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N6-methyladenosine (m6A) is the best-studied post-transcriptional RNA
modification. It refers to the methylation in the N6 position. M6A exists
universally from viruses to mammalian cells and is highly abundant in RNA
polymerase II-transcribed, protein-coding transcripts and various non-coding
RNAs. M6A RNA modification influences multiple physiological and pathological
processes. This RNAmethylation plays a role in the pathogenesis of many human
diseases, including but not limited to hematopoietic, central nervous, and
reproductive systems. One of the m6A-modified non-coding RNAs is the
circular form of RNA. Circular RNA (circRNA) refers to a single-stranded RNA
molecule with a circular structure that exists across a wide range of organisms,
including eukaryotes and prokaryotes. Its unique circular structure is formed by
the covalent closure between the 3′and 5′ends of the RNAmolecule. This closed-
loop structure prevents the circRNA from being degraded readily by the
exonucleases, resulting in more stability compared to its linear RNA
counterparts. CircRNAs have been reported to regulate gene expression,
protein interaction, and RNA sponging. They play important roles in many
human diseases. M6A modifications of the host gene mRNAs regulate the
circRNA biogenesis. Furthermore, m6A modification of circRNA itself adds
additional regulation of these complicated processes. This mini-review
elaborates on recent advances in m6A modification on circRNA biogenesis
and function, focusing on the role of circRNA m6A modification in the
development of inflammatory responses.
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Introduction

N6-methyladenosine (m6A) refers to the methylation in the N6-position of adenosine,
the most abundant post-transcriptional chemical modification of RNAs. It is estimated that
approximately 1,000 nucleotides on average contain one to two m6A residues (Beemon and
Keith, 1977; Krug et al., 1976). M6A exists in the RNA of bacteria, viruses, and mammalian
cells (Desrosiers et al., 1974; Deng et al., 2015). It is highly prevalent in RNA polymerase II
(RNAPII) transcribed, protein-coding transcripts, and non-coding RNAs. M6A RNA
modification influences various physiological and pathological processes. This RNA
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methylation plays a role in the pathogenesis of many human
diseases, including but not limited to hematopoietic, central
nervous, and reproductive systems. M6A is also well-studied in
tumorigenesis (Jiang et al., 2021; Fan et al., 2023; Mu et al., 2024). In
this mini-review, we elaborate on recent advances in m6A
modification on circRNA biogenesis and function. We also
highlight the underlying mechanism of m6A in circRNA formation.

History of m6A research

In 1955, DB Dunn and JD Smith first reported an m6A base in
bacterial DNA (Dunn and Smith, 1955). In 1958, more studies
reported the presence of m6A in bacterial and yeast RNAs
(Littlefield and Dunn, 1958; Adler et al., 1958). Rapid-growing
findings on m6A emerged after the more efficient mRNA
isolation techniques. In the 1970s, m6A was identified in
mammalian RNAs were discovered (Desrosiers et al., 1974).
From the 1990s to the 2010s, the m6A RNA methyltransferase
writer complex, m6A reader, and eraser complex were defined,
followed by more understanding of the essential roles of m6A in
human disease processes (Liao et al., 2021; Bokar et al., 1994; Bokar
et al., 1997; Liu et al., 2014; Liu et al., 2015; Ping et al., 2014; Wang
et al., 2014b; Wang et al., 2016; Wang P. et al., 2016; Śledź and Jinek,
2016). Another milestone of m6A research is the development of the
Global maps of m6A methylation (Sendinc and Shi, 2023).
Currently, it is well understood that in addition to mRNAs,
abundant m6A methylation is discovered in a variety of non-
coding RNAs (ncRNAs) (Brown et al., 2016; Liu N. et al., 2013;
Pendleton et al., 2017; Warda et al., 2017; Linder et al., 2015; Meyer
et al., 2012). The corresponding enzymes that mediate m6A on
ncRNAs are identified, e.g., ZCCHC4, METTL5, METTL16, and
METTL4 (Schöller et al., 2018). The enzyme PCIF1 is identified on
mRNAs (Sendinc et al., 2019). The ncRNAs regulated by m6A
modification include but are not limited to microRNAs (miRNAs),
long non-coding RNAs (lncRNAs), circRNAs, small nuclear RNAs
(snRNAs), small nucleolar RNAs (snoRNAs), and ribosomal RNAs
(rRNAs) (Desrosiers et al., 1974; Alarcón CR. et al., 2015; Liu N.
et al., 2017; Yang et al., 2017). In this review, we will focus on the role
of m6A in circRNAs.

Regulation of m6A

The regulation of m6A is conducted via three major
complexes, i.e., m6A writer complex, m6A reader proteins,
and m6A eraser enzymes. M6A writer includes METTL3,
METTL14, WTAP, VIRMA, RBM15, and ZC3H13 (Wu et al.,
2016; Xu et al., 2017; Zhang et al., 2020; Xiang et al., 2017;
Visvanathan et al., 2018; Zhou et al., 2021; Gu et al., 2019; Yang X.
et al., 2020; Du et al., 2021). The demethylase FTO or ALKBH5 is
responsible for removing m6A modification, i.e., m6A erasers
(Qu et al., 2022; Yu et al., 2023; Gao et al., 2024; Tsuchiya et al.,
2022). M6A reader proteins recognize and interact with m6A on
RNA molecules, thereby regulating RNA splicing, stability,
translation, and nuclear export, ultimately influencing the fate
of the mRNA and gene expression. M6A reader essentially
“interprets” the m6A mark on RNA to direct its cellular

function. The summary of the m6A writer, eraser, and readers
is illustrated in Scheme 1.

M6A writers

The development of global mRNA m6A methylation
mapping suggests that m6A is enriched near the stop codon,
3′untranslated region (UTR), and long internal exon
(Dominissini et al., 2012; Meyer et al., 2012). M6A mainly
occurs in a consensus sequence motif (RRACH) (where R = A
or G, H = A, C, or U) (Bokar et al., 1997; Wei and Moss, 1977).
The two most important components of the m6A writer complex
are methyltransferase-like 3 (METTL3) and methyltransferase-
like 14 (METTL14), forming the methyltransferase complex
(MTC) (Xu et al., 2022; Garcias Morales and Reyes, 2021).
This evolutionarily conserved MTC complex also includes
VIRMA/Virilizer, WTAP, Hakai, ZC3H13, and a newly
discovered writer METTL16 (Knuckles et al., 2018; Su et al.,
2022). METTL14, combined with METTL3, plays an essential
role in substrate recognition (Liu et al., 2014; Wang et al., 2016;
Wang P. et al., 2016). The RNA secondary structure and splicing
proteins both may contribute to m6A distribution by preventing
m6A methylation (Schwartz et al., 2013) or by potentially
blocking access of the METTL3 complex to nascent RNAPII
transcripts during transcription (Uzonyi et al., 2023; Yang et al.,
2022; He et al., 2023). Among all the components of MTC,
METTL3 is the primary RNA methyltransferase enzyme that
adds a methyl group to the N6 position of adenosine residues on
RNAmolecules, i.e., the m6A. METTL14 facilitates the binding of
the MTC to adjacent RNA polymerase II and transfers the MTC
to actively transcribed nascent RNAs (Huang et al., 2019). In
addition to METTL3 and METTL14, Wilms Tumor 1-associated
protein (WTAP) connects the METTL3-METTL14 heterodimer
to the nuclear speckle and promotes catalytic activity (Schwartz
et al., 2014; Ping et al., 2014; Wang et al., 2023a). VIRMA guides
m6A to occur close to the stop codon in 3′UTR by recruiting the
MTC (Yue et al., 2018). ZC3H13 enhances m6A by bridging
WTAP to the mRNA-binding factor Nito (Knuckles et al., 2018;
Wen et al., 2018). METTL16 catalyzes m6A modification in U6-
snRNA (Warda et al., 2017). It methylates long noncoding RNA
(lncRNA) and U6 small nuclear RNA (U6 snRNA) (Brown et al.,
2016; Fitzsimmons and Batista, 2019). The METTL16-mediated
methylation requires the UACAGAGAA sequence (Doxtader
et al., 2018; Mendel et al., 2018). Additionally, the methyl-
group donor S-adenosylmethionine (SAM) is also regulated by
METTL16 (Pendleton et al., 2017).

M6A erasers

An “m6A eraser” is a protein that removes the m6A
modification from RNA molecules. The m6A marks in the
eukaryote RNAs are installed and reversed dynamically and
constantly. As mentioned above, the MTC complex is responsible
for installing the m6A, while the erasers, e.g., FTO or ALKBH5, are
responsible for removing the m6A modifications. The m6A eraser
functions as a “demethylase” to regulate gene expression by altering
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the stability and translation of specific RNA transcripts; Two well-
studied m6A erasers are the proteins fat mass and obesity-associated
protein (FTO) and alkB homologue 5 (ALKBH5). FTO and
ALKBH5 belong to the AlkB family of Fe(II) and α-
ketoglutarate-dependent dioxygenases. Among the nine AlkB
family homologs, the first eight were labeled as ALKBH1-8, and
the ninth was known as FTO (Alemu et al., 2016; Liu C. et al., 2013;
Fedeles et al., 2015).

Both FTO and ALKBH5 carry conserved double-stranded β-
helix (DSBH) domains to regulate their demethylase activity; they
remove alkyl adducts from bases through oxidative demethylation
(Fedeles et al., 2015). FTO recognizes and interacts with a specific
sequence on the RNA molecule containing the m6A modification,
allowing it to access the methyl group for removal. FTO removes the
m6A modifications on RNA by directly catalyzing the
demethylation reaction, essentially deleting the methyl group
from the adenine base and converting it back to regular
adenosine, thus preventing m6A “reader” proteins from binding
and thereby altering the RNA stability, splicing, and
translation levels.

ALKBH1-8 (Fu et al., 2010; Ringvoll et al., 2006; Aas et al., 2003),
greatly facilitates the development of inhibitors targeting m6A
demethylases. While both FTO and ALKBH5 serve as “erasers”
of m6A modifications, their secondary structures and substrates are
significantly different (Scheme 1).

M6A readers

An “m6A reader” is a protein that specifically binds with m6A,
and recognizes and interacts with methylated RNA molecules. The
m6A reader can influence mRNA stability, translation, and nuclear
export via “reading” the m6A mark on RNA to trigger downstream
functions. Unlike the m6A erasers, many proteins have been
reported to be capable of recognizing and reacting to the m6A
marks (Shi H. et al., 2019; Alarcón C. R. et al., 2015; Huang et al.,
2018; Du et al., 2016; Shi Y. et al., 2019). One big category of proteins
is the YTH domain-containing proteins, including but not limited
to: YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2. Among
them, YTHDF1 mediates target gene expression,
YTHDF2 promotes targeted mRNA decay, YTHDF3 facilitates
mRNA translation and promotes the decay of m6A-modified
RNAs, and YTHDC1 regulates RNA splicing and nuclear export
protein. YTHDC2 plays an important role in RNA translation and
decay. In addition to the YTH domain-containing proteins,
HNRNPA2B1, HNRNPC, NKAP, IGF2BP1, IGF2BP2, IGF2BP3,
fragile X mental retardation protein (FMRP), eukaryotic initiation
factor 3 (eIF3), HuR, CNBP all have been reported to function as
m6A readers (Shi H. et al., 2019; Alarcón C. R. et al., 2015; Huang
et al., 2018; Du et al., 2016; Shi Y. et al., 2019). They identify and
interpret m6A sites on diverse transcripts to regulate the fate of
target mRNAs, and subsequently regulate RNA metabolism,

SCHEME 1
M6A location, formation, recognition and deletion. M6A is enriched in the 3′untranslated region (3′UTR), around stop codons, and within long
internal exons, particularly in regionswith the consensus sequence RRACH. The primarym6Awriter to introducem6Amodification on the circRNAs is the
METTL3 complex, with METTL3 being the catalytic subunit and METTL14 acting as the RNA-binding platform. Other proteins involved in the m6A writer
complex are shown here, e.g., WTAP, RBM15, and ZC3H13. Currently, the reported m6A eraser includes FTO (fat mass and obesity-associated
protein) and ALKBH5, which reverse m6Amodifications. M6A readers are proteins that recognize and bind to m6Amodifications on RNA, regulating RNA
metabolism and gene expression by influencing processes like splicing, stability, translation, and localization. The m6A readers include but not limited to
the YTH domain family (YTHDF1-3, YTHDC1-2), IGFBPs (insulin-like growth factor 2 mRNA-binding proteins), MSI2 (Musashi2), PRRC2A (Proline-rich
coiled-coil containing protein 2 A), and HNRNPA2B1 (Heterogeneous nuclear ribonucleoprotein A2/B1).
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tumorigenesis, hematopoiesis, viral replication, immune response,
and adipogenesis. Recently, one of the m6A writers, METTL16, was
also reported to serve as a reader and participate in catalyzing m6A
in A43 of the U6 small nuclear RNA (Warda et al., 2017).

Function of m6A modifications

The cellular function of m6A has been well illustrated. M6A
affects the stability, splicing, and translation of RNA and enhances
the degradation of specific transcripts. Consequently, m6A alters the
downstream signaling or transcription of the targeted mRNAs and
regulates the expression of genes that affect growth, development,
and other biological functions. Biologically, m6A has been reported
as a tumor suppressor or promoter (Huang et al., 2020). It also plays
a role in neuron injury, axonal regeneration, and malformation
(Weng et al., 2018; Wang D. et al., 2023; Yang C. et al., 2020). M6A
can regulate the cell differentiation of hematopoietic stem cells, stem
cell self-renewal, DNA damage response, neurological function, and
sex determination. Furthermore, m6A methyltransferases mediate
therapy resistance to chemotherapy, targeted therapy,
immunotherapy, and radiotherapy.

In addition to the impact on the protein-coding RNAs, emerging
influences of m6A on non-coding RNAs have been reported.

M6A regulation of ncRNA biogenesis
and function

Non-coding RNAs (ncRNA) make up the majority of total
RNAs in mammals. In humans, it is estimated that over 90% of
transcribed RNA is non-coding. Currently, more than
18,000 distinct ncRNAs have been reported. The most
abundant ncRNAs are ribosomal RNAs (rRNA) and transfer
RNAs (tRNA) (Zhou R. et al., 2020; Kaikkonen et al., 2011;
Sharma et al., 2024; Dahariya et al., 2019; Hung et al., 2020;
Parashar et al., 2022). Besides rRNAs and tRNAs, based on their
sizes, ncRNAs are divided into two major groups: short
noncoding RNAs (18–200 nucleotides) and long ncRNAs
(lncRNAs) (>200 nucleotides). In addition, a novel class of
ncRNAs was recently discovered, the circRNAs (Zhou R. et al.,
2020; Feng et al., 2023; Santer et al., 2019). The size of circRNAs
ranges from less than 200 to several thousand nucleotides.
Examples of short ncRNAs include microRNAs (miRNAs) and
small nuclear RNAs (snRNAs). MiRNAs have only 22 to
25 nucleotides (Ranganathan and Sivasankar, 2014; M et al.,
2005; Kim and Nam, 2006; Saini et al., 2007). Simply to the
impacts on protein-coding mRNAs, m6A modification on non-
coding RNA (ncRNA) significantly impacts its stability, function,
and interactions with proteins, resulting in various biological
processes, including but not limited to cell differentiation,
development, and pathogenesis of human diseases. In this
mini-review, we will focus on the current advances in the role
of m6A in the regulation of the newly discovered circRNAs, and
the impact of circRNAm6Amodification in the development and
resolution of inflammatory responses, particularly after bacterial
infections.

The impact of m6A on circRNA biogenesis

Unlike linear RNAs, circRNA is a single-stranded RNA that
forms a covalently closed continuous loop (Yang et al., 2017; Feng
et al., 2023; Santer et al., 2019; Pisignano et al., 2023; Kristensen et al.,
2019; Zhou WY. et al., 2020). They are often conserved across
species in mammals and have tissue/cell specificity (Yang et al.,
2017; Feng et al., 2023; Santer et al., 2019; Pisignano et al., 2023;
Kristensen et al., 2019; Zhou WY. et al., 2020). CircRNAs are
generated via back-splicing from their linear host mRNAs
(Scheme 2). CircRNAs do not have 5′ or 3′ ends. Due to the
circular structure, their half-life is much longer as circRNAs are
more resistant to exonuclease-mediated degradation (Yang et al.,
2017; Feng et al., 2023; Santer et al., 2019; Pisignano et al., 2023;
Kristensen et al., 2019; Zhou WY. et al., 2020). Emerging evidence
has indicated that circRNAs function as gene regulators and can
encode functional proteins/peptides. CircRNAs can also serve as
potential prognostic markers or therapeutic targets in various
human diseases. However, the function of most circRNAs
remains unclear, particularly in sepsis-associated lung
inflammation.

Accumulating evidence suggests that m6A modification
significantly impacts circRNA biogenesis.

As mentioned above, the back-splicing is crucial for the
formation of circRNAs. The interaction with specific “m6A
reader”, like YTHDC1, m6A promotes the production of certain
circRNAs and affects their stability and cytoplasmic export; M6A
can either enhance or suppress the generation of specific circRNAs
depending on the location of the m6A modification.

M6A regulates the back-splicing of circRNAs

According to current research, m6A modification on host
mRNA can promote the formation of circRNAs by modulating
the splicing process and facilitating back-splicing, which is the key
mechanism for circRNA generation. The presence of m6A marks
enhances the likelihood of a pre-mRNA forming a circular structure.

In 2020, Timoteo et al. (2020) demonstrated that m6A
modifications control the circRNA metabolism: m6A can regulate
whether a specific exon undergoes linear or back-splicing, and
correlate with cap-independent translation of circ-ZNF609 (Di
Timoteo et al., 2020). They further showed that the altered
expression of m6A writer METTL3 and m6A reader
YTHDC1 might contribute to the observed circ-ZNF609
upregulation. Same year 2020, Tang et al. (2020) reported that m6A
promotes the biogenesis of circRNA in male germ cells (Tang et al.,
2020). For open reading frames (ORFs)-containing circRNAs during
murine spermatogenesis, the back splicing occurred mostly at m6A-
enriched sites. They found that these m6A sites were usually located
around the start and stop codons in linear mRNAs. Tang et al. (2020)
deleted ALKBH5 and METTL3, respectively. After deleting ALKBH5
(m6A eraser) in spermatogenic cells, the m6A level was significantly
increased compared with wild-type controls, and consistently, the
circRNAs abundance is markedly increased in Alkbh5-null
spermatogenic cells (Tang et al., 2020). After deleting METTL3
(m6A writer), much fewer circRNAs were identified.
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Following studies by Dattilo et al. (2023) further emphasized the
importance of m6A reader YTHDC1 in the back splicing and
formation of circRNAs. The RNA helicase DDX5 functions as a
mediator of the back-splicing reaction and as a co-factor of the m6A
regulatory network. DDX5 and the m6A reader YTHDC1 interact
and promote the production of a common subset of circRNAs. M6A
modification at specific sites, particularly those near the start and
stop codons, can recruit YTHDC1 and spliceosomes, which then
promotes the precursor transcript towards circularization by driving
the back-splicing reaction and leading to circRNA production.

M6A regulates the cellular function
of circRNAs

M6A modification can be identified not only on host mRNA
which are precursors of circRNAs, but also on the mature circRNAs
themselves. The m6A modification on mature circRNAs exerts
essential roles in the transport, metabolism, degradation, and
function of the circRNAs.

M6A regulates the transport of circRNAs

In the nucleus, the m6A can bind YTHDC1 and subsequently
promote the export of circRNAs. Upon circRNAs export to the
cytoplasm, m6A binds to specific reader proteins to stabilize some
mRNAs (Chen RX. et al., 2019). Therefore, the nuclear export of
circRNAs also affects its miRNA sponges. M6A modification can
also promote the cytoplasmic export of circRNAs, facilitating their
localization and function in the cytoplasm. For example, m6A
modification of circNSUN2 increases its cytoplasmic export in
colorectal cancer (Chen RX. et al., 2019).

M6A regulates the degradation of circRNAs

Unlike mRNA, circRNAs have a covalently closed loop and do
not have a 3′polyadenylated tail, so they are naturally more stable
than their homologous linear RNAs (Liu L. et al., 2017; Park et al.,
2019). CircRNAs can only be degraded by endoribonucleolytic
cleavage. Park et al. (2019) reported that circRNAs containing

SCHEME 2
M6A participates in the circRNA biogenesis, export, and function. CircRNA biogenesis primarily occurs through “back-splicing,” where the 5′end of
an exon is joined to the 3′end of either the same or an upstream exon, creating a closed loop. This process is mediated by the spliceosome, and facilitated
by specific RNA structures and RNA-binding proteins (RBPs). There are several types of “back-splicing”. As illustrated in the schema, Intronic CircRNAs
(ciRNAs) refer to the circRNAs that are formed from introns themselves. Exonic circRNAs (EcircRNAs) contain only exons and no introns. Exonic-
intronic circRNAs (EIciRNAs) contain both exons and introns. In certain cases, circRNAs can be formed through a lariat-driven mechanism, where exon
skipping removes the exons to be back-spliced, and the splice signals of the circRNA exons are juxtaposed in the lariat structure. M6A regulates CircRNA
Biogenesis (1), CircRNA Stability and Degradation (2) CircRNA Translation (3), CircRNA Localization, Biological Functions (4). M6a formation of the host
RNA facilitated the biogenesis of circRNAs, by regulating the splicing and circularization processes, e.g., m6A sites near the start and stop codons can
recruit spliceosomes, leading to back-splicing and circRNA formation. M6Amodification affects the stability and degradation of circRNAs. M6A-modified
circRNAs also are recognized by specific reader proteins (like YTHDF2) and targeted for degradation by the RNase P/MRP complex. M6A modification
regulates circRNA translation, particularly in a cap-independent manner. M6A residues can drive efficient translation initiation from circRNAs, requiring
proteins like eIF4G2 and YTHDF3. M6A modification can influence the nuclear-cytoplasmic transport of circRNAs. In the nucleus, m6A can bind to
specific reader proteins, like YTHDC1, promoting circRNA export to the cytoplasm. m6A-modified circRNAs participate in various physiological and
pathological processes, including immunity, tumor development, and other diseases. For example, m6A-modified circRNAs can participate in tumor
immune surveillance. Endogenous circRNAs modified by m6A can be recognized as “self” by m6A reader YTHDF2, subsequently block RIG-1 activation
and innate immune responses.
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m6A can be decayed through YTHDF2-HRSP12-RNase P/MRP-
mediated endoribonucleolytic cleavage. The abundance of circRNAs
containing m6A increased after a component of RNase P/MRP was
downregulated (Park et al., 2019). YTHDF2 is a YTH-domain-
containing protein that can recognize and destabilize
m6A-containing RNAs. HRSP12 (human heat-responsive protein
12)- Eukaryotic RNase-P and RNase MRP are essential
ribonucleoprotein complexes that function as endoribonucleases.
The m6A-containing circRNAs interacted with YTHDF2 in an
HRSP12-dependent manner. HRSP12 is an adapter to bridge
YTHDF2 and RNase-P/MRP, inducing rapid degradation of
YTHDF2-bound circRNAs (Legnini et al., 2017).

M6A regulates the translation of circRNA

CircRNA has been frequently considered as non-coding RNA.
However, emerging evidence has shown that some circRNAs can
be translated into proteins (Yang et al., 2017; Legnini et al., 2017;
Pamudurti et al., 2017; Zhang et al., 2018a; Liang et al., 2019;
Huang et al., 2021; Zhang et al., 2018b) reported a database,
TransCirc (Aufiero et al., 2019), to predict the circRNAs that
have translation capacity. Interestingly, circRNA is well known for
its covalently closed RNA molecule without 5′caps and 3′tails
(Meng et al., 2017), therefore, circRNA must be translated in cap-
independent translation initiation mechanisms. Two mechanisms
of circRNA translation have been reported: internal ribosome
entry site (IRES)-dependent initiation of translation and m6A-
dependent initiation of translation. The m6A-driven translation of
circRNAs was widespread. Yang et al. (2017) predicted that
hundreds of circRNAs can potentially be translated into
proteins by the analysis of polysome profiling, computational
prediction, and mass spectrometry. The m6A-driven translation
of circRNA may require initiation factor eIF4G2 and m6A reader
YTHDF3, and can be enhanced by methyltransferase METTL3/14,
inhibited by demethylase FTO (Yang et al., 2017). Yang et al.
(2017) inserted a short fragment (19 nt) containing different copies
of consensus m6A motifs (RRACH) before the start codon of
circRNA reporter in 293 cells, and the protein was then translated
and detected.

It only requires one single m6A site to have the same translation
efficiency compared to circRNA with two m6A sites (Yang et al.,
2017). In human papillomavirus (HPV), m6A-modified circE7 is
translated to E7 oncoprotein (Zhao et al., 2019).

Further analysis found that m6A regulated its translation
through recognition by YTHDF3 and eIF4G2 (Di Timoteo et al.,
2020). This study suggested that the two cap-independent
translations of circRNA might interact. However, the
relationships between the two cap-independent translations need
further investigation. Interestingly, it has been reported that m6A-
mediated circRNA translation increases under stress, e.g., heat shock
conditions. The underlying mechanism is presumably due to the
translocation of YTHDF2 from the cytosol into the nucleus,
subsequently blocking the m6A “eraser” FTO (Yang et al., 2017;
Zhou et al., 2015). The m6A-mediated circRNA translation may
serve as a host-defense mechanism in cellular stress response.

A summary of the m6A impacts on circRNA biogenesis and
regulation is illustrated in Scheme 2.

Association between m6A modification
and circRNAs in the
inflammatory responses

Emerging evidence suggests that m6A modifications on the host
gene or the mature circRNAs may play essential roles in
inflammatory responses and innate immunity against
noxious stimuli.

M6A-modified natural circRNAs are abundant based on the
studies of m6A-methylated RNA immunoprecipitation sequencing
(MeRIPseq) and m6A-circRNA microarray data (Roundtree et al.,
2017; Zhao et al., 2022).

M6A modification of circRNAsplays a crucial
role in regulating inflammation and innate
immunity and potentially impacts
various diseases

1) M6A as a mark to differentiate endogenous vs.
exogenous circRNAs.

Endogenous circRNAs form 16–26 bp imperfect RNAduplexes to
resist the double-stranded RNA (dsRNA)-activated protein kinase
(PKR) in innate immunity (Liu et al., 2019). Mammalian cells
distinguish between foreign and endogenous circRNAs based on
their m6A modifications. For example, different levels of m6A
modification were detected in circRNA generated by
ZKSCAN1 introns (circSELF, referring to endogenously generated
circRNA), but not autocatalytic splicing (circFOREIGN, referring to
the circRNAs to be removed by autocatalysis). M6A modification
marked circRNA as “SELF”. Another type of foreign circRNAs, such
as the viral RNAs, may evoke the antiviral response. Endogenous
circRNAs with the m6A modifications can be recognized by m6A
readers (e.g., YTH proteins) as the “self” molecules, subsequently
escape from the immune surveillance and reduce interferon
production (Chen YG. et al., 2019). For example, circSELF can
evade innate immunological surveillance via YTHDF2-mediated
suppression. YTHDF2 binds m6A-modified circRNAs, preventing
their detection by dsRNA sensor RIG-I and the subsequent
stimulation of innate immunity (Chen YG. et al., 2019).
Unmodified circRNA activates RIG-I in the presence of K63-
polyubiquitin to cause MAVS filamentation, IRF3 dimerization,
and interferon production.

Not all the circRNAs have m6A modifications. However, more
than 1,000 endogenous circRNAs have been reported to possess
m6A modifications. The m6A-modified circRNAs are cell-type
specific and often lie on exons that are not m6A-modified in
their corresponding mRNAs (Zhou et al., 2017).

As mentioned above, certain exogenous circRNAs have been
reported to induce innate immunity genes and confer protection
against viral infection (Chen et al., 2017). On the other hand, m6A
modification facilitates circRNA translation and helps foreign
circRNAs escape immune surveillance, as m6A is a “self” mark
in these circRNAs. As little as 1% m6A modifications in artificial
circRNA can reduce the induction of innate immunogenicity. 100%
m6A modifications in artificial circRNA completely abrogated the
induction of innate immunogenicity.
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2) M6A modification on circRNAs plays a role in viral infection-
induced immunity.

M6A expression on endogenous RNAs has been demonstrated
to play a role after viral infection (Winkler et al., 2019), suggesting
that m6A regulates innate immunity

Consistently, recent reports demonstrate that circRNA encoding
antigenic protein sequences delivered by a charge-altering releasable
transporter can effectively serve as both an adjuvant and an
immunogen, inducing potent cellular immunity and serving as a
therapeutic vaccine. One key factor in generating circRNA vaccine is
to avoid m6A modification. For example, mice intranasally
immunized with either m6A-modified or -unmodified circOVA,
the lungs were analyzed for antigen-specific T cell responses. M6A
modification has been shown to promote the translation of
circRNAs (Yang et al., 2017); however, m6A abrogates circRNA
immunity (Chen YG. et al., 2019). Naked delivery of m6A-modified
circOVA did not induce any OVA-specific T cell responses (Chen
YG. et al., 2019). The unmodified circOVA group generated potent
OVA-specific CD8 T cell responses (Chen YG. et al., 2019).

3) M6A modification on circRNAs plays a role in bacterial
infection-induced immunity.

Fewer studies have been performed on bacterial infections. The
first question to answer is whether bacterial infection modifies m6A
modifications of circRNAs. Yu (2024) discovered a new circHIF1α,
whose secretion into exosomes was significantly decreased after
bacterial infections (Yu et al., 2024). Additionally, exosomal
circHIF1α reduces bacterial infection both in vitro and in vivo
and suppresses the growth of receptor cells (Yu et al., 2024).
CircHIF1α interacted with the KH domain of IGF2BP3 in an
m6A-modified manner, which arrests the cells at the G1/S phase
through the interaction between the regulator of Chromosome
Condensation 2 (RCC2) and γ-H2AX protein (Yu et al., 2024).
M6A-modified exosome-derived circHIF1α mediates DNA damage
and arrests G1/S transition phase to resist bacterial infection in
bacteremia, therefore, exosomal circHIF1α potentially serves a
unique therapeutic target for bacterial infection (Yu et al., 2024).

Lipopolysaccharide (LPS), an endotoxin produced by Gram-
negative bacteria, may affect the host’s m6A modification under
oxidative stress. Previous report shows that YTHDF2 can mitigate
LPS-induced inflammation in mouse macrophages via reducing
MAP2K4 and MAP4K4 mRNA levels and inhibiting the MAPK
and NF-κB pathways. In addition to LPS, the exotoxin of Gram-
positive bacteria can also regulate intestinal m6A levels. The
Clostridium perfringens beta2 (CPB2) toxin induces a notable
surge in overall m6A RNA methylation levels in porcine
intestinal epithelial (IPEC-J2) cells. This m6A modification may
be associated with CPB2-triggered inflammatory and antiviral
responses, potentially via the Wnt signaling pathway (Zhang
et al., 2021; Yang et al., 2021). CPB2 elevated m6A and
METTL3 levels in IPEC-J2 cells via enhancing the TLR2/NF-κB
pathway, exacerbating CPB2-induced inflammatory responses in
these cells (Zhang et al., 2022). M6A may serve as a conductor in the
orchestration of host-microbiome interactions, working in synergy

with circRNAs, chromatin remodeling, and histone modifications
(Zhang et al., 2022; Zhuo et al., 2022).

Conclusion

Our understanding of how m6A modification regulates
circRNA, particularly in the field of inflammation and
immunity, remains a rapidly growing area. M6A potentially
adds additional regulation on the biological function of
circRNAs in the development of inflammatory responses and
innate immunity against sterile or infectious stimuli. M6A-
modified circRNAs may serve as novel diagnostic and
therapeutic targets in various human diseases, including
inflammatory processes. There is still a long way to go to
understand m6A’s regulatory mechanisms and subsequent
biological functions in circRNA research.
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