are considered less invasive
alternatives for assessing localised pathological processes in
human participants. BALF, for example, provides access to the
alveolar lining fluid without the need for a pleural puncture
(Tokar et al., 2017).

Breath samples, used in 5 cases (5.5%) (Figure 5C), represent
a non-invasive matrix ideal for detecting volatile compounds,
including in vulnerable populations. However, their use is limited
by dilute metabolite concentrations and the lack of standardised
sampling and processing procedures (Du Preez et al, 2019).
Collection from animal models remains especially challenging,
thus limiting use to human studies. Interestingly, skin was
more recently used (3.3%) (Figure 5C) to identify metabolic
biomarkers differentiating TB patients from HC, demonstrating
its potential use in future research (Makhubela et al, 2023;
Vishinkin et al.,, 2021; Wooding et al., 2025), albeit this sample
matrix’s use

in TB animal model metabolomic studies is

not yet clear.
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3.3.3.4 Sample preparation, quality control and data
analysis variables

Depending on the specific metabolomics approach, analytical
platform, and sample matrix, different strategies are followed to
identify and analyse the metabolomes of interest. These strategies
include procedures for sample preparation, quality control during
analysis, and peak identification and quantification. Additionally,
the study aims and cohort design influence the selection of data-
cleaning methods, statistical analyses, and threshold cut-offs applied
to identify differential metabolites. Figure 5D provides an overview
of the most frequently used methods across these workflow steps,
as identified in the reviewed studies. A detailed summary of study-
specific methodologies is presented in Supplementary Table S5.

3.3.4 TB-induced differential metabolites

A total of 7,770 differential metabolite entries associated
with TB characterisation were captured across all reviewed
studies. Of these, 6924 metabolite entries originated from
human studies, representing 3657 distinct metabolites after
harmonising metabolite nomenclature (detailed per sample
matrix in Supplementary Table S6). Animal model studies
contributed 828 metabolite entries, corresponding to 417 distinct
metabolites following nomenclature harmonisation (detailed per
sample matrix in Supplementary Table S7).

A comparison between human and animal model studies
revealed limited overlap in reported differential metabolites. Of
the 3657 distinct TB-associated metabolites identified in human
studies (across all sample matrices), only 172 (4.7%) were also
reported in animal models (Supplementary Table S7). This overlap
varied by species. Mouse models demonstrated the highest degree
of concordance, with 3.8% of human metabolites also identified
in mouse lung tissue (Supplementary Table S7). In contrast, guinea
pig and cattle models showed minimal overlap, which may reflect
species-specific metabolic responses or the limited number of

available studies for these models.

3.3.4.1 Pathway analysis
To assess the specific host metabolic alterations induced by

Mtb, pathway analysis (PA) was performed on the harmonised
differential metabolite annotated list in TB versus control groups
across multiple biological matrices. Breath and various mouse
tissues (including heart and thigh) were excluded from PA due
to insufficient metabolite coverage, while meaningful enrichment
results were obtained for matrices such as blood, urine, BALE
stool, and various animal tissues analysed (lung, liver and spleen)
(Table 3). A comprehensive table with statistical significance is
depicted in Supplementary Table S8. Although sample matrices,
including skin, sputum, and mouse blood, kidney and brain tissue,
were included in the PA, they did not reveal any significantly altered
pathways and are thus not shown here.

PA revealed metabolic pathways consistently disrupted across
both human and animal models, including: 1) alanine, aspartate and
glutamate metabolism; 2) arginine biosynthesis; 3) glycine, serine
and threonine metabolism; 4) glutathione metabolism; 5) glyoxylate
and dicarboxylate metabolism; and 6) one-carbon pool by folate
metabolism (Table 3).
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TABLE 3 Significantly enriched metabolic pathways based on pathway analysis of differential metabolites comparing TB-positive and TB-negative
(control) groups across multiple biological matrices. Values indicate the number of differential metabolites detected relative to the total number of
known compounds in each pathway.

Significantly affected pathways Percentage of differential metabolites identified within
each pathway (n = total metabolites in the pathway)

Human Cattle Guinea pig Mice

Alanine, aspartate and glutamate metabolism n=28

BALF 39.3% - - R
Blood™ 35.7% - 14.3% -
Lung tissue - - 10.7% 35.7%
Spleen tissue - - - 21.4%
Stool 35.7% - - -
Urine 28.6% - - -
Arginine and proline metabolism n=36

BALF 36.1% B N B
Blood* 27.7% - - -
Lung tissue - - - 25%
Arginine biosynthesis n=14

BALF 64.3% - - -
Blood™ 71.4% - 21.4% -
Lung tissue - - - 50%
Spleen tissue - - - 28.6%
Stool 50% - - -
Urine 42.9% B N B
f-Alanine metabolism n=21

BALF 38.1% - - -
Lung tissue - - - 28.6%
Urine 33.3% - - -
Cysteine and methionine metabolism n=33

Urine 21.2% - - -
Galactose metabolism n=27

BALF 29.6% - - -
Blood* 33.3% - - -
Glutathione metabolism n=28

BALF 32.1% - B -

(Continued on the following page)
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TABLE 3 (Continued) Significantly enriched metabolic pathways based on pathway analysis of differential metabolites comparing TB-positive and
TB-negative (control) groups across multiple biological matrices. Values indicate the number of differential metabolites detected relative to the total

number of known compounds in each pathway.

Significantly affected pathways

Percentage of differential metabolites identified within
each pathway (n = total metabolites in the pathway)

Human Cattle Guinea pig Mice
Blood* 32.1% - - _
Lung tissue - - 14.3% 32.1%
Glycerophospholipid metabolism n=36
Blood” 27.8% - - -
Lung tissue - - - 27.8%
Glycine, serine and threonine metabolism n=33 n=34 n=33 n=34
BALF 30.3%
Blood* 36.4% 8.8% N B
Lung tissue - - 12.1% 26.5%
Urine 27.3% - - _
Glyoxylate and dicarboxylate metabolism n=32
BALF 25% - - -
Blood™ 25% 9.4% - -
Lung tissue - - - 28.1%
Urine 21.9% - - -
Histidine metabolism n=16
Lung tissue — B N 31.3%
Stool 50% - - -
Urine 43.8% - - _
Linoleic acid metabolism n=>5
Blood* 80% - - -
Nicotinate and nicotinamide metabolism n=15
Blood* 40%
Liver tissue - - - 20%
Spleen tissue - - - 20%
Stool 46.7% - - -
Urine 40% - - -
One carbon pool by folate n=26
BALF 30.8% - - -
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TABLE 3 (Continued) Significantly enriched metabolic pathways based on pathway analysis of differential metabolites comparing TB-positive and
TB-negative (control) groups across multiple biological matrices. Values indicate the number of differential metabolites detected relative to the total
number of known compounds in each pathway.

Significantly affected pathways Percentage of differential metabolites identified within
each pathway (n = total metabolites in the pathway)

Human ‘ Cattle ‘ Guinea pig Mice

Blood* 30.8% 11.5% - -

Lung tissue - - 11.5% 26.9%

Stool 38.5% - - -

Urine 26.9% - - -

Pantothenate and CoA biosynthesis n=20

BALF 35%

Urine 35% - - -

Phenylalanine, tyrosine and tryptophan biosynthesis n=4

Liver tissue - - - 50%

Spleen tissue - - - 50%

Purine metabolism n=70

BALF 28.6% - - -

Stool 24.3% - - -

Pyrimidine metabolism n=39

BALF 30.8% - - -

Pyruvate metabolism n=23

Blood* - - 13% -

Lung tissue - - - 30.4%

Sphingolipid metabolism n =32

Blood” 31.3% - - -

Tricarboxylic acid (TCA) cycle n=20

BALF 30% - - -

Lung tissue - - - 30%

Liver tissue - - - 15%

Spleen tissue - - - 15%

Urine 30% - - -

Valine, leucine and isoleucine degradation n =40

Liver tissue - - - 10%

Spleen tissue - - - 10%

« »

Blood "includes whole blood, serum, and plasma. “-” indicates no data available, not analysed, or no significant enrichment. “n” indicates the total metabolites assigned to the pathway
(species-specific pathway size according to MetaboAnalyst). Total compounds in pathways may differ between species due to species-specific pathway coverage in MetaboAnalyst.
Abbreviations: BALF, bronchoalveolar lavage fluid.
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3.3.4.2 Metabolite variations

Despite the overlap in significant pathways detected, the
direction of metabolite changes within these shared pathways was
not always conserved across studies. Supplementary Tables SOA-V
provides a detailed summary of the directional changes and study-
specific characteristics for each metabolite identified within the
significant pathways across all research models and sample matrices.

4 Discussion

The comparison of differential metabolites between human and
animal model studies revealed relatively low overlap percentages
(collectively 4.7%). However, these results should be interpreted
with caution. The observed overlap is inherently dependent on the
metabolites captured by individual studies, which are shaped by
factors including experimental design, choice of analytical platform,
sample matrices analysed, and biological variability. Importantly,
a considerably larger number of metabolomic studies have been
conducted in humans compared to animal models, resulting in an
asymmetry of data availability. Consequently, the limited overlap
and small coverage observed for animal models likely reflect not a
lack of biological relevance or translational potential, but rather the
current paucity and heterogeneity of animal metabolomic studies.

The following sections explore some of these variables in
more detail to clarify their influence on study outcomes and the
interpretation of cross-species metabolomic data.

4.1 Species-specific observations

Mtb infection is known to induce metabolic alterations in its
host (Ding et al., 2020). Host-directed changes, including altered
glycolysis and amino acid metabolism, support antimicrobial
responses, cytokine production, and immune cell activation
(Kumar et al,, 2019; Shi et al, 2016). In contrast, Mtb can
manipulate lipid and amino acid pathways to evade immune
clearance and create a niche for persistence (Borah Slater et al.,
2023; Kumar et al., 2019; Shi et al., 2016).

Comparative analyses across species suggest some conserved
metabolic responses to Mtb infection. From PA, reduced circulating
amino acid levels were consistently observed across research models,
particularly in alanine, aspartate, and glutamate metabolism, as
well as glycine, serine, and threonine metabolism (Table 3). These
pathways are central to Mtb pathogenesis: alanine, aspartate, and
glutamate metabolism serve as essential carbon and nitrogen
sources for Mtb amino acid biosynthesis, whereas disruption of
glycine, serine, and threonine metabolism, together with cysteine
and methionine metabolism, may reflect host strategies to restrict
nutrient availability (Borah Slater et al., 2023).

Furthermore, PA also highlighted consistent disruptions across
all research models in the one-carbon pool by folate metabolism,
underpinned by altered serine, glycine, and cysteine pathways
(Table 3). Such disruptions may both restrict nutrients essential
for Mtb growth and enhance pro-inflammatory immune responses
(Borah Slater et al., 2023). In addition, guinea pigs and mice
exhibited similar disrupted arginine biosynthesis and glutathione
metabolism compared to human studies (Table 3). Both of these
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pathways are important for host defence against Mtb-induced
oxidative stress (McKell et al., 2021; Young et al., 2018).

Tissue-specific alterations were also evident in mice, with
disruptions in pyruvate metabolism, tricarboxylic acid (TCA) cycle
pathways, and valine, leucine and isoleucine degradation pathways
(Table 3). During TB infection, immune cells undergo a Warburg-
like shift from oxidative phosphorylation to glycolysis to sustain
activation and survival (Chaudhary et al., 2024; Shin et al,, 2011).
This shift disrupts pyruvate metabolism and remodels the TCA
cycle, characterised by succinate accumulation, which drives pro-
inflammatory signalling (Yu etal., 2023), alongside changes in
citrate and malate (Chaudhary et al., 2024; Shin et al, 2011).
Branched-chain amino acid metabolism is also affected, reflecting
both Mtb’s use of isoleucine, leucine, and valine for growth and the
host’s attempt to limit nutrient access (Chaudhary et al., 2024).

In contrast, cattle (included in only one study) showed
fewer disrupted pathways, though glyoxylate and dicarboxylate
metabolism [linked to altered energy metabolism (Rahman and
Schellhorn, 2023)] was similarly affected as observed in both human
and mouse studies (Table 3).

Among the animal models, mice appear to have the highest
degree of disrupted pathway overlap with humans. This aligns
with the distinct metabolite profiles, where mouse lung tissue
captured the largest subset of overlapping TB-associated differential
metabolites (3.8%), followed by guinea pig serum and lung tissue,
both with 0.5% overlap (Supplementary Table S7).

Further examination of metabolite-specific variation within
these pathways highlighted important interspecies differences. For
instance, glutamine levels (a key precursor in arginine biosynthesis)
were mostly decreased in Mtb-infected guinea pigs (aligned with
observations in human patients) but increased in mice (Figure 6;
Supplementary Table S9A). This divergence may reflect species-
specific differences in arginine precursor pathways, where humans
rely more on glutamine and proline, while mice favour arginine and
ornithine (Marini, 2012; Morris, 2016).

4.2 Variances based on different group
comparisons

In animal model studies, group comparisons are commonly
made between Mtb-infected animals and HC, which is fundamental
for understanding TB processes (Li and Li, 2023; Omenn et al,
2012; Singh and Gupta, 2018). This study design is preferred because
it isolates the effects of Mtb infection by using HC as a baseline,
allowing for more confident attribution of observed changes—such
as shifts in metabolism (Weiner 3rd et al., 2012), immune responses,
or tissue pathology (Li and Li, 2023; Omenn et al., 2012; Singh and
Gupta, 2018) — directly to the infection itself. This approach helps
to minimise confounding variables (Fernandez-Garcfa et al., 2020)
and ensures that experimental differences are due to the infection
itself rather than unrelated physiological or environmental factors.

In contrast, human studies often incorporate group comparisons
between TB patients and either HC or non-TB individuals. This
approach not only enables investigation into disease mechanisms
but also facilitates the development of clinically relevant biomarkers
for differentiating TB from other conditions or diseases presenting
with overlapping symptoms (Weiner 3rd et al., 2012).
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adenine,
asparagine, lactic acid, leucine, methionine, phenylalanine,

Interestingly, a few metabolites—such as
phosphocholines—showed similar directional changes in both
animal model TB-infected lung tissue (Fernindez-Garcia et al,
2020; Shin et al., 2011; Somashekar et al., 2011; Somashekar et al.,
2012; Zhang et al, 2024b) and BALF (Li et al, 2024),
compared to HC (Supplementary Tables SOA,E,H,L,N,P,Q,S,V).

discrepancies observed between these
matrices for other metabolites, including alanine, aspartic
acid,

However, were

citrulline, ~creatine, glutamine,
succinic acid, tyrosine, wuracil, and xanthine (Ferndndez-
Garcia et al, 2020; Li et al., 2024; Shin et al., 2011;
Somashekar et al., 2011; Somashekar et al., 2012; Zhang et al,
2024b) (Supplementary Tables S9A,B,C,D,G,LJ,K,M,N,O,PLQ,R,U).
Interestingly, several differential BALF metabolites—including

pyroglutamic  acid,

betaine, choline, cysteine, glyceric acid, methionine, proline,
and sphingosine—showed opposite trends for the different
comparison groups used (TB vs. HC controls and TB vs. non-TB)
(Li et al., 2024) (Supplementary Tables S9B,E,G,H,LJ,N,O,T).

From these observations, it is notable that contrasting trends
were frequently observed between comparisons to different
control groups, namely HC and non-TB. In this review, the

Frontiers in Molecular Biosciences

term non-TB was broadly defined to include symptomatic TB
suspects who tested negative, individuals with other diseases,
and cases of non-tuberculous mycobacterial (NTM) infections
(Table 1). Li et al. (2024) explored the interplay between lung
microbial communities and infections by Mtb and NTM. They
deduced that NTM infections induce distinct shifts in the lung
microbiota and disrupt metabolism to support a niche environment
for persistent NTM infection, distinct from that observed during
Mtb infection.

Serine is another notable example. This metabolite showed
consistent increases across nearly all studies comparing TB
to control groups (Conde et al, 2022; Deng et al, 2021;
Fernandez-Garcia et al.,, 2020; Rai et al, 2023; Sa et al., 2024;
Vrieling et al., 2019; Yu et al., 2024; Zhang et al., 2024a) (Figure 7;
Supplementary Table S9E). However, one study reported decreased
plasma serine levels in TB vs. non-TB controls (Sun et al., 2016).
This study focused on paediatric TB (children under 14 years),
while others included adults (aged 17-69; Zhang et al. (2024a)
did not specify age). Given the diagnostic challenges in children
and emerging evidence suggesting age-related differences in TB
biomarkers, this discrepancy may be related to such age-related
variations (Sun et al., 2016).
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Altogether, these highlight  the
and importance of control group selection in comparative

findings complexity
metabolomics. Non-TB populations are inherently heterogeneous
and may harbour undiagnosed infections or other metabolic
disturbances that confound interpretation.

4.3 Variation due to induced Mtb infection
protocols

Another important consideration when using animal models in
TB metabolomics studies is the infection characteristics of Mtb itself,
as these factors could contribute to variation in the TB-induced
metabolome observed.

In the reviewed studies, some conserved metabolite responses
were observed despite differences in animal species, species
strains, and Mtb infection strains. For instance, aspartic acid
levels were consistently increased in two independent studies
involving C57BL/6 mice infected with Mtb H37Rv, compared
to controls (Fernandez-Garcia et al., 2020; Zhang et al., 2024b)
(Supplementary Table S9A). Similarly, metabolites such as glycine
and glutathione showed similar changes in both mice and guinea
pigs, across different species strains infected with either Mtb
H37Rv and W-Beijing strains (Ferndndez-Garcia et al, 2020;
Shin et al., 2011; Somashekar et al., 2011; Somashekar et al,,
2012) (Supplementary Tables S9G, I). Furthermore, glutamic acid,
glutamine, succinic acid, and oxaloacetic acid exhibited similar
directional variation in liver and lung tissues from mice and
guinea pigs infected with Mtb H37Rv (Supplementary Table S9A)
(Fernandez-Garcia et al., 2020; Shin et al., 2011; Somashekar et al.,
2011; Somashekar et al., 2012; Zhang et al., 2024b).

However, the infectious strains used in these studies represent
only two of the eight recognised Mtb lineages: H37Rv and
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Erdman, both belong to Lineage 4 (Euro-American), while W-
Beijing represents Lineage 2 (East Asian) (Luo et al., 2015). This
raises concerns about the broader representativeness of these
strains, particularly the widely used H37Rv strain, in reflecting the
species diversity observed in human TB. To enhance translational
relevance, it has been recommended that future animal model
studies incorporate a more diverse set of Mtb strains (Chiner-
Oms et al., 2018; O'Toole and Gautam, 2017).

The route of infection is also recognised as a factor that can
significantly affect disease pathology and immune responses (Flynn,
2006). To date, however, no studies have specifically explored the
metabolic responses associated with different infection routes in
TB metabolomics. Furthermore, due to the considerable variability
in experimental designs among the nine animal model studies
included in this review, the impact of the infection route could not
be meaningfully evaluated across studies.

Beyond infection strain and route, both infection duration and
dose are additional variables that can affect the metabolic responses
observed in TB. Some discrepancies in the differential metabolites
detected in animal models could reflect different stages of disease
progression. Fumaric acid, a key intermediate in the TCA cycle,
showed temporal variation in both mouse and guinea pig models
(Fernandez-Garcia et al., 2020; Shin et al., 2011; Somashekar et al.,
2012) (Figure 7; Supplementary Table SOU). In one mouse study,
fumaric acid was decreased at 4 weeks post-infection (TB_W4),
attributed to succinate dehydrogenase and malate dehydrogenase
inhibition. This coincided with the accumulation of succinic acid
and malic acid, reflecting a pro-inflammatory metabolic profile
(Fernandez-Garcia et al., 2020). Notably, between four and 9 weeks
post-infection (TB_W4 to TB_W9), fumaric acid levels increased
while succinic acid and malic acid levels decreased, a pattern
interpreted as either inflammation resolution or a metabolic shift
associated with chronic infection (Ferndndez-Garcia et al., 2020).
Coinciding with the four-week time point, similar decreases in
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fumaric acid were observed in mouse lung and spleen tissue
(Shin etal., 2011) and in guinea pig serum (Somashekar et al., 2012)
at approximately 4 weeks post-infection.

4.4 Metabolomics workflow variables

In addition to species differences, the choice of sample matrix
had a marked impact on the metabolic signatures observed
in TB. Compared to human studies, the reviewed animal
model studies showed limited diversity in sample matrices.
However, animal models offered the advantage of using tissue
samples, particularly from the lung, enabling direct investigation
of organ-specific pathology and TB-associated metabolic
alterations.

Certain pathways appeared to be exclusively altered in
specific sample matrices. For example, cysteine and methionine
metabolism were significantly altered in urine, while pyrimidine
metabolism showed significant changes in BALE Linoleic
acid and sphingolipid metabolism were significantly altered
in blood (Table 3). Additionally, branched-chain amino acid
metabolism (Valine, leucine and isoleucine degradation) and
phenylalanine, tyrosine and tryptophan biosynthesis were
indicated to significantly alter only in mice liver and spleen
tissues (Table 3).

Variations in metabolites and the directionality of metabolic
alterations across different matrices (blood, sputum, urine, and
stool) reflect the fact that the metabolic response to Mtb infection
involves both localised and systemic effects. Local changes, such
as those observed in sputum, reflect lung-specific alterations, while
systemic responses are captured in blood, urine, and stool, indicating
broader physiological effects.

Interestingly, metabolites from mouse lung tissue often
BALE, particularly

within pathways such as alanine, aspartate and glutamate

aligned with findings from human

metabolism; arginine and proline metabolism; glutathione
metabolism; and glycine, serine and threonine metabolism
(Table 3; Supplementary Table 59). This suggests that, despite
differences in sample matrices, meaningful comparative insights can
still be drawn when matrices reflect related biological compartments
or processes. Such cross-matrix comparisons may be particularly
valuable in bridging findings between animal models and
human studies.

Beyond matrix selection, the specific metabolomics approach
and analytical platforms used also significantly influence which
metabolites are detected in animal models. In hypothesis-
generating research, untargeted, multi-platform approaches are
particularly valuable when broad metabolite coverage is desired. For
example, Fernandez-Garcia et al. (2020) employed an untargeted,
multi-platform approach combining CE-MS, GC-MS, and LC-
MS, which enabled high metabolite coverage in mouse lung
tissue and facilitated the discovery of novel disease mechanisms
(Supplementary Table S5).  Conversely, for research targeting
specific metabolite classes or pathways, targeted or semi-targeted
approaches may be more appropriate. This was demonstrated in
the mouse model study by Jain et al. (2007), where a semi-targeted
approach was employed to extract and analyse lipids in the context

of lipid metabolism.
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4.5 Animal model selection: advantages,
limitations, and future prospects

Several factors contribute to the limited use of animal models
in metabolomics studies aimed at TB characterisation. A major
challenge lies in the translational relevance of many animal models,
as the pathological manifestations of TB in most models do not fully
reflect the complexity observed in human disease.

In addition to translational constraints, logistical and practical
constraints also likely discourage animal-based metabolomics
studies. In contrast to human studies, which can leverage existing
biobanks or clinic-derived samples, animal studies require time-
consuming and costly infection protocols and husbandry prior
to sample collection. These requirements increase costs and
reduce feasibility for large-scale or longitudinal metabolomic
profiling. Moreover, metabolic processes are inherently sensitive to
environmental influences. While controlled conditions in animal
facilities help reduce variability, they may inadvertently omit
key host-environment interactions that contribute to disease
manifestation in human populations. Thus, controlled environments
represent both a strength and a limitation, depending on the specific
research question.

Despite these challenges, the choice of animal model
remains a critical determinant of metabolomic results.
Different species capture distinct aspects of TB pathology
and host-pathogen interactions, and their careful selection is
essential to maximise both biological insight and translational
relevance.

Mouse models are widely used in TB metabolomics to
investigate disease characteristics, drug mechanisms, and potential
toxicities (Du Preez et al, 2019). They offer major practical
advantages, such as cost-effectiveness, ease of handling, and
availability of inbred strains (Corleis et al., 2023). However, a key
limitation is their inability to fully replicate human TB pathology,
particularly the absence of caseating granulomas and cavitary
lesions, which are characteristic of human TB (Gong et al., 2020,
Singh and Gupta, 2018).

Guinea pigs are more susceptible to Mtb than many other animal
models, requiring only a small bacterial inoculum to establish
infection (Clark et al, 2014; Li and Li, 2023). Upon infection,
they develop granulomas with central necrosis surrounded by
lymphocytes, macrophages, and multinucleated giant cells enclosed
by a fibrotic capsule—closely resembling human TB pathology.
This histopathological similarity makes guinea pigs valuable for
evaluating TB pathogenicity, as well as for testing candidate
treatments and vaccines (Dharmadhikari and Nardell, 2008). For
instance, Palanisamy et al. (2008) assessed the virulence of different
Mtb strains in guinea pigs by comparing survival time, bacterial
loads in organs like the lungs, spleen, and lymph nodes, and the
severity of pulmonary and extrapulmonary lesions. Guinea pigs do,
however, lack many human-specific immune reagents important
for investigating underlying TB mechanisms and they do not
manifest the full clinical spectrum, including LTBI (Li and Li, 2023;
Zhan et al., 2017).

Cattle also represent a highly translational model, as M.
bovis infection closely mimics Mtb infection in humans. Both
species develop granulomatous lesions featuring caseous necrosis,
mineralisation, and fibrosis, predominantly in the lungs and
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regional lymph nodes (Pollock et al., 2006). The bovine immune
response is Th1-dominant, with CD4" and CD8" T-cells promoting
IFN-y production for bacterial control, while yd T-cells play
a role in early containment of infection. Lesion progression
in cattle follows a timeline that is comparable to human
disease following Mtb infection (Pollock et al, 2006). Cattle,
therefore, serve as a valuable translational bridge between small
animal models and human clinical studies, particularly in the
context of vaccine development and host-pathogen interaction
research (Pollock et al., 2006). Moreover, the availability of well-
characterised immunological reagents for bovine TB supports
detailed, reproducible investigations. Cattle also enable the
collection of large-volume blood samples, which is particularly
advantageous for metabolomics. However, their use in large-scale
TB metabolomics research remains limited due to the considerable
logistical demands, housing requirements and high associated costs
(Li and Li, 2023).

The current limited use of animal models in metabolomics does,
however, restrict the ability to identify the most suitable animal
model and optimise experimental designs for TB metabolomics.
Further investigation is therefore required, including exploring
alternative animal models that have demonstrated value in TB
pathogenesis research, such as the New Zealand rabbit, Cynomolgus
macaque or Rhesus monkey, Chinese tree shrew, and Wistar
rat (Zhan et al, 2014; Zhan et al., 2017). At the same time,
systematic evaluation of variables such as infection route, strain,
dose, and duration will be critical for determining how experimental
conditions shape metabolomic profiles and their translational
relevance to human TB.

Beyond the selection and optimisation of animal models,
the choice of sample matrix and metabolomics approach
also plays a pivotal role in shaping the insights gained and
can further enhance the translational value of these models.
In line with established practices in hypothesis-generating
research, untargeted metabolomics strategies covering diverse
metabolite classes are especially valuable for uncovering
unknown or novel disease mechanisms. Greater metabolome
coverage can be achieved using multi-platform metabolomics
approaches and by incorporating diverse sample matrices,
enabling the investigation of both systemic and local metabolic
changes.
that

metabolomics, transcriptomics, and proteomics are emerging

Furthermore, multi-omics  approaches integrate
as powerful tools to deepen understanding of TB pathogenesis.
(2019) demonstrated the value

and

For example, Duffy et al

of combining metabolomics transcriptomics ~ datasets
from HHCs across multiple African sites, some of whom
developed TB while others remained TB-negative. This integrated
approach provided complementary insights into TB progression.
the

developed biologically interpretable multi-omics signatures that

Incorporating immunometabolic ~pathways, researchers
outperformed existing models in predicting TB-related pathology
and bacterial load in rhesus macaque vaccine challenge studies.
Applying similarly comprehensive datasets from animal models
infected with Mtb could reveal correlative insights that enrich
current knowledge of host-pathogen interactions and disease

mechanisms.
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5 Conclusion

Collectively, these findings suggest that animal models can,
to some extent, recapitulate key metabolic features of human TB,
although outcomes depend heavily on species, strain, sample type, and
the chosen metabolomics approach. Despite their underutilisation,
these models hold considerable potential for metabolomics-based TB
disease characterisation. This is supported by insights from the limited
number of TB-focused studies reviewed here, as well as from broader
metabolomics research applying animal models to other human
diseases. Altogether, this systematic review provides a comprehensive
overview of the current use of animal models in TB metabolomics
for disease characterisation and highlights key considerations for
advancing these models toward translational relevance.
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