
MOLECULAR NEUROSCIENCE

This review will cover the cerebral oxygen tensions during neu-
rogenesis and cerebral diseases, then the role of oxygen on the 
cellular behaviors of neural stem cells (NSCs) will be discussed. In 
addition, the involved molecular mechanisms will be talked about 
in the present review.

Oxygen niche during embryOnic and adult 
neurOgenesis
Oxygen niche Of neurOgenesis during embryO develOpment
The accurate data about oxygen content during the embryonic 
neurogenesis has attracted many researchers. During the pre-
implantation period, the oxygen tensions were about 60 mmHg 
in oviducts of rabbits (Mastroianni and Jones, 1965), but less than 
10 mmHg in uterus of rhesus monkeys (Maas et al., 1976), 5–50 
and 25–50 mmHg in uterus of the hamsters and rats (Kaufman and 
Mitchell, 1990). After the implantation of embryos the oxygen ten-
sion in amniotic fluid was 10.9 ± 1.0 mmHg in the early gestation 
and 11.6 ± 0.7 mmHg in mid gestation of sheep (Jauniaux et al., 
2000). During the late gestation, although the onset of placental gas 
exchange establishes, the P

O2
 values for umbilical artery, vein, and 

amniotic fluid are still constrained below maternal venous levels 
(23, 30, and 12 mmHg, respectively; Eskes et al., 1983; Yeomans 
et al., 1985; Rurak et al., 1987; Jauniaux et al., 2000). In summary, 
the whole process of embryonic development is under the low-
oxygen concentration.

The embryonic neurogenesis begins at the early gestation period 
when the placental gas exchanges have not been set up, and under 
very low-oxygen concentration (≤15.2 mmHg; Zhou, 2004). In the 
mid and late gestation, the density of cerebral vessels has become 

intrOductiOn
Oxygen, as a significant substrate for energy production and cell 
metabolism, is essential for most of the life on earth and affects vari-
ous aspects of life activities, including growth and development. It 
is interesting to note that the normal oxygen levels in the tissues are 
always substantially lower than 156 mmHg O

2
 in the air we breath 

(Panchision, 2009): in the lung parenchyma and in circulation, the 
oxygen tension is ranged from 28 to 98 mmHg; in the eye (retina, 
corpus vitreous), from 7 to 35 mmHg; in the bone marrow, from 
0 to 28 mmHg. These oxygen concentrations (7–35 mmHg O

2
) are 

called “physiological hypoxia,” that is a steady state of physiological 
oxygenation or “in situ normoxia” (Ivanovic, 2009).

The brain is one of the heaviest oxygen consumers in the body, 
which accounts for 20% of total oxygen consumption (Masamoto 
and Tanishita, 2009). However, the oxygen levels in almost all 
the regions of brain are very low: 32 ± 4 mmHg in the thalamus, 
27 ± 6 mmHg in the cerebral cortex, 20 ± 3 mmHg in the hip-
pocampus, and 15 ± 3 mmHg in the corpus callous in isoflurane-
anesthetized rats (Ivanovic, 2009). In addition, the development 
of various organs of embryos including the central nervous sys-
tem (CNS) takes place in low-oxygen concentration (Fischer and 
Bavister, 1993; Chen et al., 1999). Apart from this, oxygen levels in 
brain tissues are often altered during stroke (Liu et al., 2004), brain 
trauma (Valadka et al., 1998), and in the hyperbaric oxygen (HBO) 
environment (Balenane, 1982). Thus, the oxygen supply to brain 
must be precisely controlled in response to local demand induced 
by metabolic activity to prevent tissue hypoxia which would imme-
diately lead to irreversible damages in brain functions (Masamoto 
and Tanishita, 2009).
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The “neurogenic niche” includes the vascular niche, the astrocyte 
niche, the neural net niche, and the molecular pathway niche (Suh 
et al., 2009). However, the “oxygen niche” of the adult neurogenesis 
has not been paid extensive attention until now. Shen et al. (2008) 
have found that the SVZ contains a rich plexus of blood vessels that 
snake along and within neuroblast chains. Cells expressing stem 
cell markers, including glial fibrillary acidic protein (GFAP), and 
proliferation markers are closely apposed to the laminin-containing 
extracellular matrix (ECM) surrounding vascular endothelial cells. 
Tavazoie et al. (2008) have also found that dividing stem cells and 
their transit-amplifying progeny were tightly apposed to SVZ blood 
vessels both during homeostasis and regeneration. They frequently 
contact the vasculature at sites that lack astrocyte endfeet and peri-
cyte coverage, and regeneration often occurs at these sites (Tavazoie 
et al., 2008). It has also been found that the physical exercise could 
induce both of the angiogenesis and the neurogenesis in hippocam-
pus (Van der Borght et al., 2009). Taken together, all of the above 
researches indicated the significant role of the vessels as one of the 
important components of the neurogenesis niche, and may also 
implied that the higher oxygen tension around the vessels in SVZ 
and DG would be significant for the maintenance of the charac-
teristics of the NSCs. While, our recent work have provided some 
direct data related to the above issues. We found that the P

O2
 levels 

in ventricles are in a dynamic state and fluctuate in the range of 
42 to 48 mmHg at a frequency of about 3 min. In hippocampus, 
the P

O2
 levels in CA1 and hilus are very stable and maintain about 

2 mmHg; while the P
O2

 level in DG is dynamic and fluctuates in a 
range of 6–8 mmHg (Zhang et al., 2010).

changes Of Oxygen tensiOn in brain tissues during 
different states/cOnditiOns
Oxygen changes in brain tissues during brain insults
The oxygen supply to brain might be influenced by various brain 
insults, which could lead to brain irreversible damages. Brain 
insults include stroke, trauma, subarachnoid hemorrhage (SAH), 
and so on, which produce changes in structure, pressure dynamics, 
chemical balance, and blood flow (Bader, 2006). Ultimately, the 
delivery of oxygen to the cranial vault may become compromised. 
The devastating primary insult creates structural damage to neu-
rons, vessels, and cranial nerves as well as compression of the brain 
and vasculature. The resulting edema and pathological processes 
further compromise the delivery of blood flow and oxygen to the 
brain (Bader, 2006).

The P
O2

 levels in uninjured brain tissue has been measured about 
25–30 mmHg in white matter of frontal lobes (Sarrafzadeh et al., 
1998), 20–40 mmHg in normal tissue (Hlatky et al., 2003). A lot 
of researchers have also investigated the changes of oxygen tension 
during brain insults, such as stroke, trauma, or SAH (Maas and 
Fleckenstein, 1993; Zauner et al., 1996; Doppenberg and Zauner, 
1998; Liu et al., 2006). van den Brink et al. (2000) studied 101 coma-
tose patients who had traumatic brain injury (TBI) and reported 
that the survivors had significantly higher P

O2
 levels during the 

monitoring period than did the patients who died. Lower P
O2

 levels 
were related to a greater risk for death (van den Brink et al., 2000). 
The investigators found that P

O2 
of less than 15 mmHg for longer 

than 30 min or less than 10 mmHg for 10 min correlated with a 
statistically significant risk for death. In one study of 39 patients, the 

an important factor which determines the oxygen niche of embry-
onic neurogenesis (Takashima and Tanaka, 1978). Takashima and 
Tanaka (1978) have investigated the development of cerebral vas-
cular in human fetal brain and found that most of the perforating 
branches are short in the second trimester and develop with ges-
tational age. In most of cerebral regions, the vessel density is low 
before 28 gestational week (GW), and then increased after this time 
point, e.g., the cerebral cortex, the subcortical white matter, and 
the basis pontis. In the other cerebral regions, the vessel density is 
high before 28 GW, and decreases or remains high after this time 
point, e.g., the deep white matter and putamen (Mito et al., 1991; 
Miyawaki et al., 1998). Thus, the development of blood vessels dur-
ing the whole gestational period might parallel with the changes 
of cerebral oxygen niche.

The direct evidences about oxygen niche of embryonic neurogen-
esis were provided by Chen (Chen et al., 1999), utilizing the hypoxia 
marker EF5, a nitroimidazole derivative which binds covalently to 
protein, RNA, and DNA in cells exposed to a hypoxic environment 
(0.076–7.6 mmHg oxygen; Lord et al., 1993). They found that the 
neural tube in both the hindbrain and midbrain regions also stained 
strongly with the EF5 immunoreactivity, indicating that the oxygen 
tensions of these regions substantially below 7.6 mmHg (Lord et al., 
1993). Lee You Mie also used the hypoxia marker, pimonidazole 
hydrochloride (Hypoxyprobe™-1), to indicate the hypoxic regions 
during embryonic development (Lee et al., 2001). They found that 
hypoxic regions detected by hypoxia marker exist on 8.5–9.0 day past 
copulation (d.p.c.) in folding neural tube and neuronal mesenchy-
mal cells in mouse embryos. In the brain, the mesenchymal region 
was hypoxia marker-immunoreactive, suggesting that at this stage 
at least, highly proliferative cells may be localized in the low-oxygen 
tension. At day 9.5–11.5, the hypoxic regions in embryonic tissues 
were spread into neural tubes of telencephalon, diencephalon, and 
metencephalon including mesenchymal region of head. On 12.5 
d.p.c., the hypoxic immunoreactive regions were clearly demarcated 
in the internal lining of the cranial flexure, myelencephalon, and 
choroid plexi, and in the center of maxillary prominence, where cells 
proliferate and differentiate (Lee et al., 2001). Those above inves-
tigations provided strong and direct evidences that the embryonic 
neurogenesis was under very low-oxygen tension.

Oxygen niche Of adult neurOgenesis
The neurogenesis in the adult mammalian brain was first evidenced 
by Altman in the adult rat using in vivo 3H-thymidine administra-
tion (Altman 1962, 1969; Altman and Das, 1965, 1967). Direct 
demonstration of NSCs in the mature brain was provided by means 
of primary cell culture from dissociated brain tissue (Reynolds 
and Weiss, 1992). This discovery generated great expectations by 
raising the prospect of regenerative therapies for the treatment of 
CNS injuries such as those brought by ischemia or neurodegen-
erative disorders (Miller, 2006). Continuous neurogenesis from 
NSCs has been identified in two neurogenic germinal zones of adult 
brains: the subgranular zone (SGZ) of the dentate gyrus (DG) of 
the hippocampus and the subventricular zone (SVZ) of the lateral 
ventricles (Suh et al., 2009). Such in vivo neurogenetic restrictions 
were formally demonstrated to arise from the tissular microenvi-
ronment, which led to the emerging concept of “neurogenic niche” 
(Moyse et al., 2008).
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760 mmHg oxygen at 1–3 ATA, arterial oxygen content is increased 
by 4 ml/100 g/min (Nunn, 1969). The oxygen tension in brain capil-
lary blood was also enhanced by the increased oxygen pressure (to 
2.0, 3.0, and 3.5 ATA), but fell down in the venous blood; While, the 
supplementation of 2% CO

2
 to oxygen at 3.5 ATA tremendously 

increases the mean capillary P
O2

 and the oxygenation of venous 
blood (Balenane, 1982). Exposure to 7 ATA O

2
 showed two to three-

fold increases in oxygen in the cerebral cortex, hippocampus, and 
the reticular formation compared to air breathing and considerably 
less than that expected (Torbati et al., 1976, 1977). Vasoconstriction 
in response to HBO could be the reason for the blunted increase in 
brain tissue P

O2
 during HBO exposure, in addition to the possibility 

of increased the cerebral metabolic rate of oxygen (CMRO
2
) associ-

ated with increased electrical activity at high oxygen pressures in 
the range of 7 ATA (Nemoto and Betterman, 2007).

Hyperbaric oxygenation, breathing of 760 mmHg O
2
 under 

hyperbaric conditions, is a potent method to increase the O
2
 con-

centration in tissue with impaired blood supply. Experimental 
as well as clinical studies have reported a positive effect of HBO 
therapy. Survival rate has increased under HBO therapy and neu-
rological outcome has improved (Fischer et al., 2010). However, 
the HBO treatment in cerebral ischemic–anoxic is the proverbial 
“double-edged sword” because of the dual nature of oxygen in being 
essential to life and at the same time, it is toxic in excess (Nemoto 
and Betterman, 2007). It is noted that, in preclinical studies, HBO 
therapy was effective if administered within 6 h post-stroke after 
transient middle cerebral artery occlusion and worsened the sever-
ity of injury if applied 12 h or later after the stroke (Lou et al., 2004).

Hypobaric hypoxia (HH) is a predisposing environmental con-
dition at high altitude (HA), where although barometric pressure 
decreases exponentially as altitude is gained, the percentage of each 
gas component of air is constant up to 12,000 m (Wilson et al., 2009). 
Therefore, although the proportion of oxygen remains unchanged 
at 20.93%, increases in altitude result in a lower partial pressure of 
oxygen in the inspired air. This reduction in the driving gradient on 
the oxygen cascade can compromise the supply of adequate oxygen 
to the tissues (Wilson et al., 2009). Compensatory hyperventilation, 
tachycardia, erythropoietin-induced polycythemia, and increased 
cerebral blood flow (CBF) can partially maintain cerebral oxygen 
delivery at HAs (West et al., 2007). However, because the brain is 
exquisitely sensitive to hypoxia, it is the first organ to be compro-
mised when these mechanisms are inadequate (West, 1996; West 
et al., 2007). HH is known to cause various neurological clinical 
syndromes, including high altitude headache (HAH), acute moun-
tain sickness (AMS), and high altitude cerebral edema (HACE), and 
the genetics, molecular mechanisms, and physiology that underpin 
them (West et al., 2007).

 Some studies indicated that the average venous P
O2

 in brain tis-
sue is about 30 mmHg at the altitude of about 6000 m, lower than 
40 mmHg at the sea level (Boero et al., 1999). It was also found that 
the HH (28 days, 6000 m) could increase the capillary length per unit 
volume of tissue (Lv) in the cerebellar granular layer, the caudate 
nucleus, the globus pallidus, the substantia nigra, the superior col-
liculus, and the DG, which may accounts for the significant increase 
of O

2
 conductance to neural tissues, and suggested that formation of 

new capillaries is an important mechanism to restore the O
2
 deficit in 

chronic brain hypoxia and that local rates of energy utilization may 

investigators found that P
O2

 of less than 15 mmHg correlated with 
a greater chance of death. A value of less than 6 mmHg at any time 
was associated with a greater risk for dying (Valadka et al., 1998).

Liu et al. (2004) investigated the effects of stroke on the cerebral 
oxygen tension. They measured both absolute values, and temporal 
changes of P

O2
 in ischemic penumbra and core during ischemia 

and reperfusion in a rat model with the electron paramagnetic 
resonance (EPR) method. They found that pre-ischemic P

O2
 values 

in ischemic core and basal ganglial penumbra of the anesthetized 
rats were 33.4 ± 6.0 mmHg. After MCAO, interstitial P

O2
 in both 

core and penumbra dropped rapidly in the first 10 min, thence 
the rate of decrease slowed, and reached their respective lowest 
levels at 1-h postocclusion. The interstitial P

O2
 values in penum-

bra were significantly higher than the corresponding values in the 
core, and were 10.7 ± 7.8 and 1.2 ± 0.7 mmHg at 1-h after occlu-
sion, respectively. Importantly, after reperfusion, P

O2
 levels in both 

core and penumbra positions increased, but very differently. One 
hour after reperfusion core P

O2
 returned to near pre-ischemic lev-

els, 31.6 ± 16.5 mmHg, whilst penumbral P
O2

 showed only partial 
recovery to a level of 19.1 ± 6.7 mmHg. So it is demonstrated that 
the interstitial P

O2
 levels in penumbra and core are differentially 

affected during ischemia and reperfusion.
Tissue hypoxia-induced by brain insults plays a critical role in 

the primary and secondary events leading to cell death after cerebral 
ischemia (Zauner et al., 2002). Therefore, improving brain tissue 
oxygenation is a logical and important strategy of stroke treatment 
to delay the transition of ischemia to infarction (“buying time”). 
Several experimental studies showed that hyperbaric and normobaric 
hyperoxia (NBO) was able to impressively reduce the stroke lesion 
volumes (Miyamoto and Auer, 2000; Flynn and Auer, 2002; Singhal 
et al., 2002a,b; Günther et al., 2005; Kim and Singhal, 2005), signifi-
cantly extended the time window for reperfusion, and induced lasting 
neuroprotection in permanent ischemia (Henninger et al., 2007). Liu 
et al. (2004) have found that hyperoxic treatment (532 mmHg O

2
 for 

60 min) significantly increased penumbral P
O2

 during ischemia, but 
not in the core. They also found that 722 mmHg normobaric O

2
 given 

during ischemia was able to maintain penumbral interstitial P
O2

 levels 
close to the pre-ischemic value while it may cause a two-fold increase 
in penumbral P

O2
 level if given during reperfusion (Liu et al., 2006).

Oxygen tensiOn changes in brain tissues during hyperbaric 
and hypObaric Oxygen envirOnments
Hyperbaric oxygen therapy is defined by the Undersea and 
Hyperbaric Medical Society (UHMS) as a treatment in which a 
patient intermittingly breathes 760 mmHg oxygen under a pres-
sure that is greater than the pressure at sea level [a pressure greater 
than 1 atmosphere absolute (ATA)] (Calvert et al., 2007). HBO 
has been shown to be a potent means to increase the oxygen con-
tent of blood and has been advocated for the treatment of various 
ailments, including air embolism, carbon monoxide poisoning, 
wound healing, and ischemic stroke (Calvert et al., 2007; Nemoto 
and Betterman, 2007). Some studies showed the increase in arte-
rial oxygen content with increasing inspired oxygen at 1 ATA from 
159.6 to 760 mmHg and with 760 mmHg oxygen at 1, 2, and 3 
ATA. With each step increase in oxygen from 159.6 to 760 mmHg 
at 1 ATA and 760 mmHg oxygen at 2 and 3 ATA, arterial oxygen 
content is increased by 2/100 ml. Thus, by increasing oxygen with 
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of CNS stem cells (Morrison et al., 2000). Storch and his colleagues 
cultured human mesencephalic neural precursor cells from 9- to 
12-week-old fetal brain in low-oxygen (22.8 mmHg) and found 
long-term proliferation of these cells. Moreover, these human NSCs 
with low-oxygen culture could also give rise to dopamine (DA) neu-
rons (Storch et al., 2001, 2003). Nobutaka, using the NSCs cultured 
from the ganglionic eminence of fetal ICR mice on embryonic day 
15.5, demonstrated that the highest proliferation and the neuronal 
differentiation of the NSCs were observed in 15.2 mmHg oxygen, 
and the switching of the neuronal subtype differentiation from 
GABA-positive to glutamate-positive neurons was observed in 
lower oxygen conditions (Horie et al., 2008).

Our studies, with the rat embryonic mesencephalon (E13.5) 
exposed to different oxygen concentrations (152 mmHg O

2
, 

76 mmHg O
2
, and 22.8 mmHg O

2
) for 3 days, showed that hypoxia, 

especially 76 mmHg O
2
, promoted the proliferation of NPCs, and 

hypoxia-inducible factor-1α (HIF-1α) was critical in this process 
(Zhao et al., 2008). Our researches also demonstrated that NSCs 
cultured in hypoxia (22.8 mmHg O

2
) displayed an increase in the 

percentage of neurons. Especially the percentage of TH-positive 
neurons differentiated from NSCs in lowered oxygen increased 
significantly; the DA content in the medium was higher than under 
normal conditions. HIF-1α is also involved in the regulation of 
dopaminergic differentiation of NSCs in lowered oxygen (Zhang 
et al., 2006).

In summary, the moderate low-oxygen (15.2–38 mmHg) con-
centration was able to promote the proliferation of NSCs from 
various resources and enhance the differentiation of NSCs into 
the TH-positive neurons (Figure 1).

In addition, it should keep in mind that the “real” oxygen levels at 
cells in the cell culture experiments actually depend on many differ-
ent factors including the environment, the medium, the metabolism 
rate of cells and so on. In our studies on the oxygen levels in the 

influence angiogenesis in different areas of the brain (Boero et al., 
1999). Studies showed that the changes of the CBF depended upon 
the temporal domains at the HA. Exposure to acute hypoxia is known 
to cause an immediate increase in CBF, but it is also well known that 
hypocapnia by itself causes vasoconstriction (Brugniaux et al., 2007). 
During the acclimatization process, beginning several hours after the 
start of an altitude exposure and lasting for months (Powell et al., 
1998), CBF usually reaches a peak over the first few days followed by 
a progressive drop toward baseline levels (Wolff, 2000; Wolff et al., 
2002). In addition, Dunn et al. (2000) chronically adapted rats to one 
half an atmosphere of barometric pressure (6000 m) for 27 days and 
measured the cortical P

O2
 when animals were breathing normobaric 

gases. The P
O2

 in acclimated animals increased rapidly in the first 
7 days, then stabilized for the duration of the study. The average P

O2
 

in the acclimated group (from 7 days on) was 62 versus 26 mmHg in 
the control groups, an increase of 238% (Dunn et al., 2000).

effects Of Oxygen tensiOn On the behaviOr Of nscs
effects Of Oxygen tensiOn On the behaviOr Of nscs in vitro
The biological function of oxygen on NSCs in vitro was first reported 
by Studer and Morrison. Studer analyzed mesencephalic precursor 
cells from rat embryos in embryonic day 12 (E12) in traditional cul-
tures with 152 mmHg O

2
 and in lowered O

2
 (22.8 ± 15.2 mmHg). 

Proliferation was promoted and apoptosis was reduced when cells 
were grown in lowered O

2
, yielding greater numbers of precursors. 

The differentiation of precursor cells into neurons with specific 
neurotransmitter phenotypes was also significantly altered. The 
percentage of neurons of dopaminergic phenotype increased to 
56% in lowered O

2
 compared with 18% in 152 mmHg O

2
 (Studer 

et al., 2000). Morrison isolated the neural crest stem cells
 
and tested 

the growth and differentiation potential of NSCs at 38 mmHg 
O

2
.They also found that reduced oxygen levels can also promote 

the survival, proliferation, and catecholaminergic differentiation 

Figure 1 | effects of hypoxia on neural stem cells (NSCs) in vitro. In vitro, 
the moderate low-oxygen tension (15.2–38 mmHg) can promote proliferation of 
neural progenitor (NPCs) from various resources, such as mesencephalic 

precursor cells from rat/human embryos and neural crest stem cells (NSCs). In 
addition, low-oxygen tension (hypoxia) can enhance the differentiation of NSCs 
to dopaminergic neurons (TH-positive).
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In addition, it has been found that the HBO treatment can result 
in the proliferation of BrdU-positive cells and alleviate the myelin 
damage following hypoxic–ischemic brain damage (HIBD) in 
neonatal rats (Yu et al., 2006), which indicated that HBO therapy 
stimulated cells to proliferate in hypoxic–ischemic (HI) neonate 
rats. Xiao-Li and his colleagues have also found that there were 
remarkable increases in the proliferation of NSCs in the HBO-
treated group, 3, 6, 12, and 24 h after HI, as compared with the 
HIBD group. The HBO-treated group, 3, 6, and 12 h after HI, per-
formed better in the behavioral test and had less neural loss in the 
hippocampal CA1 region as compared with the HIBD group. The 
therapeutic window for effective HBO treatment could be delayed 
up to 12 h after HIBD, while the effect decreased 24 h after HI 
(Wang et al., 2008). They proposed that HBO treatment promote 
stem cells to proliferate, which is correlated with Wnt-3 protein 
(Wang et al., 2007). In addition, it has been found that the NSCs in 
neonatal HI rats were able to differentiate and migrate after HBO 
treatment (Yang et al., 2008). It has also been detected that HBO 
can up-regulate the differentiated ratio of brain-derived NSCs to 
neurons (Peng et al., 2007).

Studies also showed that the HH could affect the plasticity 
of neurons and neurogenesis of animals. It was found that there 
were impairment of spatial memory and a significant decrease in 
dendritic arborization and spine number along with increased 
number of damaged neurons after 3 and 7 days of HH (6100 m) 
exposure, but after 21 days of HH exposure the improvements of 
memory and structure were noted (Maiti et al., 2008). However, 
intermittent hypoxia exposure (4 h/day) to neonatal mice at 
2000 m for 3 or 4 weeks increased p-CREB, LTP, and synapses of 
hippocampus, and enhanced mice spatial learning and memory 
(Zhang et al., 2005). We also made investigative effort to find out 
whether intermittent hypoxia affects neurogenesis in the adult 
rat brain by examining the newly divided cells in the SVZ and 
DG. Our studies showed that the BrdU-labeled cells in the SVZ 
and DG increased after 3000 and 5000 m (4 h/day for 2 weeks) 
intermittent hypoxia. The number of BrdU-labeled cells in the 
SVZ returned to normal level 4 weeks following intermittent 
hypoxia. However, the BrdU-labeled cells in the DG had a two-
fold increase 4 weeks subsequent to intermittent hypoxia. We 
conclude that intermittent hypoxia facilitates the proliferation 
of NSCs in situ, and that the newly divided cells in the SVZ and 
DG react differently to hypoxia (Zhu et al., 2005a).

In summary, the three situations including stroke, HBO, and HH 
are all able to promote the neurogenesis in vivo. It is interesting to 
note that the common consequences caused by all the above three 
situations are the changes of the levels of oxygen concentration in 
vivo, including up-regulation and down-regulation. So we conclude 
that it is the changes of oxygen concentration, both including the 
increase or decrease of oxygen concentration, which induce the 
promotion of neurogenesis in vivo (Figures 2 and 3).

The possible moleculars involved in regulaTing 
neurogenesis
Hypoxia exists not only in the brain tissue, such as cortex, stria-
tum, hippocampus, thalamus etc. (Ndubuizu and LaManna, 2007), 
but also in the developing embryos, which is known to regulate 
the proliferation and differentiation of NSCs in vitro and in vivo 

medium with or without cells in the glove box filled with different 
levels of oxygen from 20.9 to 0%, we found that the oxygen levels in 
the medium were actually below that in the environment, but could 
be changed along with the different oxygen levels in the environ-
ment. In addition, the oxygen levels in the medium without cells 
were lower than that in the medium with cells, which indicated that 
the metabolism of cells could consume the oxygen in the medium. 
(e.g., In the oxygen levels of 20.9, 11.6, 5.8, 3.0% environments, the 
oxygen levels were respectively 18.3, 11.0, 5.8, 2.8% in the medium 
without cells, and 17.8, 10.45, 5.2, 2.75% in the medium with cells; 
unpublished results).

effecT of oxygen Tension on The behaviors of nscs in vivo
Neural stem cells in vivo mainly exist in the SVZ beside the striatum 
and the DG in the hippocampus of animals. Various stimulations 
can promote the proliferation and differentiation of NSCs in vivo, 
including physiological stimulations (e.g., physical exercises and 
learning) and pathological stimulations (e.g., seizures and stroke; 
Scharfman et al., 2003; Ohab et al., 2006; Scharfman and Gray, 2007; 
Shetty and Hattiangady, 2007; Bednarczyk et al., 2009; Clelland 
et al., 2009). The direct relationship of the oxygen concentration 
with the NSCs can be reflected by the neurogenesis during stroke 
and in the hyperbaric and hypobaric oxygen environment. So we 
focus on the above three situations to state the effect of oxygen 
concentration on proliferation and differentiation of NSCs.

Gu et al. (2000) first discovered the neurogenesis after stroke 
by in vivo Bromodeoxyuridine (5-bromo-2′-deoxyuridine, BrdU) 
incorporation assay, which is commonly used in the detection of 
proliferating cells in living tissues. They used the photothrombotic 
ring stroke model to investigate the cell proliferation process in the 
ischemically challenged region-at-risk after focal cerebral ischemia 
in the adult rat brain. The BrdU-positive cells (3–6%) were double-
labeled with the neuronspecific marker Map-2 at 7 and 100 days 
after stroke onset in the region-at-risk. They were distributed ran-
domly in cortical layers II–VI. This study suggests that, as a potential 
pathway for brain repair, new neurons can be generated in the 
cerebral cortex of adult rats after sublethal focal cerebral ischemia 
(Gu et al., 2000). John and his colleagues show that stroke induces 
neurogenesis from a GFAP-expressing progenitor cell in the SVZ 
and migration of newly born neurons into a unique neurovascu-
lar niche in peri-infarct cortex. Within this neurovascular niche, 
newly born, immature neurons closely associate with the remod-
eling vasculature. Neurogenesis and angiogenesis are causally linked 
through vascular production of stromal-derived factor 1 (SDF1) 
and angiopoietin 1 (Ang1; Ohab et al., 2006). Furthermore, Pär 
Thored and Ohab found that the vasculature also plays an impor-
tant role for long-term striatal neurogenesis after stroke (Ohab 
et al., 2006; Thored et al., 2007). During several months, neuroblasts 
migrate close to blood vessels through an area exhibiting early vas-
cular remodeling and persistently increased vessel density (Thored 
et al., 2007). In addition, new neuroblasts are recruited to an area in 
the peri-infarct cortex, exhibiting endothelial cell proliferation for 
the first days after cortical stroke (Ohab et al., 2006). All the above 
studies showed the significant functions of vascular niche in the 
processes of neurogenesis after stroke, and implied that the higher 
oxygen tension around the vessels may be a key factor affecting the 
neurogenesis induced by stroke.
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nOtch pathway
Notch is a transmembrane receptor for the ligands Delta and Jagged; 
ligand binding activates the cleavage of Notch and the transport of 
the notch intracellular domain (NICD) to the nucleus to regulate 
transcription of target genes (Gordon et al., 2008). Notch signaling 
acts as a stem cell self-renewal and antineurogenic signal during 
CNS development (Corbin et al., 2008). Gustafsson et al. (2005) 
reported that hypoxia blocked the differentiation of myogenic sat-
ellite cells, a myogenic cell line (C2C12), and primary NSCs in a 
Notch-dependent manner.

(Zhu et al., 2005b). Many of the cellular responses to hypoxia are 
mediated through changes in gene expression. The transcription 
factors primarily responsible for these changes are the HIFs, the 
biological function of which has been reviewed elsewhere (Keith 
and Simon, 2007; Panchision, 2009). Recent studies have identi-
fied new molecular mechanisms which modify the behaviors and 
functions of NSCs in lower oxygen levels. Here, we will focus on 
the Notch1, Bone morphogenetic protein (BMP), and Wnt signal-
ing pathway to understand the regulation of cellular behaviors and 
functions of NSCs during hypoxic environment.

Figure 2 | effect of stroke on the oxygen niche around NSCs in vivo. During 
the stroke, the thrombus block the blood and oxygen supply to the pathological 
region of brain, which cause the ischemia and hypoxia in the core and penumbra. 
In the penumbra, the angiogenesis and neurogenesis take place. Within this 
neurovascular niche, newly born, immature neurons closely associate with the 

remodeling vasculature. The oxygen tension around the remodeling vasculature is 
much higher than the other ischemic part, which implies that the higher oxygen 
tension around the vessels may be a key factor affecting the neurogenesis 
induced by stroke. The figure of circulatory system is referenced from the 
webpage (http://heart. wehealny.org /heart _tour/about.html).

Figure 3 | effect of hyperbaric/hypobaric oxygen on the oxygen niche around 
NSCs in vivo. Hyperbaric/hypobaric oxygen enhance/reduce the oxygen levels in 
pulmonary alveoli through respiratory system., which causes the alteration of the 
oxygen concentration in arterial blood, and changes the oxygen supply to the various 

areas of brain, including SVZ and DG. This lead the increase/decrease of oxygen 
tension in blood capillaries of SVZ and DG, which determines the PO2 around the 
neural stem cells (NSCs) in the above two regions. The figure of circulatory system 
is referenced from the webpage (http://heart.wehealny.org/heart_tour/about.html).
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indicating that HIF1α was required for BMP repression. Conversely, 
BMP activation at high oxygen tension led to reciprocal degrada-
tion of HIF1α; this BMP-induced degradation was inhibited in 
low-oxygen.

wnt/β-catenin pathway
β-Catenin is the key effector molecule in canonical Wnt signaling 
pathway. The binding of Wnt proteins to the seven-membrane-
spanning frizzled receptors (Frz) the stabilization and accumula-
tion of cytosolic β-catenin. The increased levels of β-catenin in the 
cytosol result in its nuclear translocation. In the nucleus, β-catenin 
interacts with members of the lymphoid enhancer binding factor/T 
cell-specific factor (LEF/TCF) family of transcription factors and 
activates expression of target genes such as c-myc and cyclins 
(Willert and Nusse, 1998; Cui et al., 2010).

During the mammalian embryonic development, the Wnt/β-
catenin signaling pathway regulates embryonic NSC proliferation 
and fate determination (Chenn and Walsh, 2002; Hirabayashi et al., 
2004). Canonical Wnt/β-catenin signaling pathway also plays a cru-
cial role in neurogenesis in adult mammalian CNS (Lie et al., 2005).

Jolly and his colleagues found that hypoxia activated Wnt/β-
catenin signaling in mouse embryonic cells and HIF-1 (HIF-1α/
ARNT complex) mediated hypoxia-induced Wnt signaling in 
embryonic cells. This regulation extended to primary cells, 
including isolated NSCs, and was not observed in differen-
tiated cells. In vivo, Hif-1α deletion impaired hippocampal 
Wnt-dependent processes, including NSC proliferation and 
differentiation. This decline correlated with reduced Wnt/β-
catenin signaling in the SGZ (Jolly et al., 2010). Cui has also 
found that hypoxia could enhance the proliferation of hippoc-
ampal NSCs and β-catenin contributed to this action (Cui et al., 
2010). Therefore, both of the above studies implied that O

2
 

may have a direct role in stem cell regulation through HIF-1α 
modulation of Wnt/β-catenin signaling.

In addition, Kaidi et al. (2007) have found that hypoxia was 
able to block colorectal tumor cell proliferation. Kaidi et al. (2007) 
reported that hypoxia inhibited the proliferation of colon carci-
noma cells in a β-catenin-dependent manner. Hypoxic treatment 
resulted in increased cell-cycle arrest and down-regulated expres-
sion of the Wnt/β-catenin target c-Myc, a potent cell-cycle regula-
tor. Hypoxic inhibition of Wnt/β-catenin signaling was mediated by 
physical interaction of HIF-1αwith β-catenin, resulting in reduced 
formation of β-catenin–TCF-4 complexes (Jolly et al., 2009).

cOnclusiOn
Studies reviewed here provide the data of oxygen concentration 
in cerebral tissue during embryonic and adult neurogenesis, and 
the cerebral oxygen level changes during cerebral disease and in 
hypobaric/HBO. The role of oxygen in the behaviors of NSCs is also 
reviewed through the in vivo and in vitro experimental evidences 
(Tables 1 and 2).

The significant function of oxygen in the differentiation and 
proliferation of NSCs raises the possibilities of amplifying NSCs 
in vitro for stem cell treatments by providing hypoxic niche around 
the cells. In addition, it is also possible to induce the neurogenesis 
in vivo by the modification of the oxygen environment around the 

It was found that hypoxia activates Notch-responsive promot-
ers and increases expression of Notch direct downstream genes. 
The NICD interacts with HIF-1α, a global regulator of oxy-
gen homeostasis, and HIF-1α is recruited to Notch-responsive 
promoters upon Notch activation under hypoxic conditions 
(Gustafsson et al., 2005). Diez et al. (2007) also identified the 
reduced oxygen levels lead to activation of the Dll4-Notch-Hey2 
signaling cascade and subsequent repression of COUP-TFII in 
endothelial progenitor cells. Cecilia showed that Notch signaling 
is required to convert the hypoxic stimulus into epithelial–mes-
enchymal transition (EMT), increased motility, and invasive-
ness. Inhibition of Notch signaling abrogated hypoxia-induced 
EMT and invasion. Conversely, activated form of Notch could 
substitute for hypoxia to induce these processes (Sahlgren et al., 
2008).

It has also been found that the activation of HIF-1 by short-term 
NiCl

2
 treatments (a condition of chemical hypoxia) dramatically 

increased APH-1A (a component of γ-secretase complex) mRNA 
and protein expression, indicative of an increase in γ-secretase activ-
ity. The cellular concentration of NICD was also increased after 
hypoxia treatment (Wang et al., 2006).

In addition, it has been demonstrated that an additional level 
of complexity in this cross-talk: factor-inhibiting HIF-1 (FIH-1) 
regulates not only HIF activity, but also the Notch signaling output 
and, in addition, plays a role in how Notch signaling modulates the 
hypoxic response (Zheng et al., 2008). They showed that FIH-1 
hydroxylates Notch ICD at two residues (N1945 and N2012) that are 
critical for the function of Notch ICD as a transactivator within cells 
and during neurogenesis and myogenesis in vivo. FIH-1 negatively 
regulates Notch activity and accelerates myogenic differentiation 
(Zheng et al., 2008).

bmp pathway
Bone morphogenetic proteins are members of the TGF-β super-
family. These secreted ligands bind to receptor complexes that cata-
lyze the phosphorylation and activation of the canonical SMAD 
proteins 1, 5, and 8, which complex with Smad4 and translocate 
to the nucleus to regulate the transcription of target genes (Nohe 
et al., 2004). BMPs are critical regulators of dorsoventral pattern-
ing during development and are well-characterized inducers of 
CNS stem cell differentiation, astroglial fate, mitotic arrest, and 
apoptosis. In contrast, the endogenously secreted BMP antagonist, 
noggin, limits glial differentiation, and redirects normal postnatal 
NSCs to generate neurons (Panchision, 2009).

Pistollato indicated that lowered oxygen tension repressed BMP 
signaling and subsequent glial differentiation of CNS precursor 
cells, while a higher oxygen tension promoted BMP signaling. 
The underlying mechanism may be caused by the repression of 
Smads1/5/8, a key step in BMP signal transduction, in low-oxygen 
tension (Pistollato et al., 2007). It has also been found that the 
BMP signaling was actively repressed by hypoxia with the high-
grade glioma (HGG) precursors which generated endogenous BMP 
signaling. An acute increase in oxygen tension led to Smad activa-
tion within 30 min, even in the absence of exogenous BMP treat-
ment. Furthermore, Pistollato et al. (2009) detected that silencing 
of HIF-1α led to Smad activation even under hypoxic conditions, 
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Table 1 | Oxygen levels in brain during physiological/phathological state and specific environment in vivo.

In vivo

PhySiOlOgiCal STaTe PeriOd regiON OF braiN PO2 value (mmhg) CiTaTiON

Embryo Neural tube of embryo <7.6 Lord et al. (1993)

Folding neural tube of mouse 

embryo at embryonic day 8.5–9.0 

(E8.5–9.0); neural tubes of mouse 

embryo at E9.5–11.5; cranial flexure, 

myelencephalon, and choroid plexi 

of mouse embryo at E12.5

<7.6 Lee et al. (2001)

Adult Dentate gyrus 6–8 Zhang et al. (2010) 

Lateral ventricles of adult rat 42–48 Zhang et al. (2010)

White matter of frontal lobes of 

adult human

25–30 Sarrafzadeh et al. (1998)

Striatum of adult rats 33.4 ± 6.0 Liu et al. (2004)

PaThOlOgiCal STaTe iNSulTS STaTuS PO2 value (mmhg) CiTaTiON

Stroke Ischemic penumbra of adult rat 1 h 

after MCAO

10.7 ± 7.8 Liu et al. (2004)

Ischemic core of adult rat 1 h after 

stroke MCAO

1.2 ± 0.7 Liu et al. (2004)

Penumbra of adult rat 1 h after 

reperfusion

19.1 ± 6.7 Liu et al. (2004)

Core of adult rat 1 h after 

reperfusion

31.6 ± 16.5 Liu et al. (2004)

Penumbra of adult rat breathing 30, 

70, 95, 100% oxygen 90 min after 

MCAO

12.3; 17.4; 34.1; 38.2 Liu et al. (2006)

Trauma Brain tissue of survivors N.C. (Higher) van den Brink et al. 

(2000)

Brain tissue at risk of death <15 for longer than 30 min van den Brink et al. 

(2000)

Brain tissue at risk of death <10 for 10 min van den Brink et al. 

(2000)

A greater risk for dying <6 Valadka et al. (1998)

SPeCiFiC eNvirON-
MeNT

TreaTMeNT OxygeN eNvirONMeNT 
(alTiTude)

PO2 value (mmhg) CiTaTiON

HBO N.C. N.C. N.C.

HH Brain tissue of adult mice at the sea 

level

40 Boero et al. (1999)

Brain tissue of adult mice at the 

altitude of 6000 m

30 Boero et al. (1999)

Front cortex of adult rat acclimated 

at the altitude of 6000 m from the 7 

to 27th-day when animals were 

breathing normobaric gases

62 Dunn et al. (2000)

HBO, hyperbaric oxygen; HH, hypobaric hypoxia.

body, which provides us a novel idea to promote the ability of learn-
ing and memory because of the involvement of neurogenesis in the 
process of cognition (Kempermann and Gage, 2002), and reminds 

us a new method for treating some mental illness because of the 
links between adult neurogenesis and mental disorders, such as 
Alzheimer’s Disease and schizophrenia (DeCarolis and Eisch, 2010).
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Because of the heavy oxygen consumption of brain and the 
low-oxygen level inside cerebral tissue, maintaining the narrow 
ranges of tissue P

O2
 may be beneficial to normal brain function. 

Higher or lower levels of tissue P
O2 

may affect normal chemical 
production, possibly leading to brain cell damage. However, 
the physiological mechanism of oxygen sensing and control 
remains largely unknown (Masamoto and Tanishita, 2009). 
Novel knowledge and innovative techniques are expected to 

Table 2 | Neural stem cells behaviors regulated by hypoxia in vitro.

In vitro

Survival SOurCe OF NSCs PrOMOTiON ± PO2 value (mmhg) CiTaTiON

E14.5 rat neural crest stem cells + 38 Morrison et al. (2000)

E12 rat mesencephalon + 22.8 ± 15.2 Studer et al. (2000)

Fetal human brain − 7.6 Stantilli et al. (2010)

ESC-derived NSCs + 30.4 Clarke and Kooy (2009)

P0 mice hippocampus + 38 Cui et al. (2010)

PrOliFeraTiON SOurCe OF NSCs PrOMOTiON ± PO2 value (mmhg) CiTaTiON

E12 rat mesencephalon + 22.8 ± 15.2 Studer et al. (2000)

E14.5 rat neural crest stem cells + 38 Morrison et al. (2000)

E14.5 rat or E14.5 mouse mesencephalon + 22.8 Storch et al. (2001, 2003)

E15.5 mice ganglionic eminence + 15.2 Horie et al. (2008)

E13.5 mouse mesencephalon + 76 Zhao et al. (2008)

Fetal human brain + 19 Stantilli et al. (2010)

Fetal human brain + 38 Stantilli et al. (2010)

P0 mice hippocampus + 38 Cui et al. (2010)

diFFereNTiaTiON direCTiON PrOMOTiON ± PO2 value (mmhg) CiTaTiON
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et al. (2001, 2003)
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Switching from GABA-positive to 
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GABAergic and slightly of glutamatergic 

neurons; oligodendrocytes

+ 19 Stantilli et al. (2010)

+ Promotion; − inhibition.
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