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Background: Pregnancy triggers longitudinal metabolic alterations in women to allow
precisely-programmed fetal growth. Comprehensive characterization of such a “metabolic
clock” of pregnancy may provide a molecular reference in relation to studies of adverse
pregnancy outcomes. However, a high-resolution temporal profile of metabolites along a
healthy pregnancy remains to be defined.

Methods: Two independent, normal pregnancy cohorts with high-density weekly urine
sampling (discovery: 478 samples from 19 subjects at California; validation: 171 samples
from 10 subjects at Alabama) were studied. Urine samples were profiled by liquid
chromatography-mass spectrometry (LC-MS) for untargeted metabolomics, which was
applied for gestational age dating and prediction of time to delivery.

Results: 5,473 urinary metabolic features were identified. Partial least-squares discriminant
analysis on featureswith robust signals (n=1,716) revealed that the sampleswere distributed on
the basis of the first two principal components according to their gestational age. Pathways of
bile secretion, steroid hormone biosynthesis, pantohenate, and CoA biosynthesis, benzoate
degradation, and phenylpropanoid biosynthesis were significantly regulated, which was
collectively applied to discover and validate a predictive model that accurately captures the
chronology of pregnancy. With six urine metabolites (acetylcholine, estriol-3-glucuronide,
dehydroepiandrosterone sulfate, α-lactose, hydroxyexanoy-carnitine, and L-carnitine), models
were constructed based on gradient-boosting decision trees to date gestational age in high
accordance with ultrasound results, and to accurately predict time to delivery.

Conclusion: Our study characterizes the weekly baseline profile of the human pregnancy
metabolome, which provides a high-resolution molecular reference for future studies of
adverse pregnancy outcomes.
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INTRODUCTION

The accurate assessment of gestational age (GA) during the
prenatal period is critically important (Butt et al., 2014; Unger
et al., 2019). Pregnancy dating with high precision can
optimize the clinical benefits of prenatal screening tests
(Wald et al., 1992; Rahim et al., 2002) and identify early
signs of pregnancy complications (Smith et al., 1998; Kallen,
2004; Fung et al., 2020). First trimester ultrasound imaging
measurement is considered as the standard of care to
determine GA and date of delivery, and it has been a
routine practice recommended to every pregnant woman
(Taipale and Hiilesmaa, 2001; Butt et al., 2014). The
accuracy of ultrasound reduces as pregnancy progresses
because fetal growth becomes more variable, leading to a
higher likelihood of misclassification (Caughey et al., 2008).
To address this, the GA calculation formula was modified to
reduce errors and biases of ultrasound estimation at late
gestation, and date of last menstrual period (LMP) was
used in combination with ultrasound for improved
accuracy (Butt et al., 2014). However, these approaches are
subject to clinical justification and accurate recall of cycle
characteristics (Rosenberg et al., 2009). Moreover, the high
costs of ultrasound and the fact that its accuracy can be
affected by operator variability, and its availability in
disadvantaged areas, especially in lower- and middle-
income countries where poor attendance of pregnant
women to the first prenatal visit remains an issue (Jehan
et al., 2010; Moore et al., 2015).

Alternative methods have been developed to assess GA
dating. Recent studies have shown that a few molecular
signatures such as genes, proteins, and metabolites in
maternal blood and urine are associated with fetal growth
(Wright et al., 2015; Maitre et al., 2016; Aghaeepour et al.,
2017; Jiang et al., 2017; Serpero et al., 2017; Zhang et al., 2017;
Aghaeepour et al., 2018; Ngo et al., 2018; Ghaemi et al., 2019;
Han et al., 2019; Hao et al., 2020; Liang et al., 2020; Sylvester
et al., 2020; Ghaemi et al., 2021; Tarca et al., 2021). Algorithms
of GA estimation and date of delivery prediction were
developed and validated using omics data measured in
maternal blood or urine samples collected longitudinally
from the first to the third trimesters (Aghaeepour et al.,
2017; Aghaeepour et al., 2018; Ngo et al., 2018; Hao et al.,
2020; Liang et al., 2020; Sylvester et al., 2020; Ghaemi et al.,
2021). Such findings have revealed the potential of using
noninvasive, low-cost, rapid tests as alternative methods of
pregnancy dating, especially in low-resource settings where
ultrasound measurements are unreliable and cost-prohibitive.

Compared with blood, the noninvasive nature of urine
collection allows for convenient weekly sampling. In this
study, we hypothesized that longitudinal urine metabolic
profiling of pregnancy reflects the temporal progression of
fetal development with a high degree of precision. We used
urine samples collected weekly from early to late gestation and
the postpartum period from two cohorts of normal, full-term
pregnant women. The two cohorts were independently
assembled in two different states in the US. Using liquid

chromatography-mass spectrometry (LC-MS)-based
untargeted metabolomics, we identified a panel of metabolic
compounds and pathways that were highly associated with GA
measured by ultrasound in the first-trimester. We developed a
model to estimate GA using a set of annotated metabolites with
samples from one cohort and validated it on the other cohort.
We also developed and validated a model to predict time to
delivery. Our findings suggest that modeling of metabolic
profiling in maternal urine may serve as a noninvasive, cost-
effective, and robust approach to GA dating and date of delivery
prediction.

MATERIALS AND METHODS

Study Population and Sample Collection
Pregnant women were enrolled between September 2013 and
May 2016 at Stanford University, California (California
cohort) and between December 2013 and February 2016 at
the University of Alabama, Alabama (Alabama cohort). Urine
samples were collected weekly from week 9 until delivery for
women in the California cohort and week 15 until delivery for
subjects in the Alabama cohort, and one sample collected
postpartum. Dates of sampling and delivery were
documented. Clinical information was collected. Ultrasound
measurements at the first trimester were recorded. Women
with normal, full-term pregnancies were included in the study
cohorts. A normal, full-term pregnancy refers to a pregnancy
at 37–41 weeks and without known complications. The study
was approved by ethics committees at Stanford University and
the University of Alabama, and written informed consents
were obtained from all participants.

Study Design
The study was conducted in two phases: 1) modeling to devise
a metabolite-based estimation of GA during normal, full-term
pregnancies; and 2) modeling to devise a metabolic panel
predictive of time to delivery. In this study, the “gold”
standard of GA was the ultrasound measurement based on
the crown-rump length at the first trimester (Robinson, 1973).
Metabolic concentrations in each urine sample were measured
by global mass spectrometry (MS) analysis. Models that
estimated GA and predicted time to delivery were
developed using the California cohort and validated using
the Alabama cohort. All statistical analyses were done in R
software.

Urine Metabolite Extraction
The urinary metabolites were extracted using a protein
precipitation-based approach. Briefly, 10 µL of urine sample
was extracted with 100 µL of methanol containing 5 μg/ml of
13C5,

15N-L-proline, 13C6-L-arginine, and D5-L-glutamine. These
externally spiked exogenous isotope-labelled metabolites were
used as references for sample preparation and extraction
efficiency. The extract was then vortexed for 1 minute and
centrifuged at 12,000 × g for 5 min 90 µL of supernatant was
then collected for the global metabolomics analysis.

Frontiers in Molecular Medicine | www.frontiersin.org April 2022 | Volume 2 | Article 8442802

Sylvester et al. Gestational Dating With Urine Metabolomics

https://www.frontiersin.org/journals/molecular-medicine
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-medicine#articles


Global Metabolomics Analysis
Following sample preparation, 10 µl of extract was injected onto
a ZIC-HILIC column (2.1 mm × 100 mm × 3.5 μm) from EMD
Millipore (Burlington, MA). The chromatographic separation
was carried out using 10-mM ammonium acetate in water (A)
and 10-mM ammonium acetate in acetonitrile (B) as mobile
phases. The urine metabolites were eluted off the column using a
linear gradient of 10–90% phase B over 7.5 min at 0.4 ml/min,
and the column was re-equilibrated at 10% phase B from 7.6 to
10 min at 0.5 ml/min before the next injection. The column
oven and autosampler temperatures were maintained at 40 and
4°C, respectively, throughout the analysis.

The data was acquired by a Q Exactive plus mass spectrometer
in both electrospray positive and negative modes via a data-
dependent manner. The source conditions were set at 3.5/−3.5 kV
for Spray Voltages, 300°C for Vaporizer Temp, 300°C for
Capillary Temp, 55.0% for S-Lens, 40 for Sheath Gas, 10 for
Auxiliary Gas, and 0 for Sweep Gas. The spectra were acquired
using following parameters: automatic gain control (AGC,
MS1) = 1 × 106, AGC (MS2) = 1 × 105, Injection Time (MS1) =
100m, Injection Time (MS2) = 50m, Mass Range (MS) =
70–1,000 Da (Da), Resolution (MS1) = 70,000, Resolution
(MS2) = 17,500, data dependent top-5 experiment (MS2)
data acquisision, Isolation Window (MS2) = 1.0 Da, Dynamic
Exclusion = 14 s, and Collision Energy (CE) = 25 eV. Between
batch injections, the instrument was calibrated using external
standards in both positive and negative modes to ensure a mass
accuracy of less than one part per million (ppm).

FIGURE 1 | Sampling scheme and study cohorts. Sample collection timelines from the California cohort and the Alabama cohort. Diamonds, circles, triangles and
lines indicate sample collection times before delivery, sample collection times after delivery, delivery dates, and individual woman, respectively.

FIGURE 2 | Weekly pregnancy progression with a unique pattern
ordered by urine metabolites. Distribution of individual samples in
partial least-squares discriminant analysis (PLS-DA) based on 1716
urinary metabolic features (840 positive and 876 negative
features) as a function of pregnancy stages. The two
orthogonal components with most of the inertia are shown.
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Quality Control
A set of urine samples were collected longitudinally from a
healthy volunteer across gestation, and the longitudinal urine
samples were pooled to generate a urine sample for quality
control (QC) purposes. Prior to the batch analysis, five
replicates of QC urine extract were injected into the system
for proper conditioning. Along the batch analysis, QC urine
samples were analyzed repetitively at a frequency of one QC
injection per 10 testing samples to allow the systematic
assessment of the data quality. In addition, the signal
responses of spiked internal standards (ISs) were checked
batchwise to evaluate for the quality of metabolite extraction
and sample preparation.

Data Pre-Processing
The detected metabolic features were extracted, aligned,
integrated, grouped, and annotated using the XCMS package
in R to obtain a matrix of metabolite intensities versus samples.
The obtained features were normalized by a QC-based robust
locally estimated scatterplot smoothing (LOESS) signal
correction approach, and each feature was independently
corrected by fitting a LOESS curve to the signal response
measured in QC replicates injected repeatedly along the batch
(Dunn et al., 2011). Features with coefficient variation (CV) ≤
20% in QC and missing values in ≤30% of samples were selected

for downstream analysis. After missing value imputation, the
normalized intensities of qualified metabolites were divided by
the creatinine values in a sample-wise manner to correct for the
differential dilutions of urine samples.

Statistical Analyses
Partial least-squares discriminant analysis (PLS-DA) was
performed to characterize metabolic profiling of samples
collected at the first, second, third trimesters and the
postpartum period. The correlation coefficients of detected
metabolites to GA were determined by the Pearson approach.
A global false discovery rate (FDR) of 5% was applied to correct
for the errors from multiple hypothesis testing. Correlations
between the abundances of metabolites that were significantly
associated with GA (Peasron’s r > 0.3 or r < −0.3) were presented
using a two-dimensional self-organizing map (SOM), where
metabolites were categorized into clusters with similar
abundance patterns. Prior to the modeling process, data
preprocess (average with 3 weeks window; 40 weeks). All
statistical analyses were preformed using R packages
(Heinemann, 2019).

Metabolite Pathway Analyses
The metabolic features were identified by matching their accurate
precursor masses against a local database compiling a variety of

FIGURE 3 | Urine metabolites of differential GA correlation and abundance during normal pregnancy progression. (A) The vertical axis (y-axis) displays the −log10
(FDR-adjusted p) with features altered during pregnancy gestational age, and the horizontal axis (x-axis) displays the Pearson correlation coefficients between features
and gestational ages. The red dots represent features positively correlated with gestational ages; the green dots represent features negatively correlated with gestational
ages. Names of the most significant 37 metabolites were listed (with MS level 1 or 2 identification). (B) Heatmap of Pearson correlation coefficients between the
expressions of the 37metabolites that were significantly associated with gestational ages. The significant urinary metabolites were classified into five clusters for the ease
of visualization. (C) Level changes in metabolites associated with steroid metabolism, quaternary amine metabolism, carbohydrate metabolism, and amino acid
metabolism as a function of gestational age. Values were smoothed in a moving window of 3 weeks. The intensities are shown as mean ± SEM (standard error of the
mean).
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public databases such as HMDB and MS-DIAL by using a
tolerance of ± 5 ppm. Upon matching, the assigned metabolite
identities were further validated by the retention time and
fragmentation pattern from our local library containing 600 +
authentic standards that were analyzed under the identical
condition. The significant metabolites with validated identities
were mapped to known Homo sapiens pathways in Kyoto
Encyclopedia of Genes and Genomes (KEGG) database to
characterize the pertaining pathway network and identify the
meaningful pathways in the course of pregnancy development.
Metabolic pathway-based pregnancy modeling was implemented
as previously described (Sylvester et al., 2020) to estimate GA and
time to delivery. Models were derived with the samples from the
California cohort, and validated with the samples from the
Alabama cohort. A tree based gradient boosting algorithm was
utilized to construct the models (Chen and Guestrin, 2016).
Model performance was assessed by Pearson’s correlation
between model estimation and ultrasound results (for the GA
dating model), and between model prediction and observed

values (for the time-to-delivery predictive model). Errors were
calculated with samples collected at the second trimester, the
third trimester, and the combined period, respectively, and
aggregated by subjects. Profiles of specific metabolites in urine
were compared with those in sera.

Metabolite Structure Determination and
Compound-Based Modeling
Metabolite biomarker identification was performed as a Tier 1 or
2 identification with chemical standards according to MSI (Viant
et al., 2017). With tandem mass spectrometry (MS/MS, Thermo
Q Exactive plus) data of urine samples and manual review
confirmation, the generated MS1/MS2 pairs were searched in
the public databases: HMDB (http://www.hmdb.ca/), MoNA
(http://mona.fiehnlab.ucdavis.edu/), MassBank (http://www.
massbank.jp/), METLIN (https://metlin.scripps.edu), and NIST
(https://www.nist.gov/). The metabolites of interest were
procured and subjected to a Tier one identification comparing

FIGURE 3 | (Continued)
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the retention time, MS1 and MS2 patterns with the biomarker
candidates, using the same LCMS/MS protocol with the sample
analysis.

Explainability of the Predictive Models
To allow direct insight into the model, we implemented an
“explainer”, based on Shapley values (Lundberg et al., 2020)
from game theory, to explain the association between the
input and predicted output. Our tree-based machine
learning models such as random forests, decision trees,
and gradient boosted trees are popular non-linear

predictive models, yet the interpretability of tree-based
models is low. Shapley value approach combines many
high-quality local explanations to allow us to represent
global structure while retaining local faithfulness to the
original model. Shapley values used for explanations of
the model were calculated with the SHAP package
(https://github.com/slundberg/shap).

Modelling Scenarios
To investigate model performance between different machine
learning approaches, we conducted comparative modelling with

FIGURE 3 | (Continued)
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FIGURE 4 | A pathway-basedmodel to estimate GA. (A) performance comparison between twomachine learning approaches (XGBoost: maximum depth of a tree
is four, step size shrinkage (eta) is 0.3, and number of iteration is 19; random forest: number of tree is three, step size shrinkage (eta) is 0.3). RMSE were calculated to
quantify and compare the predictive effectiveness between California and Alabama cohorts. (B) Importance of each pathway in the model. (C)Highly correlated patterns
between GA estimated by the ultrasound (x axis) and GA estimated by the pathway-based model (Y axis) for each subject. Left: California cohort. Right: Alabama
cohort. GA: gestational age. (D) Each row represents a significant pathway, and each point is the Shapley value of an sample. Redder sample points indicate that the
value of the pathway activity is larger, and yellower sample points indicate that the value of the pathway activity is smaller; the abscissae represent the Shapley values.
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XGBoost, random forest, and elastic net classifiers for all
combinations of predictive features and cohorts.

RESULTS

Baseline Characteristics
As shown in Figure 1, the California cohort consisted of 19 full-
term pregnancies with 478 urine samples, and the Alabama
cohort consisted of 10 full-term pregnancies with 171 urine
samples. Each subject had 9 to 32 samples collected prior to
delivery and one sample collected postpartum. Demographics of
the two cohorts are shown in Supplementary Table S1 and S2.
All the subjects in the California cohort were white while all the
subjects in the Alabama cohort were black. Compared with
subjects in the California cohort, subjects in the Alabama
cohort were younger (p < 0.001: 32.2 vs. 26). The average
gestational duration of California subjects is 39.5 weeks, longer
than the Alabama moms’ (38.2 weeks). Compared with subjects
in the California cohort, subjects in the Alabama cohort had
higher pre-pregnancy body mass index (BMI; p = 0.01). The
average BMI of California subjects is 21.8, ranging from 20.2 to
24.7, while that of Alabama subjects is 29.8, ranging from 26.6 to
32.5. All the Alabama subjects had previous pregnancies, while
47% (9 of 19) of the California subjects were in the first
pregnancies.

A Unique Pregnancy Progression Pattern
Revealed by Weekly Sampled Urine
Metabolites
A total of 5,473 metabolic features were identified by LC-MS-
based global metabolomic profiling of samples in the
California cohort (Supplymentary Figure S1). Of these,
1,716 features were selected with a missing value
percentage less than 30% across all samples. These features
were examined globally with PLS-DA (Figure 2), revealing a
clustering pattern of ordered pregnancy progression as a
function of the GAs in the first/second/third trimesters
and the postpartum period.

Identification of Urine Metabolites
Associated With GA
A process of metabolite feature reduction was performed using
the workflow in Supplymentary Figure S1. 885 features were
found to be significantly correlated to gestations with a FDR
[Benjamin and Hochberg method (Hochberg and Benjamini,
1990)] < 0.05, suggesting extensive urine metabolic changes
occurred during the pregnancy progression. Filtered by an
additional GA correlation criterion (Pearson’s r > 0.3 or <
−0.3), a total of 119 metabolites were identified by LCMS
profiling. 37/119 compound identities (Figure 3A) were

FIGURE 5 | The structural identification of the six metabolites by MS/MS fragmentation against authentic standards. MS/MS: Tandem mass spectrometry.
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FIGURE 6 | A six-metabolite-based model to estimate GA. (A) Performance comparison across three machine learning approaches (XGBoost: maximum depth of
a tree is five, step size shrinkage (eta) is 0.3, number of iteration is 19; random forest: number of tree is two, step size shrinkage (eta) is 0.3; and elastic net: alpha is 0.26,
lambdaminimum is 0.06). R, R2 and RMSE of chronology pregnancy age are calculated in both California and Alabama cohorts. (B) Importance of each metabolite in the
model. (C) Top: GA estimated by the model versus GA measured by ultrasound at the California cohort (left) and the Alabama cohort (right). Pearson’s r at each
cohort was calculated. Bottom: Distribution of the differences between the model estimation and the ultrasound measurements at the California cohort (left) and the
Alabama cohort (right). Differences were calculated as the mean difference values in samples collected at the second trimester (T2), the third trimester (T3), and the
second and third trimesters (T2 + T3) associated with a subject. (D)Highly correlated patterns between GA estimated by the ultrasound (x axis) and GA estimated by the
six-metabolite-based model (Y axis) for each subject. Left: California cohort. Right: Alabama cohort. (E) Each row represents a significant metabolite, and each point is
the Shapley value of an sample. Redder sample points indicate that the value of the metabolite activity is larger, and yellower sample points indicate that the value of the
metabolite activity is smaller; the abscissae represent the Shapley values.
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determined by LC-MS/MS and compound library annotation
analyses.

Co-Regulation Relationships Among
Functional Group Metabolites
We analyzed the correlation in metabolite abundance along GA
by characterizing and clustering the top 37 annotatedmetabolites.
Based upon the existing structural and biological annotations,
these 37 metabolites were categorized/clustered into five groups
(Figure 3B): amino acid, carbohydrate, organic acid, quaternary
amine, and steroid metabolisms.

The largest cluster was composed of various carnitine
metabolites. These metabolites are indispensable for the
transport of activated long-chain fatty acids from the cytosol
to the mitochondrial matrix, where β-oxidation occurs, and the

transfer of products of peroxisomal β-oxidation to the
mitochondria for oxidation in the citrate cycle, the modulation
of the acyl-coenzyme A (CoA)/CoA-ratio and the storage of
energy as acetylcarnitine (McGarry and Brown, 1997; Rebouche
and Seim, 1998; Steiber et al., 2004). We found that their
abundance decreased along GAs (Figure 3C). The gestational
patterns of the carnitine metabolites in maternal urine were
similar to those in maternal plasma (Bargen-Lockner et al.,
1981; Keller et al., 2009), which markedly declined to about
half of the concentrations of non-pregnant women.

Positively-correlated patterns were observed between
carnitine and basic amino acid clusters (Figure 3B). Such
findings are in line with the fact that the endogenous
biosynthesis of carnitine involves a complex series of reactions
with lysine providing the carbon backbone (Keller et al., 2009). In
the amino acid cluster, deoxypyridinoline had a positive

FIGURE 6 | (Continued)
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FIGURE 7 | A six-metabolite-based model to predict time to delivery. (A) Importance of each metabolite in the model. (B) Top: Time to delivery predicted by the
model versus observed time to delivery at the California cohort (left) and the Alabama cohort (right). Pearson’s r at each cohort was calculated. Bottom: Distribution of the
differences between the delivery dates predicted by the model or ultrasound and the observed delivery dates at the California cohort (left) and the Alabama cohort (right).
Differences were calculated as the mean difference values in samples collected at the second trimester (T2), the third trimester (T3), and the second and third
trimesters (T2+T3) associated with a subject.

FIGURE 8 | Correlational analysis to reveal significant relationships between metabolite biomarker early gestational expression and the demographics or other
determinant variables. x axis: Correlation analysis using Pearson method; Y axis: p value. SU: California cohort; UAB: Alabama cohort. A relationship, with either p value
<0.05 or Pearson R > 0.5 or < −0.5, is considered to be significant and annotated in the plot. The GBS test is to identify womenwho carry the bacterium. UTI: urinary tract
infection.
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correlation with GA, while taurine had a negative correlation with
GA (Figure 3C).

Positively correlated patterns were also observed between
steroid and carbohydrate metabolisms (Figure 3B).
Metabolites associated with these two clusters, including 5-
alpha-pregnan-3beta, 20alpha-diol disulfate,
dehydroepiandrosterone sulfate (DHEA-S), estriol-3-
glucuronide, pregnanediol 3-O-glucuronide, 3′-sialyllactose,
and α-lactose, were all positively correlated with GA (Figure 3C).

Metabolic Pathway Adaptions Are
Associated With GA
The 37 annotated metabolites were mapped to five pathways: bile
secretion, steroid hormone biosynthesis, pantothenate and CoA
biosyntheses, benzoate degradation, and phenylpropanoid
biosynthesis. Metabolic-pathway-based GA dating models was
constructed based on the five pathways, using XGBoost and
random forest approaches (Figure 4A). XGBoost
outperforming random forest (Figure 4A), bile secretion was
the most important feature in the XGBoost modeling
(Figure 4B). Model performance was assessed with each
cohort (California cohort: Pearson’s R = 0.96; Alabama cohort:
Pearson’s R = 0.76; Supplymentary Figure S2) and with each
subject [California cohort: Pearson’s R = 0.97 (0.96, 0.98);
Alabama cohort: Pearson’s R = 0.84 (0.77, 0.87); Figure 4C].
Summary plot of Shapley values computed for each patient
individually in the test partition. The pathways are sorted top-
down based on their global contribution which is in line with
Figure 4D. The distance of a dot representing a sample from the
vertical line indicates its contribution. The color of a dot indicates
feature value for that sample. Blue and pink color represent
extreme values of the feature. Shapley values on the right side
of vertical axes “push” predictions towards the high GA
correlation and those on the left side towards the low correlation.

Six Metabolic Markers Predict GA
Six metabolic marker compounds of pregnancy GA dating were
procured and subjected to a Tier 1 identification comparing the
retention time, MS1 and MS2 patterns with the biomarker
candidates, using the same LCMS/MS protocol with the urine
sample analysis: acetylcholine, estriol-3-glucuronide, DHEA-S, α-
lactose, hydroxyhexanoycarnitine, and L-carnitine (Figure 5). GA
dating models were constructed based on the six metabolic
markers, using XGBoost, random forest and elastic net
approaches (Figure 6A). XGBoost outperforming random
forest (Figure 6A, R, R2, and RMSE analysis), DHEA-S and α-
lactose were two most important features in XGBoost modelling
(Figure 6B). Model performance was assessed with each cohort
(California cohort: Pearson’s R = 0.95; Alabama cohort: Pearson’s
R = 0.79; Figure 6C) and with each subject [California cohort:
Pearson’s R = 0.97 (0.96, 0.98); Alabama cohort: Pearson’s r =
0.87 (0.82, 0.92); Figure 6D]. Differences between the model
estimation and ultrasound results were calculated (Figure 6C).
There were 73.7% (14 of 19 subjects) of the estimates in California
cohort and 40.0% (4 of 10 subjects) of the estimates in Alabama
cohort within ±1 week of the ultrasound results. Summary plot

(Figure 6E) of Shapley values computed for each patient
individually in the test partition. The metabolite biomarkers
are sorted top-down based on their global contribution which
is in line with Figure 6B. The distance of a dot representing a
sample from the vertical line indicates its contribution. The color
of a dot indicates feature value for that sample. Blue and pink
color represent extreme values of the feature. Shapley values on
the right side of vertical axes “push” predictions towards the high
GA correlation and those on the left side towards the low
correlation.

Six Metabolic Biomarker Panel Predicts
Time to Delivery
We developed and validated a separate model predictive of time
to delivery using the 6 GA dating markers. Like the GA dating
model, DHEA-S and α-lactose were top features in predicting
time to delivery (Figure 7A). In the second trimester, 52.6% (10
of 19) of the prediction in the California cohort and 30.0% (3 of
10) of the prediction in the Alabama cohort had errors of less than
1 week, which was similar to the performance of the expectation
by the first-trimester ultrasound results (California: p = 0.9;
Alabama: p = 0.2; Figure 7B).

DISCUSSION

In this study, we enrolled pregnant women from two sites in the
US, collected their urine samples on a weekly basis from the first
to the third trimesters, and identified urinary metabolites
associated with fetal growth during a normal, full-term
pregnancy. Among the 5,473 metabolites obtained from raw
MS signal, we identified 37 annotated metabolites associated
with GA. These 37 metabolites are associated with five
pathways, with which we built a pathway-based GA dating
model. We further selected six metabolites to construct two
metabolite-based models to estimate GA and time to delivery,
respectively. In the validation, 40% of the GA estimates at the
second and the third trimesters fell in ±1 week of the first-
trimester ultrasound measurements, and 30% of the time-to-
delivery predictions at the second trimester had differences of less
then 1 week from the real values. These results validated the study
hypothesis that longitudinal analysis of maternal metabolic
profiling in urine could establish a metabolic clock for normal
gestational development and enable a direct metabolic approach
to determine expected delivery dates with comparable accuracy to
ultrasound, creating the basis for an non-invasive gestational
dating method.

The study revealed the clinical utility of urine metabolic
profiling of pregnant women. GA and time to delivery can be
predicted by a panel of six metabolites; the panel can be translated
into a noninvasive urine test product. It provides an alternative
option to measure the fetal growth, which will benefit women
who have limited access to ultrasound.

The study characterized a baseline metabolic profile with a
resolution down to 1 week. The findings were supported by the
large sample size and the high-density cohort, resulting in a high
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statistical power and a high percentage of identifying true
patterns. It allowed to detect changes in body both by weeks
and by trimesters, which can help to precisely locate transition
points of metabolites and pathways, during a normal full-term
pregnancy. To our knowledge, it was the first study on pregnant
women using urine samples collected weekly from the first
trimester to delivery.

Deviation from the baseline metabolic profile established in
this study can be an indicator of an abnormal pregnancy that
leads to adverse outcomes. Two most important metabolite
markers in the GA dating model, DHEA-S, and α-lactose,
were found in association with preterm birth and gestational
diabetes mellitus (Sachse et al., 2012; Sundararajan et al., 2021;
Tian et al., 2021). Alterations in concentrations of the two
markers may lead to detectable differences between the model
estimation and the ultrasound results, which can be utilized to
diagnose and predict adverse outcomes.

Pathways identified in this study were also reported by
previous studies on pregnancy. Bile acids increase from early
to late gestation (Gagnon et al., 2021). Steroid hormones are
involved in placental development (Solano and Arck, 2019;
Canumil et al., 2021). The pantothenate and CoA biosynthesis
pathway may be associated with nutritional status in pregnancy
(Bowman et al., 2019). Benzoate degradation are highly enriched
in the placenta (Gomez-Arango et al., 2017). The
phenylpropanoid biosynthesis pathway are enriched in women
with gestational diabetes mellitus compared with those with a
healthy pregnancy (Meng et al., 2021).

There seems to be no standardized normalization method for
analyzing the urinary biomarkers, as some studies normalize with
urinary creatinine (uCr), urine volume (uVol), or leave biomarker
un-normalized. Cr is a 0.13 kD end product of muscle catabolism
and usually produced at a fairly constant rate by the body
(National Kidney Foundation, 2002; Levey et al., 2014a; Levey
et al., 2014b). It is nonprotein bound and freely filtered and
excreted in urine. We observed that raw intensity of uCr was
decreased from the second to the third trimester (Supplymentary
Figure S4). The uCr normalization is important and effective.
The positive association between the urine DHEA-S and GA was
increased after normalization (raw: Pearson’s r = 0.57;
normalized: Pearson’s r = 0.76; p < 0.0001).

We also measured the urinary metabolic markers in sera from
the 19 pregnant women in California cohort (Supplymentary
Figure S3) and our results are in line with previous finding (Liang
et al., 2020; Sylvester et al., 2020). Raw intensity and creatinine-
normalized DHEA-S in urine were both positively associated with
GA (Figure 3A and Supplymentary Figure S4), whereas it
decreased in sera from the first to the third trimesters
(Pearson’s r = −0.83, p < 0.0001).

A woman’s health in pregnancy is dependent upon the
interaction of one’s biologic attributes with one’s social and
physical environments. We previously proposed (Stevenson
et al., 2021a; Stevenson et al., 2021b) that pregnancy should
not be categorized solely in terms of biologic or social
determinants if we are to gain a full understanding, even when
the concept of social determinants includes a set of broad
environmental factors. Understanding the complex

interrelationship between biologic and social determinant
factors may be facilitated by complex multi-omics analysis
with mathematical algorithms. Our correlational analysis of all
demographics and other determinant variables (Supplymentary
Figure S2) to the individual biomarker gestational expression
revealed significant relationships, either shared between the two
cohorts or unique to either cohort (Figure 8). Given that the two
cohorts have different demographics (Supplymentary Table S1,
S2), the results are expected. Our findings suggest that these
variables may confound the metabolic analysis in this study, and
in the meantime additional analysis of these factors may provide
some potential clues to the gestational disorders. For example, the
variables, of “antibiotic use” and “weight at birth”, were revealed
as significant in both cohorts to different biomarkers. We can
hypothesize that antibiotic use is to treat gestational infection
which is a risk factor for preterm birth and expect to have impact
on the duration of the gestations. “Weight at birth” is an outcome
variable of which value can be changed due to gestational
disorders, including preterm birth and preeclampsia, resulting
early deliveries of low weight babies. Other variables are not
shared between the cohorts to have significant correlations with
the biomarker gestational expression: sex, BMI, multiple UTI,
GBS of the California cohort; mom height of the Alabama cohort.
The disparities, revealed by the correlational analysis between the
two cohorts, and the their underlying biology, demographics or
social determinant network might need additional
characterization with larger and independent cohorts from
other geographic regions. We believe that the search for
solutions to gestational disorders, like many other complex
human conditions, will necessarily require a deeper
understanding of the complexity of the interactions between
biologic and social determinants, using sophisticated multi-
omics approaches (Liu et al., 2013; Hao et al., 2020; Sylvester
et al., 2020; Huang et al., 2021) and mathematical algorithms
linking the various scientific disciplines in a coordinated effort to
find the most effective clinical and public health interventions.

One of the strengths of this study is to combine both machine
learning and traditional statistical modelling approaches. For
future translation of this work into clinical practice to have
any practical effect, clinicians expect to understand the
underlying predictive features of the models and acknowledge
the explainability of individual predictions. We applied the SHAP
method to allow the transparency and explainability for our
models. Besides global importance, the explainer was used to
explain predictions of unseen individual instances to provide
insight into which predictors contributed the most in predicting
the obtained output.

The study had several limitations. First, the sampling time
between the two cohorts was not perfectly matched. Samples in
the California cohort were collected as early as week 9, while
samples in the Alabama cohort were collected at week 15 or later.
Second, some subjects did not have samples collected in every
week. Third, LMPs of the study subjects were missing, which, if
recorded, could have provided additional reference to fetal
growth. Fourth, patterns of some biomarkers and pathways in
the maternal urine may have been affected by clinical
manifestations of the subjects.
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A larger cohort of pregnant women with complete medical
records will be assembled to facilitate studies on relationship
between the urine metabolic profiling and patient characteristics.
Furthermore, this study focused on characterizing the baseline
urine metabolic profile of normal pregnancy. Future studies on
urine metabolic adaptions in pregnancy with adverse outcomes
will provide insight into pathology and pathophysiology
assessment.

CONCLUSION

In conclusion, we successfully identified a panel of urine
metabolites and associated pathways that are highly correlated
with pregnancy progression. We also developed models to
estimate GA and predict date of delivery, the results of which
were comparable with ultrasound measurements. It validated the
hypothesis that a “clock” for normal pregnancy progression could
be established by maternal urine metabolomics.
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