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A limiting factor in brain research still is the difficulty to evaluate in vivo the role of the
increasing number of proteins implicated in neuronal processes. We discuss here the
potential of antisense-mediated RNA targeting approaches. We mainly focus on those that
manipulate splicing (exon skipping and exon inclusion), but will also briefly discuss mRNA
targeting. Classic knockdown of expression by mRNA targeting is only one possible appli-
cation of antisense oligonucleotides (AON) in the control of gene function. Exon skipping
and inclusion are based on the interference of AONs with splicing of pre-mRNAs.These are
powerful, specific and particularly versatile techniques, which can be used to circumvent
pathogenic mutations, shift splice variant expression, knock down proteins, or to create
molecular models using in-frame deletions. Pre-mRNA targeting is currently used both as
a research tool, e.g., in models for motor neuron disease, and in clinical trials for Duchenne
muscular dystrophy and amyotrophic lateral sclerosis. AONs are particularly promising in
relation to brain research, as the modified AONs are taken up extremely fast in neurons
and glial cells with a long residence, and without the need for viral vectors or other deliv-
ery tools, once inside the blood brain barrier. In this review we cover (1). The principles
of antisense-mediated techniques, chemistry, and efficacy. (2) The pros and cons of AON
approaches in the brain compared to other techniques of interfering with gene function,
such as transgenesis and short hairpin RNAs, in terms of specificity of the manipulation,
spatial, and temporal control over gene expression, toxicity, and delivery issues. (3) The
potential applications for Neuroscience. We conclude that there is good evidence from ani-
mal studies that the central nervous system can be successfully targeted, but the potential
of the diverse AON-based approaches appears to be under-recognized.
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INTRODUCTION
In mammals the brain orchestrates a variety of different processes
ranging from maintaining homeostasis to complex behavioral out-
puts. Abnormalities in brain functioning may immediately affect
survival or have major consequences for health and general func-
tioning of the individual. A limiting factor in brain research
still is the difficulty to evaluate the role of the increasing num-
ber of proteins implicated in neuronal processes in vivo. More
often than not, specific receptor ligands or inhibitors are lack-
ing, targets are “un-druggable,” and transgenic approaches costly,
time-consuming, and/or dependent on viral delivery. Here, we
will review the potential of antisense-mediated approaches tar-
geting RNA, an area that has gone through considerable develop-
ment over the last years. We will mainly focus on those appli-
cations aimed at manipulation of splicing (exon skipping and
exon inclusion), but will also discuss mRNA targeting or classical
knockdown. Most applications of antisense-mediated manipula-
tion have been directly inspired by splice events that are relevant
for a number of human genetic diseases, but the approach may well
be incorporated in the general molecular toolkit we have available
for tackling current neuroscientific questions in vivo.

AON MECHANISMS
Antisense oligonucleotides (AONs) are small pieces of modified
RNA or DNA that can hybridize to RNA. In this manner they
can generate different effects depending on the AON chemistry
and target site (see Figure 1; Table 1). Initially, AONs were used
to induce gene knockdown (Dias and Stein, 2002). This can be
achieved through RNase H, a ubiquitous enzyme that cleaves
RNA:RNA or RNA:DNA hybrids (Figure 1A). The AONs used for
this application are generally modified with a phosphorothioate
backbone, which increases AON stability and enhances uptake
of the AON over cell membranes. Gene knockdown can also be
achieved using AONs targeting the translation start site (trans-
lation block, Figure 1B). Here, AONs can be modified further
to render them RNase H-resistant by addition of a methyl or
methoxy-ethyl group to the 2′O sugar ribose, which is the tar-
get cleavage site of the RNase H enzyme. Alternatively, nucleotides
have been modified even further, e.g., using phosphorodiamidate
morpholino oligomers (PMOs), peptide nucleic acids or locked
nucleic acids. PMOs have been used for developmental studies in
zebrafish embryos (Nasevicius and Ekker, 2000; Nasevicius et al.,
2000). Multiple RNase H-dependent AONs are in clinical trials
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FIGURE 1 | Schematic representation of different modes of action of

antisense oligonucleotides. (A) RNase H-dependent pathway. Binding of
antisense oligodeoxyribonucleotides (AONs) with a phosphorothioate
backbone results in a RNA:DNA hybrid, which activates RNase H. RNase H
will cleave the mRNA and prevents the translation into a protein. (B)

RNase-independent translational block. 2′OH modified RNase H-resistant
oligomers targeting the translation start site prevent translation and
elongation. AONs binding to the AUG initiation site or downstream prevents

binding of the ribosomal units or results in steric blockage. (C) Alternative
splicing. 2′OH modified RNase H-resistant or alternatively modified AONs
complementary to the target pre-mRNA can result in: (1) inclusion of an exon
by binding to the exonic splicing silencers (ESEs) or intronic splicing silencers
(ISSs). (2) exclusion of an exon by binding to the 3′ or 5′ slice sites or
exon-internal sequences, resulting in an in-frame transcript and translation of
a shorter partly functional protein. Full lines indicate possible splicing events
while dashed lines indicate non-possible events.

including one against high-grade glioma in phase IIb (trabeder-
sen (Bogdahn et al., 2011), and one has even been registered as
a drug for cytomegalovirus induced retinitis (vitravene; Marwick,
1998).

However, with the availability of shRNA and siRNA, which gen-
erally gives a more robust gene knockdown (or complete knockout

when cre-recombinase systems are used), the use of AONs is
often not the method of first choice to achieve knockdown (in
spite of advantages related to cellular uptake – see below). Mean-
while, other AON applications that use different mechanisms of
action are gaining more interest. The best-known application is
the manipulation of splicing. Using AONs that target splice sites or
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Table 1 | Advantages and disadvantages of the different AON design strategies.

AON design Advantages Limitations

RNase H-dependent pathways Can lead to considerable downregulation of gene

expression

Phosphorothioate backbone may induce toxic

and immunostimulatory effects

May induce transient or prolonged knockdown unlike

e.g., viral vectors

Splicing-modulation Does not require involvement of RNase H Knockdown can only be induced via out-of-frame

deletions

Can shift the expression ratio of splice variants without

affecting total gene expression levels

Can restore the reading frame of mutated mRNAs

May allow the study of specific protein domains through

in-frame deletions

Both exon inclusion and exclusion can be applied Cannot be applied to first and last exons of

transcripts

2′-OH modifications that render the AONs RNAs

H-resistant also antagonize immunostimulatory effects of

the phosphorothioate backbone

RNase H independent translational block Does not require involvement of RNase H Can only be targeted at a very specific region of

the mRNA around the 5′ cap

Can lead to considerable down regulation of gene

expression

Cannot be used against individual splice variants

2′-OH modifications that render the AONs RNAs

H-resistant can also antagonize immunostimulatory

effects of the phosphorothioate backbone

Depending on the desired effect RNase H-dependent downregulation, modulation of splicing or RNase H independent translational block may be employed to alter

gene expression.

exonic/intronic inclusion signals located within exons or introns,
exons can be hidden from the splicing machinery, resulting in the
skipping of the target exon (Figure 1C). This can have multiple
applications, e.g., switching from one isoform to another, skipping
an aberrantly introduced exon to restore the normal transcript, or
introducing an out-of-frame deletion to knock down expression
of a gene. The latter approach may also be considered as a com-
plementary method to AON-induced knockout through RNAse
H-dependent cleavage of RNA:DNA hybrids (Aartsma-Rus et al.,
2009). Exon skipping resulting in the expression of truncated,
non-functional proteins may be of particular interest in relation
with genes or gene pathways which are considered“un-druggable.”
Since specific ligands or antagonists cannot always target mole-
cules of interest, AON-mediated RNA targeting can be a good
alternative to achieve partial and/or reversible knockdown of such
proteins.

Finally, another application of exon skipping is to reframe
transcripts allowing the production of an internally deleted, par-
tially functional protein rather than a prematurely truncated non-
functional protein (Figure 1C). This has been extensively stud-
ied as a therapeutic approach for Duchenne muscular dystrophy
(DMD). Protein restoration has been shown in patient-derived
cell cultures and in animal models this led to a rescued phenotype
(Aartsma-Rus et al., 2006; Heemskerk et al., 2009, 2010). After
encouraging results in phase I and I/II clinical trials (Lu et al.,
2003; Alter et al., 2006; van Deutekom et al., 2007; Kinali et al.,

2009; Goemans et al., 2011), this approach is currently tested in
phase III clinical trials. As will be detailed below, this strategy to
generate deletion mutants bears much promise for experimen-
tal neuroscience too. In other cases, intron splicing silencers may
be targeted, resulting in exon inclusion and therefore increase of
the expression of a gene or isoform. Here, the most prominent
application is rescue of spinal muscular atrophy (SMA) by AON-
mediated stimulation of the expression of a functional homolog
(see below; Williams et al., 2009; Burghes and McGovern, 2010;
Hua et al., 2010; Nlend Nlend et al., 2010).

SPECIFICITY
A very important aspect of all splicing-modulation or gene-
silencing operations is specificity to the selected target. siRNAs
exert their actions in the cytoplasm via interactions with the
RNA-induced silencing complex (RISC; Krebs and Alsberg, 2011).
Off-target effects appear when siRNA strands interact with par-
tially complementary regions of mRNAs other than the fully
complementary target mRNAs (Ma et al., 2006; Vickers et al.,
2009; Petri et al., 2011). AON development has faced the same
issues in the past (Gaglione and Messere, 2010) and the solu-
tions included modifications of the backbone to reduce base-pair
affinity, thus reducing off-target effects (Yoo et al., 2004; Guterstam
et al., 2008). Luckily, these modifications can be applied to siRNAs
as well (Gaglione and Messere, 2010). A problem that might arise
is cell death due to oversaturation of cellular RNA pathways by
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siRNAs (Grimm et al., 2006) that are necessary for normal cel-
lular function. However, this problem does not exist with AONs
since they exert their activity in the nucleus without the need for
anything equivalent to the RISC complex (Smith et al., 2006).

CELLULAR DELIVERY AND ASSOCIATED SAFETY
In all instances of RNA or DNA interference in the brain, delivery
is an issue. In vivo manipulation of gene expression with shRNA
very often depends on the use of viral vectors (Di Benedetto et al.,
2009; Ehlert et al., 2010; Kubo et al., 2010), as do cre-recombinase
mediated gene excision (Kolber et al., 2008) or gene overexpres-
sion models (Ulusoy et al., 2010; Woldbye et al., 2010). However,
AONs after reaching the brain, are readily taken up by neurons,
and are therefore independent of viral transduction of neurons
(Figure 2A). The ease of delivery of the present day modified AONs
seems to be linked with a lack of any major adverse side effects.

Delivery of viral vectors has been associated with various levels
of toxicity in the brain, mainly depending on viral type used. For
example, AAV vectors have been shown to induce neurotoxicity
when delivered to the central nervous system (CNS; Oshiro et al.,
1995; Driesse et al., 2000; Ehlert et al., 2010; Jayandharan et al.,
2011), although serotypes may differ in that aspect (Sanchez et al.,
2011). Other viral types, such as retrovirus, show milder toxicity,
but they are not suitable for investigation of long-term effects
and have limits in the cellular types they can infect (Kaplitt et al.,
1998). Lentivirus causes less inflammatory and immune response,
but it still shares the disadvantage that preexisting immunity to
the parental wild-type virus may cause an accentuated immune

response. In contrast, for 2′-O-modified-phosphorothioate AONs
only very mild toxicity has been reported, which did not inter-
fere with their desirable effects (Liebsch et al., 1999; Hua et al.,
2010) after delivery in the brain via the ventricles, or in cultured
neuronal cells (Muller et al., 2000). Although it has been shown
that phosphorothioate AONs and siRNAs can have an immunos-
timulatory effect via toll-like receptors (TLRs; Sioud et al., 2007;
Okun et al., 2009), appropriate 2′-O modifications, such as 2′-O-
methylation can suppress these effects (Robbins et al., 2007; Sioud
et al., 2007; Hamm et al., 2010). The toxic effects that have been
reported in some studies after AON delivery in the brain may be
due to the vehicle used (Chiasson et al., 1994) or lack of appropriate
modifications. Importantly, one can only use AONs bearing 2′-O
modifications for modulation of splicing, as an AON without such
modification will result in RNAse H activation. Preliminary results
from our group have confirmed lack of immune responses to 2′-O-
methyl-phosphorothioate AONs compared with saline treatment
after a single local injection in the central nucleus of the amygdala
(CeA) of the mouse brain (Figure 2B,C). However, it is important
to mention that possible toxic and immunostimulatory effects
may also be a function of dosage, concentration or duration of
treatment (Hua et al., 2010).

Compared to viral delivery methods, AONs have a very rapid
uptake and initiation of the effect (Pitts et al., 2009; Ma et al.,
2011; within minutes to hours), which allows for administra-
tion between different stages of the same experiment (Pitts et al.,
2009; Pitts and Takahashi, 2010). Secondly, AONs administra-
tion allows better dosage control that can give the optimal effect

FIGURE 2 | Efficient uptake and low toxicity after local AON injections in

the central amygdala (CeA) of the mouse brain. (A) Green fluorescent
signal in the mouse CeA (magnification 50×). In the right panel, colocalization
of AONs (green) and CRH (red) in the CeA (10×). (B) The area of GFAP
(marker for astrocytes) positive cells is not significantly different between
animals injected with saline and animals injected with AONs 3 and 7 days

after a single local injection in the CeA. (C) Area of CD-45 (marker for
activated microglia) positive cells is not significantly different between
animals injected with saline and animals injected with AONs 3 and 7 days
after a single local injection in the CeA (n = 4–7 per group). Graphs (B) and (C)

show that a single injection of AONs induces a similar immune response to a
single injection of saline (vehicle).
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while reducing potential toxic effects due to, e.g., complete or too
high levels of knockdown (Smith et al., 2006; Heemskerk et al.,
2010; Hua et al., 2010). In contrast, virally mediated methods
tend to produce an all-or-nothing effect, particularly when cre-
recombinase systems are used (Pfeifer et al., 2001; Kolber et al.,
2008). Another characteristic of AON targeting is the possibil-
ity to discontinue treatment (Smith et al., 2006). Although AONs
have a longer half-life than, for instance, siRNAs (Smith et al.,
2006), eventually they are degraded allowing gene expression to
return to basal levels. Viral vectors, however, have a virtually per-
manent action, although long-term effects may depend on viral
type (Kaplitt et al., 1998). Obviously, in instances where long-
term manipulation is the goal, a single treatment with a long-term
effect may be desirable (Hua et al., 2010). Finally other advantages
include rapid production and lack of GMO safety related issues,
since no genetically engineered viruses are involved and there is
no risk of recombination or reversion to wild-type virus (Naldini
et al., 1996; Kaplitt et al., 1998)

Even when methods of virus-independent, direct delivery of
siRNA are considered, for example based on conjugations (Iorns
et al., 2007) several other issues become apparent. These meth-
ods are characterized by various inherent challenges, such as high
degradation rate of the siRNA, low cellular uptake and efficiency
(Shim and Kwon, 2010), and induction of interferon responses
(Sledz et al., 2003; Grimm et al., 2006; Pan et al., 2011). In com-
parison, AONs have a lower turnover rate (Smith et al., 2006),
more prolonged action (Vickers et al., 2009) and, as they are single
stranded rather than double stranded, better cellular uptake (our
results), which can be achieved even in the absence of auxiliary
transfectants (Stein et al., 2010).

In conclusion, AON treatments appear as an attractive
approach not only in cases where they restore protein function
(such as DMD) but in many other cases where modulation of
gene expression is required. Moreover, they offer advantages over
other approaches such as siRNA interference that may be very
advantageous in certain contexts. In terms of non-specific reac-
tions, we have to emphasize that no definitive lack of any adverse
reactions has been proven, but from the available evidence we con-
clude that side effects in terms of astrogliosis and microgliosis are
very limited.

BRAIN DELIVERY OF AONs
A major challenge of both AON and shRNA applications in neu-
roscience and in particular for possible clinical use in neurode-
generative disorders is the actual delivery to the brain. The blood
brain barrier (BBB) is a physiological obstruction for molecules
to enter the brain and molecules can only enter the brain inter-
stitial fluid by transport through the brain capillary endothelial
cells (Pardridge, 2002). Intravenous or intraperitoneal adminis-
tration of phosphorothioate oligonucleotides in rodents showed
a very low uptake in brain (Agrawal et al., 1991; Cossum et al.,
1993). Increased brain uptake of AON after peripheral delivery
can be achieved by increasing the permeability of the BBB (Riley
et al., 1998) or through encapsulating the AON in liposomes con-
jugated to monoclonal antibodies (Zhang et al., 2002; Brignole
et al., 2003). Another way to solve this problem is by local injec-
tions in the desired brain region if spatial specificity is important

or by injection in the cerebrospinal fluid if broad distribution in
the brain is deemed more important.

Direct injection in specific brain regions is a method that
has been widely used both in rodent studies and in human
patients (Olbricht et al., 2010). Experimentally, they offer insight
in local effects of widespread factors (Ambroggi et al., 2009),
and can have the advantage of contralateral controls in the same
animal. Moreover, it provides the options of single injections
or repeated/continuous delivery via cannulation. Importantly, it
also offers the possibility of reducing the injected dose, thus
decreasing potential toxic or immunogenic effects. In human
patients intracranial delivery is used in the context of glioblastoma
treatment with AONs (Bogdahn et al., 2011).

The alternative of intraventricular (or intrathecal) delivery into
the cerebrospinal fluid has also proven successful. Continuous
infusion into the ventricle of rodent and non-human primate
brains showed significant concentrations of AON throughout the
brain,brain stem,and spinal cord. Significant reduction of targeted
mRNA indicated that the AON is readily taken up by cells (Smith
et al., 2006). The advantage of ventricular infusion through a sur-
gically implanted pump is that there is constant delivery where the
dosage can be accurately regulated (Dash and Cudworth, II. 1998).
Furthermore, the disadvantage of the AONs’ restricted ability to
cross the BBB also is a clear advantage, since after ventricular
infusion the AONs will remain in the brain (Hua et al., 2010)
thereby reducing side effects on peripheral organs like liver and
kidney that readily take up AONs.

In conclusion, while AONs for use in the CNS cannot be admin-
istered systemically, they have excellent entry into cells once they
passed the BBB. For several backbone chemistries, it has been
shown that local injection and distribution via the CSF seem to be
devoid of any major toxicity.

CURRENT DISEASE MODELS
There are several neurodegenerative disorders where AONs are a
promising therapeutic strategy and we will show some examples
where AON treatment resulted in therapeutic benefit in animal
models and/or clinical trials. First we will discuss neurodegen-
erative diseases where the aim of AON treatment is to reduce
transcript levels of disease-causing proteins such as in multiple
sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Alzheimer
disease (AD). Next, we will discuss SMA where the AON thera-
peutic strategy is aimed at modulating pre-mRNA splicing events.
Other possible applications of AONs may include Huntington’s
disease where allele-specific lowering strategies are explored (Sah
and Aronin, 2011).

Multiple sclerosis is an autoimmune disease of the CNS where
multifocal infiltration of autoreactive T lymphocytes across the
BBB takes place. Lymphocytes in MS patients display high lev-
els of α-4 integrin on their surface (Cannella and Raine, 1995)
and this plays an important role in lymphocyte migration to
sites of inflammation (Rose et al., 2007). Decreasing leukocyte
trafficking into various organs has been successful using mono-
clonal antibodies against α-4 integrin (Lobb and Hemler, 1994).
In a commonly used mouse model for MS, the experimental
autoimmune encephalomyelitis model, AON-induced blocking
of α-4 integrin expression reduced the incidence and severity of
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paralytic symptoms (Myers et al., 2005). The 20-mer AONs with
2′-methoxy-ethyl modification and a phosphorothioate backbone
were designed to target a sequence just 3′ of the translation start
site of the murine α-4 integrin mRNA to block its translation
(Figure 1B). Subcutaneous daily injections reduced α-4 integrin
surface expression. Although the site of actions of this particular
AON is unknown, it is thought that α-4 integrin levels are reduced
in peripheral lymphoid tissue and this prevents trafficking of acti-
vated mononuclear cells into brain and spinal cord (Myers et al.,
2005).

Alzheimer’s disease is the most common form of dementia, in
which AONs are considered in yet another mode. Cleavage of β-
amyloid precursor protein (APP) at the β-secretase and γ-secretase
site causes elevated levels of β-amyloid peptide (Aβ). This is con-
sidered a key event in the pathogenesis of AD (Van Broeck et al.,
2007). Point mutations near the β-secretase site in the human
gene for APP lead to a dominantly inherited form of AD (Selkoe
and Kopan, 2003). In a transgenic mouse model of AD containing
this mutated β-secretase site, translation of the APP–mRNA was
blocked by AONs that bind specifically to the mutated β-secretase
site (Figure 1B). The AONs used in this study had a methoxy-ethyl
group attached to the 2′O sugar ribose capped at 5′- and 3′-ends
with a phosphorothioate (PS) backbone. Repeated injections into
the third ventricle (once a week for 4 weeks) reduced the levels
of toxic Aβ and increased the levels of soluble α-cleaved β-APP,
indicating that this could be a possible strategy to treat familial
AD (Chauhan and Siegel, 2007).

Amyotrophic lateral sclerosis is a progressive neurodegener-
ative disorder caused by degeneration of motor neurons in the
brain and spinal cord. This eventually leads to muscle weaken-
ing, twitching, and an inability to move the arms, legs, and body
(Al-Chalabi and Leigh, 2000). Only 5% of ALS cases are familial
and about 20% of all familial cases result from a specific genetic
defect that leads to mutation of the enzyme known as superox-
ide dismutase 1 (SOD1) rendering the protein toxic and prone to
aggregation (Bossy-Wetzel et al., 2004). The AONs that have been
used in ALS were designed to lower mRNA levels of the SOD1 tran-
scripts and were phosphorothioate modified chimeric nucleotides
with 5 2′-O methoxy-ethyl modifications on both the 5′ and 3′
ends and 10 deoxynucleotides in the center to support RNase H
activity (Figure 1A). Continuous ventricular infusion reduced lev-
els of mutant SOD1 in a rodent model of ALS and significantly
slowed disease progression (Smith et al., 2006). A phase I study
to test the safety of this AON in subjects with familial ALS with
a SOD1 mutation began in 2009 and the first results are expected
in 2011.

Another motor neuron disease where the use of antisense
oligonucleotides is under investigation is SMA. SMA is an auto-
somal recessive neuromuscular disorder caused by dysfunction
and loss of motor neurons in the anterior horn of the spinal
cord and lower brain stem. The underlying cause of SMA is a
homozygous deletion of survival motor neuron 1 (SMN1). SMN1
depletion is viable because of the presence of the almost identical
SMN2 gene. However, the majority of SMN2 mRNA transcripts
are lacking exon 7, due to a silent mutation within this exon
that hampers exon inclusion which results in a truncated pro-
tein and reduced expression of functional SMN protein (Lorson

et al., 2010). Current therapeutic strategies are aimed at modula-
tion of the splicing of SMN2 by blocking exonic splicing silencers
(ESEs) or intronic splicing silencers (ISSs). Transfecting fibrob-
lasts with an AON (termed ISS-N1) blocking an ISS in intron 7
of SMN2 was found to result in inclusion of SMN2 exon 7 (Singh
et al., 2006). Improved efficacy of the AON was achieved by incor-
poration of a uniform 2′-O-2-methoxy-ethyl (MOE) chemistry
into the ribose sugars and a single injection of this AONs into
the cerebral ventricles in a severe mouse model of SMA showed
increased exon 7 inclusion and SMN protein levels in the spinal
cord resulting in increased muscle size and strength (Passini et al.,
2011). An increased exon 7 inclusion could also be achieved by
targeting the 3′SS region of exon 8 with 2′-O-methyl and phos-
phorothioate backbone modified AONs (Lim and Hertel, 2001).
2′-O-methyl modified AONs with a phosphorothioate backbone
were found to result in exon 7 inclusion and elevated SMN pro-
tein expression levels in vivo (Williams et al., 2009; Hua et al.,
2010)(Figure 1C). Another strategy is to add a functional moi-
ety to the AON to replace the missing splicing enhancer protein
to enhance the recruitment of exon 7 by the splicing machinery
(Cartegni and Krainer, 2003; Skordis et al., 2003). Several studies
applying this strategy in animal models have since been published.
Dickson et al. (2008) targeted the 3′SS region of exon 8 with an
AON that included a functional sequence to attract hnRNP A1.
Baughan et al. (2009) used an AON targeting the 1 ISS element in
intron 6 of SMN2 with an ESE tail to recruit positive slicing factors.
Both showed an increase in brain SMN protein levels after intra-
ventricular injection in SMA mouse models. A transgenic mouse
model expressing a modified snRNP gene that induced exon 7
inclusion also showed that adding a functional moiety to AONs
has the potential to revert the phenotype and increase survival
(Voigt et al., 2010).

AONs AS EXPERIMENTAL TOOLS
KNOCKDOWN
The most widely used application of AON-mediated RNA target-
ing in the CNS has been the downregulation of gene expression
through intranuclear RNase H-mediated cleavage of DNA:RNA
hybrids (Chiasson et al., 1994; Dias and Stein, 2002; Figure 1A).
Thus, the AON in this case is targeted against an mRNA sequence
of interest (Chiasson et al., 1994). This approach offers an alter-
native, with certain advantages, to knockdown induced by viral
vectors and siRNAs which are mediated by the RISC complex.
We present a few recent examples from which the advantages of
“classical” knockdown use of AONs is apparent.

Ma et al. (2011) used AONs to knock down BDNF expression
in various brain areas and studied its involvement in conditioned
taste aversion memory formation (Ma et al., 2011). They showed
that BDNF synthesis in the CeA is necessary for long-term memory
formation of conditioned taste aversion and especially for condi-
tioned taste aversion consolidation. Likewise,AONs have been also
used to knock down temporally the expression of CRH in the CeA,
(Pitts et al., 2009; Pitts and Takahashi, 2010). In a series of exper-
iments targeting CRH mRNA it was shown that CRH plays an
important role in contextual fear conditioning consolidation in
the CeA (Pitts et al., 2009). Furthermore, it was shown that CRH
involvement in this context may be important up to 24 h after
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training for successful consolidation of contextual fear (Pitts and
Takahashi, 2010). These studies illustrate the advantage of infusing
AONs at different time points (Ma et al., 2011).

Antisense oligonucleotide-mediated knockdown has been
combined with other gene-silencing techniques to serve spe-
cific experimental purposes, or even to delineate the mechanisms
underlying, for example, RNA interference. Hemmings-Mieszczak
et al. (2003) used mixtures of siRNAs and AONs to achieve a
higher degree of reduction of the expression of the pain receptor
P2X3, in vitro, and a more pronounced functional outcome. The
effect was stronger when the siRNA and the AON targeted mRNA
sequences distant from each other, because sequences close to each
other may lead to masking of the complementary either the siRNA
or the AON (Hemmings-Mieszczak et al., 2003).

Antisense oligonucleotides were recently used in an elegant way
to inhibit the expression of proteins associated with the RISC
complex. AON-mediated downregulation of Argonaute proteins
Ago1 and Ago2, combined with modified cleavage deficient siR-
NAs, showed that off-target effects of siRNAs are independent
from Ago2 cleavage, but they require interaction with Ago proteins
and the RISC complex (Vickers et al., 2009). A similar approach
was used to investigate the involvement of the RISC complex in
pre-rRNA processing. Targeting of Dicer, Drosha, or Ago2 lead to
impairments in pre-rRNA processing, indicating that these pro-
teins are involved in the biogenesis of rRNA (Liang and Crooke,
2011). The great advantage of AON-mediated knockdown here is
that its action depends on an entirely different mechanism from
siRNA allowing interference with one without affecting the other.

Thus, RNase H-mediated cleavage of DNA:RNA hybrids still is
broadly used in basal and clinical research. In addition, exon skip-
ping and inclusion offer a number of possibilities that are unique
for AONs.

IN – AND OUT-OF-FRAME DELETIONS
The possibilities for in and out-of-frame exon deletions
(Figure 1C) that can be achieved with AONs are virtually endless.
Out-of-frame deletions may be used as an alternative to gene-
silencing, or to generate truncated proteins. In particular, in-frame
deletions can be used to create mutations that otherwise would
require a costly and time-consuming knock-in approach. Here we
elaborate on the use of the domain structure of steroid receptors
such as the glucocorticoid receptor (GR) gene.

The GR has been shown to be involved in various functions
including stress responses, inhibition of inflammatory responses,
and metabolic effects. The relationship between the structure and
the function of the GR has been extensively studied (Giguere et al.,
1986; Mittelstadt and Ashwell, 2003). In short, the GR protein
contains domains that arise from eight exons (2–9, exon 1 of
the mRNA is not translated): exon 2 codes for the N-terminal
half of the protein which contains the major transcriptional acti-
vation domain τ1, exons 3 and 4 code for the central part of
the protein which contains two zinc fingers involved in DNA-
binding and homodimerization. The C-terminal region of the
protein, encoded by exons 5–9, include among others, the domains
responsible for transcriptional activation (τ2) and ligand binding
(Figure 3A; Giguere et al., 1986; Danielian et al., 1992; Mittelstadt
and Ashwell, 2003).

A good example of the potential of exon skipping is provided by
exon 4 of the GR mRNA, which codes for a zinc-finger domain that
is involved in DNA-binding. The GR can act in a DNA-binding
dependent mode, but many of its effects are mediated by inter-
actions with other transcription factors, rather than with DNA
(Reichardt et al., 1998; Oitzl et al., 2001). Considerable effort has
been made to generate the GRdim/dim knock-in mouse. As a conse-
quence of a point mutation in exon 4, this mouse has impaired GR
binding to the DNA, but GR can still transrepress transcription
factors like AP1 and NF-κB. Even though this has proven to be
a very valuable model, the separation between DNA-binding and
transcription factor binding is incomplete (Adams et al., 2003).
Skipping of exon 4 would result in the loss of the second zinc-finger
domain of the protein, which is expected to abrogate DNA-binding
completely. This would be a cheaper and faster solution than the
knock-in approach that would be otherwise used to generate a
similar phenotype. In addition, local injection in the brain can be
used to address steroid signaling in specific brain areas, for which
no specific cre-driving promoters exist.

The GR is just an example of a potential target of in-frame dele-
tions via AON-mediated RNA targeting. Other nuclear receptors,
such as the mineralocorticoid receptor and the estrogen recep-
tor, share similar features with the GR, such as the 117-nucleotide
long exon that codes for a zinc-finger domain. One can appre-
ciate that the potential of this approach may have virtually no
limits: theoretically any exon divisible by three can be targeted for
skipping. Combined with the possibilities for out-of-frame dele-
tions, that can be extended, practically, to every gene, we conclude
that AON-mediated RNA targeting is a very powerful and versatile
research tool.

NATURAL SPLICE VARIANTS
For a vast number of genes, splice variants occur. Especially in
the CNS alternative splicing events are very common and poten-
tially important for numerous pathways (Fagnani et al., 2007).
In relation to the aforementioned brain glucocorticoid signal-
ing, we have observed that splice variants of the GR partner
steroid receptor coactivator-1 (SRC-1) are major determinants in
the effectiveness of GR, with one variant potentiating repression,
and the other variants potentiating stimulation of the target gene
corticotropin releasing hormone (CRH) in different brain regions
(van der Laan et al., 2008; Lachize et al., 2009). Splice variant
diversity has been observed for CRH receptor genes (Markovic
et al., 2008; Zmijewski and Slominski, 2009), Cannabinoid recep-
tor genes (Ryberg et al., 2005; Liu et al., 2009), and many others
(Fagnani et al., 2007; Trifonov et al., 2010). Below we elaborate
on yet one more of these examples, that of dopamine receptor D2
splice variants.

D2 RECEPTOR SPLICE VARIANTS (ISOFORM SWITCHING)
The dopaminergic system plays an essential role in the brain,
controlling a wide range of physiological processes, varying from
motor and cognitive functions to responses to natural rewards and
drug addiction (Centonze et al., 2004; Fetsko et al., 2005; De Mei
et al., 2009). These effects are mediated by five different receptor
subtypes which can be divided in two groups: the D1-like recep-
tors (D1 and D5 receptors) and the D2-like receptors (D2, D3, and
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D4 receptors; van Ham et al., 2007; De Mei et al., 2009). These two
groups of receptors differ in their pharmacological properties and
the endocellular pathways in which they are involved (Tan et al.,
2003; van Ham et al., 2007).

The D2R gene consists of eight exons, seven of which are coding
(Vallone et al., 2000). Alternative splicing of the D2 gene gener-
ates two isoforms. The expression of each isoform depends on
the in- or exclusion of exon 6 in the mRNA (Figure 3B). Inclu-
sion of exon 6 results in the expression of the long isoform (D2L)
whereas its exclusion results in the expression of the short iso-
form (D2S). Presynaptic neurons show a higher expression of
D2S while postsynaptic neurons show a higher expression of D2L.
The functional importance of the D2L/D2S ratio has been exten-
sively studied in both humans and animal models. In humans,
regulation of the D2L/D2S ratio has been shown to be relevant
for cognitive and motor performance, working memory, emo-
tion processing, schizophrenia, and drug addiction (Bertolino
et al., 2009; Blasi et al., 2009; De Mei et al., 2009; Glatt et al.,
2009; Fazio et al., 2011; Moyer et al., 2011). The importance of
the D2L/D2S ratio has been shown in rodent studies, where a
higher D2L/D2S strain-specific ratio may account for differences
in drug-induced stereotypic behavior, responses to pharmacolog-
ical agents, and susceptibility to drug abuse (Colelli et al., 2010).
Moreover, mice deficient only for D2L show decreased levels of

rearing and locomotion, reduced home cage activity and are less
sensitive to haloperidol-induced catalepsy (Wang et al., 2000) and
raclopride treatment (Xu et al., 2002). Also, they show learning
impairments when compared with their wild-type counterparts
(Fetsko et al., 2005).

In this context, AON-mediated RNA targeting can offer fur-
ther refinements of existing models as well as new opportunities.
First, exon skipping or exon inclusion can be used to reverse the
naturally occurring D2L/D2S ratio in different animal strains,
instead of comparing different strains in the same experiment.
Secondly, new possibilities for developing D2S-knock-out ani-
mals arise. Since it is practically impossible to generate a real
D2S-knock-out animal with conventional methods, an exon inclu-
sion approach can be utilized to achieve a similar result. Here,
new possibilities of targeted modulation in favor of D2L can
be explored, leading to animals exhibiting very limited expres-
sion of D2S, thus opening new avenues for the exploration of
the in vivo effects of the D2R isoforms. Thirdly, both exon skip-
ping and exon inclusion approaches, combined with the transient
effects of AONs, can be incorporated in classical experiments,
but this time in a repeated-measures setup. In this manner, the
same animals can be used to look into before and after conditions
regarding the D2L/D2S ratio or each isoform individually. Lastly,
taking into consideration the vast extent of the D2R isoforms

FIGURE 3 | Relation between GR mRNA and protein and splicing events

of the D2R gene. (A) The 8 coding exons of the GR gene and the protein
domains they code for. Exon 2 codes for the N-terminal domain of the protein
which contains the major transcriptional activation domain τ1. Exons 3 and 4
code for two zinc-finger domains that are involved in DNA-binding and
homodimerization. Finally exons 5–9 code for the C-terminal end of the

protein which contains the domains for transcriptional activation and ligand
binding. (B) Splicing events of the D2R RNA. The D2R gene generate two
isoforms, D2R long and short. The expression of the isoforms depends on the
inclusion or exclusion of exon 6. Inclusion of exon 6 leads to expression of the
long isoform (D2RL), whereas exclusion of exon 6 results in the expression of
the short isoform (D2Rs).
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in human brain functions, a potential therapeutic approach that
could reset and normalize the D2L/D2S ratio, could be of medical
importance in relation to Parkinson’s disease, schizophrenia, and
drug abuse.

In conclusion, to date, classical methods have been used to
study the differential contribution of the two isoforms in vivo.
These include SNP analysis and fMRI in humans and D2 and D2L
knock-out mice. The broad involvement of the D2R isoforms in
pathways in the brains, the implication for health and disease and
the limited tools available for the study of the two isoforms qualify
it as an excellent example of potential applications of antisense-
mediated RNA targeting both as a research tool and as potential
therapeutic intervention.

CONCLUDING REMARKS
Antisense oligonucleotide-mediated gene-silencing and exclu-
sion/inclusion of exons offer many options for clinical and basal
neuroscience alike. The good uptake in neurons once the BBB
is passed is a major strength, in combination with good efficacy
of interference with translation and splicing events. Interference
with splicing allows shifting ratios of endogenous splice variants,
knockdown, as well as the generation of internal deletions and
truncations. Temporal and spatial control of the manipulations
is considerable, and AON-mediated gene manipulation will often
be more rapid that alternative transgenic approaches. We therefore
consider such approaches as a highly promising part of the general
neuroscientist’s toolkit.
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