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One development in the growing field of Alzheimer’s Disease and related
neurological disorders (ADRD) is the consideration of brain resilience, the
ability to respond to and recover from adversity, which builds on a growing
literature on the role of lifestyle behaviours in ADRD prevention and response.
This paper reviews definitions of ‘brain health’ and integrates these with
innovations in resilience system models applied to ADRD. Based on a socio-
ecological framework that links physiological, behavioral, economic, and social
determinants of mental health, we propose a unified model of resilience and
aging in this field. We contend that applications of a resilience analytical approach
to brain health require innovation in Artificial Intelligence (AI) to harness the full
potential of immense interdisciplinary data mining opportunities. These include:
development of digital twins, precision health analytics, AI sensors, and
Multimodal Large Language Models (MLLM), knowledge graph technologies,
and cognitive/decision science modeling. We apply this model to research
and clinical examples to elucidate its potential value, requirements, risks, and
challenges in developing new research agendas.
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Introduction

The field of brain health and aging has grown exponentially in parallel with the rise in
Alzheimer’s Disease and related neurological disorders (ADRD), coupled with interest in
understanding trajectories of cognitive decline (Kleiman et al., 2022). This has led to a focus
on prevention and treatment, which as a prerequisite requires a deeper understanding of all
forms of cognitive impairment from an interdisciplinary perspective that transcends genetic
biomarkers and clinical tests (Hachinski and Avan, 2022). The concept of resilience is a
recent addition to aging and brain health initiatives, which offers an interdisciplinary
conceptual framework to understand how and why some individuals prevent, adapt to, and/
or recover from ADRD better than others (e.g., Cassidy and Cassidy, 2019; Dutcher, 2023;
Hachinski and Avan, 2022; Kalisch et al., 2015; Kleiman et al., 2022; Rothman andMattson,
2013; Wister et al., 2022). This approach is embedded in a socio-ecological framework,
recognizing individuals as nested within interconnected ecosystems of physiological,
behavioral, economic, and social determinants of brain health (Klasa et al., 2021; Wister
et al., 2022).

This complex systems perspective examines interdependent biological and
physiological aging mechanisms alongside broader social determinants data, and as a
result, requires a pathway for analyzing the complex interplay of aging processes on a mass
scale. We argue that a resilience strategy needs to blend the best practices in dementia data
handling utilizing current development in AI, such as AI sensors and Multimodal Large
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Language Models (MLLM), knowledge graph technologies, and
cognitive/decision science modeling, enabling groundbreaking
analytical solutions for brain health to harness the immense AI
and data mining capabilities necessary for such a complex cross-
disciplinary analysis (Busch et a., 2025; Meng et al., 2023).

Current state of brain health science
and practice

The current scientific discourse surrounding brain health
predominantly revolves around understanding the mechanisms of
cognitive performance and its decline with aging. Central to this
discourse are concepts such as cognitive reserve, brain resilience,
and compensatory mechanisms, which are posited to influence the
trajectory of cognitive aging and vulnerability to neurodegenerative
diseases, such as Alzheimer’s Disease and related dementias
(ADRD) (Joshi and Galvin, 2022; Stern, 2012). Significant
theoretical developments in the field of neurology and cognitive
sciences have introduced a variety of additional terms that are
crucial to understanding brain health that integrates
physiological, psychological, and social components (Kalisch
et al., 2015; Wister et al., 2016). Among these, the concept of
brain resilience is frequently discussed alongside cognitive reserve.
This term is typically defined as the brain’s inherent capacity to resist
damage due to aging or pathology through the biological robustness
of neural pathways that maintain cognitive functions despite various
cognitive adversities.

Hachinski and Avan (2022) offer a comprehensive definition
that positions brain resilience as “the lifelong, dynamic, interactive,
accumulating capacity to resist physical, emotional, and/or social
harms.” This definition not only highlights the dynamic and
cumulative nature of cognitive resilience but also emphasizes the
necessity of addressing the broad spectrum of influence—from
molecular to societal—that affect cognitive health over an
individual’s lifespan. Further, optimal brain health represents a
holistic term integrating aspects of resilience and reserve,
proposing a state in which the brain operates at its best capacity,
maintaining high function and delaying degenerative processes as
long as possible.

These conceptualizations are instrumental in framing research
agendas; however, they often remain confined within specific
disciplinary boundaries, focusing heavily on physiological and
pathological outcomes (Kalisch et al., 2015). This lens tends to
overlook the broader spectrum of aging processes that impact
cognitive health, thus necessitating a more integrated approach
that considers the complex interplay of biological, psychological,
and social factors (Wister et al., 2022). Additionally, while the
existing models of brain health are valuable for outlining the
basic frameworks of cognitive functionality and resilience, they
exhibit several critical gaps. Empirical robustness is notably
lacking, as many of these models are predominantly theoretical
and do not have comprehensive empirical support for measuring
brain health resilience through aging or interventions, especially in
longitudinal studies that can genuinely capture their dynamic
nature. Furthermore, interdisciplinary integration is often lacking.
Theoretical models of brain health rarely cross disciplinary
boundaries, which limits their applicability in real-world settings

where biological, psychological, and social factors intersect. There is
also an absence of a life course perspective that accounts for the
complex effects of these components over long-term life trajectories,
such as the cumulative effects of poverty, or the timing of stressful
events such as the COVID-19 pandemic.

To bridge these gaps, there is an emerging consensus on the need
to empirically evaluate “resilience” as it pertains to brain health
(Cassidy and Cassidy, 2019; Hachinski and Avan, 2022; Joshi and
Galvin, 2022: Kalisch et al., 2015; Kleiman et al., 2022; Rothman and
Mattson, 2013). In this context, resilience does not merely refer to
the capacity to recover from adversity but also includes the ability to
maintain stable, high levels of cognitive and neurological
functioning amid the complex interplay of aging processes.
Technological and analytical advances, such as machine learning
(ML), AI (especially powerful AI sensors and MLLMs), and virtual
reality, can play pivotal roles in collecting multimodal data and
deciphering the complex patterns and interactions among the
myriad of factors affecting brain health. These tools can help
identify potential interventions tailored to individual profiles
derived from broad-based and inclusive big data sources that
evaluate brain health resilience from acute or chronic stressors
arising from various origins (e.g., social, health, and others), thus
enhancing the precision and effectiveness of preventative and
therapeutic strategies.

Indeed, these innovations are already employed to assist in
ADRD diagnostics, research, and patient care in practice (Yang
and Mohhamed, 2020). For example, in past research, AI
technologies have been used to assist in the analysis of
neuroimagery as well as novel biomarkers in blood linked with
AD; and virtual reality models have been incorporated into
facilitating singing exercises within Alzheimer impacted patient
groups (Kiss et al., 2023). Privacy-preserving AI sensors have
been used to monitor the physical activities of older adults and
patients, to collect activity statistics, and to notify caregivers in case
of emergencies such as falls. This ensures the safety of older adults
living alone, especially those with ADRD, and provides a powerful
tool for the analyses of the activity data collected, evaluate the
conditions of the older people and patients, and design interventions
and treatment plans accordingly (Agarwal et al., 2022; Liang et al.,
2024). AI-powered robotics have also been used as companions to
older adults with ADRD to alleviate their loneliness (Broadbent
et al., 2024).

Despite the effective use of these innovations, there is currently a
limited application of these technologies to interventions specifically
geared at resilience building, such as in the case of the AAL
RESILIEN-T project that employed ML and AI algorithms to
optimize data extraction and sensor calibration aimed at building
patient resilience (Cassacia et al., 2019). The limited integration of
AI and ML technologies with resilience-specific approaches geared
at AD creates a space for the propagation of the framework and
applications such as the one discussed in this paper. With the
increased focus on brain resilience in scientific discourse, there is
a need for practice to reflect the theoretical backbone within the AD
research field. The rapid development of AI, especially MLLM and
AI sensors, allow them to be used to develop the resilience models,
collect more data, and improve the performance of the resilience
building systems. However, the design of these systems should also
consider the various computational requirements, challenges, and
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potential risks of utilizing AI andMLLM, to ensure reliable, safe, and
ethical AI-assisted solutions (Afkanpour et al., 2024; Atf et al., 2025;
Busch, 2025; Stempfle et al., 2025).

Conceptualizing resilience in the
context of brain health

Many definitions of resilience exist across a variety of disciplines
(e.g., psychology, sociology, gerontology, biology, physiology,
environment, etc.) over several decades with foci on different
adversities (e.g., mental health, life crises, multimorbidity, natural
disasters, etc.); yet they share the idea that [it] is a strength-based
framework that explicates the ability of an individual, community,
or system to adapt, recover and/or grow from a type of adversity (Fry
and Keyes, 2010; Masten, 2007; Resnick et al., 2019; Wister et al.,
2016; Wister and Cosco, 2020). A family of resilience theoretical
models has appeared in the literature that either applies to a
particular adversity or is generic (Luthar and Brown, 2007;
Masten, 2015; Resnick et al., 2019; Windle, 2012; Wister et al.,
2022). One model, the Unified Model of Resilience and Aging
(UMRA) begins with the disruptive event (a pandemic, illness,
personal loss) and its impact on the individual followed by
possible activation of internal resources and external resources
(e.g., optimism, support from family, friends or organization,
policy environment), and the potential for reintegration and even
growth resulting from the resilience process.

Underlying the UMRA and other models is the life-course
dimension (time, place and epigenetics) situating experience. The
UMRA also includes four system-level (organizational) functions
used by the National Academy of Sciences Resilience Model: 1)
Planning for adverse events requires reductions in risk in response to
an identified threat. 2) Absorption of stressors and outcomes
associated with adversity is necessary to initiate resilience
through recovery and adaptation. 3) Recovery occurs through
various forms of short and long-term strength-based resilience.
4) Adaptation relates to changes in the system to promote future
resilience.

Several core elements of resilience theory can be applied to a
brain health research agenda. First, the type, intensity, and context of
the adverse condition or event is a central component of a resilience
framework. It is well-known that Alzheimer’s and related dementia
follow a pathogenetic trajectory that is slow in progression,
sometimes decades in length. If prevention is to be successful,
upstream and life-course situated health promotion, prevention,
and public health strategies will be most effective but also require
habitual repetition, such as routinized healthy lifestyle behaviours.
The question is: how do we identify modifiable and non-modifiable
risk factors and levels at an early enough stage to target and tailor
resilience-enhancing strategies?

Thus far, genetic markers can identify one level of risk but are
only one component of what has become understood as a highly
complex causal structure. Resilience models are well-suited to
incorporate the interdisciplinary multifactorial pathways of
ADRD (i.e., genetic, behavioural, and environmental levels). This
requires bringing together researchers from different disciplines and
applied/basic research environments for innovation and
intervention/treatment breakthroughs. Resilience models

emphasize a strength-based approach to prevention that can
build brain health throughout life, rather than attempt to treat
the condition once it has progressed to a more challenging treatment
stage. However, identifying the most treatable moments in the
multifaceted life-courses of individuals, to date, remains a
conundrum. Further, many modifiable preventive behaviors, such
as healthy levels of physical activity; obesity, diet and nutrition;
reduced alcohol consumption; good sleep patterns; decreased head
injuries; low stress; lower exposure to pollution; improved mental
activity; and other healthy lifestyles are typically examined
independently, although research is demonstrating that it is their
combined and cumulative effects that are most influential for
prevention and treatment of ADRD (Livingston et al., 2020;
Reuben et al., 2024; Son et al., 2025). For instance, in an
examination of clustering of predictors of 3-year cognitive
decline using data from the Canadian Longitudinal Study of
Aging revealed that dyad combinations of hearing loss and
physical inactivity were linked to declines in cognition; hearing
loss, physical inactivity, and hypertension for the triad; and hearing
loss, physical inactivity, hypertension, and sleep disturbance for the
tetrad (Son et al., 2025).

Applying resilience models within brain health research with an
added layer of AI algorithms can potentially advance our
understanding of ADRD by identifying modifiable risk factors
and critical periods for intervention, and thus, delay or prevent
the onset of clinical symptoms. For instance, are there particular
times in a person’s life in which physical activity, sleep, mental
exercises, or nutritional interventions result in maximum effects?
Moreover, understanding the interactions between genetic
predispositions and lifestyle factors can guide personalized
medicine approaches that optimize brain health across the
lifespan. One of the primary hurdles is the complexity of causal
structures involved in cognitive aging. The multifactorial pathways
that influence cognitive resilience and decline encompass a broad
array of biological, psychological, and social variables, each
interacting in non-linear ways that are difficult to predict and
model (Reuben et al., 2024). The sophisticated models required
for this analysis must be capable of handling these complex
interactions to provide insightful and actionable findings. These
models are essential not only for understanding the
interdependencies of these variables but also for developing
interventions that can robustly support cognitive health across
the lifespan. Moreover, cost and feasibility limitations in clinical
intervention design that combine multiple factors into different
treatment groups (e.g., genetic profile, pharmacology, physical
activity, nutrition, smoking, alcohol, stress, etc.) hamper
treatment development. Designing research that can effectively
isolate and evaluate the effects of intertwined factors requires
substantial financial resources, advanced technological tools, and
a multidisciplinary approach that often goes beyond the
conventional boundaries of neuroscientific research. The logistical
and financial implications of such comprehensive studies make it
difficult to regularly implement them at a scale that would provide
statistically meaningful results. This challenge is compounded by the
need for longitudinal data, which are crucial for assessing the
progression of cognitive resilience and decline over time but are
expensive and complex to collect and analyze. This creates an
opportunity for the utilization of ML and AI algorithms and AI
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products for comorbidity identification and integration of
socioeconomic factors due to these technologies’ capacity for
large data set analysis and extensive processing power (Alsaleh
et al., 2023). For example, using low-cost yet powerful embedded
AI chips and the latest computer vision algorithms, it is possible for
an AI sensor to detect people in a room in a contactless way, and
extract the skeleton of the human bodies represented by some key
joint points in real time (Agarwal et al., 2022; Liang et al., 2024). The
skeleton data provide valuable information about the person’s
activity and health condition, and the amount of skeleton data is
much less compared to the raw video data. Skeleton data can be
saved on the server for longitudinal activity analysis, using more
sophisticated AI algorithms, such as MLLM, which can be useful for
various medical tasks, including the study of resilience associated
with brain health. However, the utilization of AI approaches to
investigate brain health causes and treatments must address these
same challenges of disentangling highly complex processes (Son
et al., 2025).

There are also critical ethical and social considerations that must
be navigated carefully. Research and interventions aimed at
enhancing resilience must be designed with a keen awareness of
ethical standards and socio-economic equity to ensure that their
benefits are accessible across different segments of society, including
the most vulnerable populations. It is imperative that these
initiatives not only target high-risk groups but also accommodate
diverse community needs in a manner that promotes fairness and
inclusivity. These ethical concerns center on patient privacy and
informed consent protocols. AI relies on vast amounts of
information to function, necessitating access to patients’ personal
medical data (Horn, 2001). As a result, hospitals and research
institutions must make significant efforts to uphold patient
privacy and implement robust cybersecurity measures. Patient
consent is also a critical tenet in the implementation of AI
technologies for medical research. However, current informed
consent protocols may not fully account for the application of
data mining in AI models (Kotsenas et al., 2021). The integration
of AI-specific disclosures and the strengthening of patient
information repositories will be essential for the ethical
implementation of these technologies. Each of these challenges
demands careful consideration from healthcare providers and
collaborative efforts across various fields of research and practice
to integrate updated ethical considerations for AI innovations.
Addressing these ethical considerations involves complex consent
processes, privacy issues related to data handling, and the
implementation of interventions that are sensitive to the cultural
and social dynamics of target communities.

Each of these challenges demands innovative technical solutions
and collaborative efforts across various fields of research and
practice. By addressing these hurdles head-on, the scientific
community can advance our understanding of resilience as it
pertains to brain health and move closer to developing effective
strategies that mitigate cognitive decline and enhance the quality of
life for aging populations worldwide. These efforts are crucial in
paving the way for preventive health measures and therapeutic
interventions that are both scientifically sound and socially
responsible.

Significant progress has been made in considering patient
privacy and designing informed consent protocols when

deploying AI products. For example, when computer vision
technology is used for activity analysis, the skeleton
representation of human activity not only reduces the amount of
data transmitted, but also protects the privacy of the person being
monitored, allowing it to be used in sensitive areas such as bedrooms
and bathrooms (Agarwal et al., 2022; Liang et al., 2024). These
technologies have been adopted by individual Amazon customers in
United States and Canada, as well as senior care facilities in various
countries, including United States, Canada, Australia, Japan, and
some European countries, where consent protocols are developed to
explain how the system works, what kind of data are collected and
transmitted to the server, and who has access to these data.

Privacy concerns, however, remain a major impediment for AI
applications, compounded by critical issues regarding model
generalizability and accuracy degradation when algorithms are
deployed in novel contexts. Recent healthcare data breaches have
affected over 176 million patients in the United States, with most
incidents resulting in employee negligence rather than external
threats, underscoring the vulnerability of patient information in
digital health systems (Theodos and Sitting, 2020). Maintaining
robust data privacy during AI application deployment necessitates
the integration of advanced blockchain technologies and secure
multi-party computation protocols to preserve the integrity and
confidentiality of large datasets containing sensitive patient
information (Williamson and Prybutok, 2024).

The degradation of analytical quality when AI models are
applied across diverse healthcare settings also presents a
particularly pressing concern, especially considering deployment
between different regions or countries where clinical procedures,
medical equipment, and fundamental healthcare philosophies may
differ substantially (Yang et al., 2024). Empirical evidence
demonstrates that different healthcare settings vary significantly
in terms of unobserved confounders, protocols, deployment
environments, and temporal drift, with models developed in
high-income countries often experiencing substantial
performance degradation when applied to low-middle income
country contexts (Yang et al., 2024). Researchers and
implementers of AI technologies must therefore adopt deliberate
governance approaches to account for contextual and systemic
variations when implementing AI models for Alzheimer’s
patients across different geographic regions and clinical
environments, potentially benefiting from the development of
multiple localized AI models rather than relying on a singular,
universal algorithmic solution.

One way to address this challenge is to fine-tune or adapt the
general-purpose AI or MLLM models using the training data
obtained from the current application setting (Cheng et al., 2025;
Du et al., 2024; Treder et al., 2024). This approach requires much less
computational resource than re-training a general-purpose model.

Another risk or challenge of using MLLM is hallucination,
which is a limitation of MLLM that can undermine trust, spread
misinformation, and pose risks in critical applications. One way to
reduce hallucinations in MLLM for ADRD treatment is to employ
Retrieval-Augmented Generation (RAG) to ground responses in
specific, verified ADRD knowledge bases, and adjust model
generation parameters like temperature to favor factual accuracy
over creativity. Additionally, implement post-processing steps such
as rule-based filtering and human review to catch and correct any
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remaining incorrect outputs, while prompt engineering techniques
like few-shot prompting can also guide the model toward accurate,
domain-specific responses (Treder et al., 2024).

Environmental considerations present an additional dimension of
concern, as AI systems contribute to environmental degradation
through substantial resource consumption. Digital health
technologies, including AI applications, require significant
quantities of raw materials for device production, while data
storage demands vast amounts of electricity for server operation
and cooling systems, which causes the environmental footprint to
go beyond hardware production to encompass energy-intensive
computation processes. (Thompson, 2021; George et al., 2023).
Projections suggest that AI could account for 1% of global
electricity consumption if current utilization trends continue at
their present trajectory (Gaetani et al., 2024). Proposed mitigation
approaches include purchasing carbon offsets to compensate for the
negative environmental impacts of AI server infrastructure, alongside
encouraging sustainable AI development through strategic triage,
prioritizing deployment for novel symptom analysis, complex
diagnostic scenarios, and preventative health interventions over
applications in elective treatment contexts (Richie, 2022). These
considerations emphasize the necessity for comprehensive
environmental impact assessments in healthcare AI
implementation strategies. Although the training and inference of
many existing AI and MLLM models require expensive GPU
resources, the research and industry communities are developing
many new technologies, leading towards lower-cost and high-
performance AI and MLLM. This involves novel designs in chiplet
architectures, more efficient AI models, and hardware-software co-
design, therefore fostering performance gains beyond traditional
Moore’s Law’s transistor-doubling pace (Yazdanbakhsh, 2025). For
example, the latest MiniCPM-V model can achieve GPT-4V level
MLLM performance from OpenAI on mobile phones (Yao, 2024).

AI and advanced data analytics
techniques to operationalize resilience

The endeavor to operationalize resilience in the context of brain
health critically depends on the integration of advanced technologies
such as AI and comprehensive data analytics. These technologies
offer the transformative potential to overcome traditional barriers in
dementia and Alzheimer’s research, characterized by reliance on
either purely quantitative or qualitative data frameworks that
seldom intersect seamlessly. Previous methodologies display
considerable limitations in flexibility, adaptability, and precision,
particularly when navigating complex, multifaceted datasets
commonly missing substantial data portions essential for
comprehensive analysis (Son et al., 2025; Windle et al., 2011).
However, recently the rapid development in the field of MLLM
has opened up many exciting opportunities (Cheng et al., 2025;
Treder et al., 2024; Du et al., 2024).

AI and machine learning algorithms present unprecedented
advantages in their ability to process and analyze large datasets
that include a variety of biomarkers associated with aging and
dementia risk. Conventional research tools often fail to account
for the temporal dynamics of these biomarkers or effectively
combine quantitative with qualitative data.

The latest AI methodologies represented by large language
models (LLM) excel in this realm. All existing LLM technologies
such as ChatGPT from OpenAI, Gemini from Google, Llama from
Meta, and Claude from Anthropic, are based on the transformer
technology (Treder et al., 2024; Vaswani et al., 2017). Transformer
excels at analyzing longitudinal data for a few reasons: 1) LLMs are
able to uncover trends and patterns across long periods; 2) LLMs are
adept at understanding contextual information; 3) LLMs can help fill
in gaps in longitudinal data, either by predicting missing values, or
forecasting based on historical trends; 4) LLMs can offer
multidisciplinary insights, because LLMs have been applied to
diverse data sources, and they can incorporate perspectives from
different fields; 5) LLMs can easily integrate multimodel data and
becomes a power multimodel (MLLM), which is crucial for the brain
health studies of ADRD.

Therefore LLMs can drive the capacity for more nuanced
analyses that can integrate diverse data types, including
structured, unstructured, and semi-structured data. This
integration is crucial for developing more accurate and
dynamically adaptable models of brain health that can forecast
and respond to the progression of cognitive decline with
greater precision.

A significant advancement offered by AI is its capability to
synthesize information across various data streams to provide a
holistic view of an individual’s cognitive health. This process
involves the use of sophisticated decision analysis and cognitive
modeling techniques that capture and reflect user needs and
values, thereby personalizing precision treatment plans.
Furthermore, AI-driven analytics facilitate the development of self-
driven hypothesis testing and expansive data exploration practices
that were previously unattainable with traditional analytical tools.
Through these methods, AI helps elucidate the intricate interplay
between brain function and various resilience factors within the socio-
economic and environmental context—commonly referred to as
brain capital. One way to frame this analytic approach is the
Unified Model of Resilience and Aging (UMRA, Figure 1) (see
Wister et al., 2022 for full discussion). This model serves as a
pivotal framework in the application of advanced analytical
capabilities, particularly integrating AI to enhance the empirical
evaluation of resilience within brain health research. It adopts a
life-course perspective that meticulously incorporates resilience
functions such as planning, absorption, recovery, and
adaptation—these are well-endorsed by the National Academy of
Sciences and pivotal in addressing the multi-layered nature of aging
and cognitive decline. UMRA contextualizes the resilience processes
of individuals within an extensive socio-ecological framework, taking
into account the myriad of interactions that influence resilience over
an individual’s lifespan (Infurna, 2021). This comprehensive approach
not only elevates the relevance of interventions tailored for aging
populations but also enhances their applicability by addressing
specific socio-ecological dynamics and resilience needs at various
life stages.

In operationalizing UMRA, the concept of ‘AI-enabled’ data
fabric’ plays a crucial role. It solves two issues of crucial importance
for ADRD research: (i) the ability to store large volumes of
heterogeneous information, and (ii) quick fusion of information
based on different weighting schemes. This integrative tool
encompasses a complex network of data entities and
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relationships that span across diverse data modalities, including
medical records, survey and clinical studies, scientific literature, and
demographic insights. The utility of AI-enabled data fabric extends
beyond mere data storage and standardization; it actively employs
advanced ontologies and taxonomies to organize data, while
utilizing flexible scripting and natural language processing
technologies to transform and harmonize disparate data types
into analytically robust formats. Formal data fusion algorithms
can utilize tools of Multi Criteria Decision Analysis (MCDA),
(Linkov et al., 2021), that allows integration of measurable data
points with value systems that clinicians can assign based on the
quality and relevance of measures reflective of patients’ value
systems. In our previous research, we argue that the use of
MCDA in the context of AI can enable interpretation of AI
models and provide confidence to both patients and physicians
associated with considered treatment alternatives (Linkov and
Trump, 2019: Linkov et al., 2020).

The implementation of a robust data integration system via
MCDA-enabled data fabric offers substantial benefits. It ensures a
seamless and transparent flow of information and supports the
integration of multimodal data sources, including medical, genetic,
socioeconomic, behavioural and clinical data. This integration is

critical for performing harmonized analyses across traditionally
isolated datasets, thus allowing for comprehensive assessments
that can identify nuanced relationships and patterns significant to
brain health. By effectively reconciling terminological and
representational discrepancies, AI-enabled data fabric significantly
simplifies the navigation through interconnected data entities
related to a patient’s historical health records, exposure levels,
and potential risk factors, thereby enhancing the precision of
hypothesis formulation and evidentiary assessments. This
capability is crucial for maintaining the integrity and lineage of
data, which is essential for accurately tracing interventions,
outcomes, and hypothesis testing across the convoluted landscape
of brain health research.

Furthermore, the predictive capabilities of this integrated system
are instrumental in anticipating the impacts of potential
interventions or environmental changes on patient outcomes.
Through the creation of simulated environments and scenarios,
researchers and clinicians can proactively test and refine
intervention strategies, which prepares the healthcare system to
respond efficiently and effectively to emerging challenges. This
proactive engagement not only mitigates potential risks but also
enhances the adaptability of health interventions, ensuring that they

FIGURE 1
A unified Model of Resilience and Aging.
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remain effective in the face of new discoveries and evolving patient
needs. This dynamic approach to health management underscores
the importance of continuous innovation and adaptability in the
field of brain health, particularly as it relates to fostering resilience
among aging populations.

Benefits of AI and advanced data
analytics to enhance brain health

The current discourse on brain health resilience emphasizes the
integration of various conceptual models from neurology, psychology,
and socio-ecological disciplines, revealing the complex interplay
between genetic, behavioral, and environmental factors. This
complexity necessitates a multidisciplinary approach to understand
and enhance cognitive resilience effectively. Models such as UMRA
facilitate this integration by framing resilience through a life-course
perspective that incorporates planning, absorption, recovery, and
adaptation phases endorsed by the National Academy of Sciences.
Such models are not only pivotal for theoretical advancements but also
enhance practical applications in clinical settings, where personalized
interventions can be tailored based on comprehensive, data-
driven insights.

The application of AI in operationalizing resilience within brain
health research represents a paradigm shift towards more predictive,
personalized, and preventative healthcare. AI algorithms and machine
learning models afford the capability to process and analyze large-scale,
heterogeneous data sets, thereby identifying patterns and interactions
that are not readily apparent through conventional statistical methods.
This capability is crucial for developing dynamic models of brain health
that adapt to new data inputs and evolve in response to emerging
research findings and clinical practices.

Despite these advancements, significant challenges remain in the
realm of data integration. The AI-enabled data fabric approach, while
robust in theory, requires meticulous implementation to ensure the
integrity, accessibility, and compatibility of data across various sources
and formats. The standardization of data using ontologies and
taxonomies, coupled with the flexible processing capabilities of
natural language processing and AI scripts, is essential for the
effective operationalization of resilience models. Moreover, data
fusion methodologies in which subjective judgement and values
need to be integrated are not developed, but integration of MCDA
may help in both transparent fusion of heterogeneous information and
visualizing confidence associated with AI predictions. These processes
are resource-intensive and require ongoing adjustments to align with
new scientific evidence and technological developments. Further, the
deployment of AI and data analytics in brain health necessitates careful
consideration of ethical, legal, and social implications. Issues such as
data privacy, consent for data use, and the potential for algorithmic bias
must be addressed to ensure that these technological solutions do not
inadvertently perpetuate disparities in healthcare access or outcomes.

Challenges of handling incomplete,
irregular or missing data

Incomplete, irregular, or even missing data are quite common in
many healthcare settings. If not handled properly, they can cause the

MLLM to generate unsafe or misleading recommendations. Some
approaches can be employed to mitigate the incomplete or missing
data, such as imputation, missing-aware training, RAG, and human-
in-the-loop validation. A careful combination of these approaches is
usually required, based on a deep comprehension of the data being
analyzed (Afkanpour et al., 2024; Atf et al., 2025; Busch, 2025;
Stempfle et al., 2025).

Data case example: the Canadian
Longitudinal Study on Aging

One case example is the use of the Canadian Longitudinal Study
on Aging (CLSA). The CLSA is a national study that started in
2010 with data collected every 3 years, starting with Baseline data
collected among over 51,338 Canadians aged between 45 and
85 when recruited. The CLSA data contain a wide range of
information related to demographic background, physical and
mental health, family and social life, employment and retirement
situation, etc. of participants (for detailed information, see Raina
et al., 2019). The CLSA participants are comprised of two cohorts,
the Comprehensive cohort and the Tracking cohort. Participants
from the Comprehensive cohort were randomly selected from the
population (within age/sex strata) within 25 km (50 km for lower
population density areas) of the established 11 CLSA data collection
sites, and data were collected on-site and via a home interview and
includes physiological data (blood for biomarkers, urine, bone
density, hearing, sight, etc.), cognitive status, health profile, and a
face-to-face interview similar to the Tracking Cohort. Participants
from the Tracking cohort were randomly selected from the ten
provinces of Canada and data were collected through telephone
interviews. Three data points are accessible for analyses with a fourth
wave available by the end of 2025. Data are available from the
Canadian Longitudinal Study on Aging (www.clsa-elcv.ca) for
researchers who meet the criteria for access to de-identified
CLSA data. These data have also been linked to the Canadian
Urban Environmental Health Research Consortium (CANUE)
data set, which includes aggregated environmental data to assess
urban health. Health administrative data will also be linked to the
CLSA, including hospital, primary care, long-term care and
pharmacological data at the individual level. Together, these data
provide over a million data points to which AI analytic techniques
could be employed.

Conclusion

The integration of AI, especially the latest LLM, MLLM and AI
sensor technologies, and advanced data analytics applied to
resilience, offers a promising pathway to transform the landscape
of brain health. Yet, there are many challenges and barriers to
harnessing the potential of AI that require interdisciplinary
collaborations, including merging knowledge from both applied
and basic research. While the challenges are not trivial, there is
potential for researchers and clinicians can develop more nuanced
understandings of cognitive aging processes and more effectively
intervene to enhance brain resilience across diverse populations.
Employing a unified resilience model to this field offers a platform to
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forge new pathways into the growing field of prevention and
treatment of ADRD. This proactive, predictive, and personalized
approach is not just the future of brain health research; it is a
necessary evolution to meet the growing complexities of aging
populations worldwide.
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