
MOLECULAR NEUROSCIENCE
REVIEW ARTICLE

published: 28 July 2011
doi: 10.3389/fnmol.2011.00012

The roles of glutathione peroxidases during embryo
development
Christoph Ufer1* and Chi Chiu Wang2,3,4*

1 Institute of Biochemistry, Charité – University Medicine Berlin, Berlin, Germany
2 Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
3 Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
4 Neuro-Degeneration and -Development and Repair, Institute of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong

Edited by:

Michael Fähling, Charité –
Universitätsmedizin Berlin, Germany

Reviewed by:

Michael Fähling, Charité –
Universitätsmedizin Berlin, Germany
Marcus Conrad, German Center for
Neurodegenerative Disease,
Germany

*Correspondence:

Christoph Ufer, Institut für Biochemie,
Universitätsmedizin Berlin – Charité,
Oudenarder Str. 16, 13347 Berlin,
Germany.
e-mail: christoph.ufer@charite.de;
Chi Chiu Wang, Department of
Obstetrics and Gynaecology, The
Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong.
e-mail: ccwang@cuhk.edu.hk

Embryo development relies on the complex interplay of the basic cellular processes includ-
ing proliferation, differentiation, and apoptotic cell death. Precise regulation of these events
is the basis for the establishment of embryonic structures and the organ development.
Beginning with fertilization of the oocyte until delivery the developing embryo encounters
changing environmental conditions such as varying levels of oxygen, which can give rise
to reactive oxygen species (ROS). These challenges are met by the embryo with meta-
bolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by
modifying biological molecules including lipids, proteins, and nucleic acids and may induce
abnormal development or even embryonic lethality. On the other hand ROS are vital players
of various signaling cascades that affect the balance between cell growth, differentiation,
and death. An imbalance or dysregulation of these biological processes may generate cells
with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a
precise balance between processes generating ROS and those decomposing ROS is crit-
ical for normal embryo development. One tier of the cellular protective system against
ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These
enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced
glutathione. Of special interest within this protein family is the moonlighting enzyme glu-
tathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on
one hand, but on the other hand can be transformed into an enzymatically inactive cellular
structural component. GPx4 deficiency – in contrast to all other GPx family members –
leads to abnormal embryo development and finally produces a lethal phenotype in mice.
This review is aimed at summarizing the current knowledge on GPx isoforms during embryo
development and tumor development with an emphasis on GPx4.
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INTRODUCTION
The availability of molecular dioxygen is the basis of eukaryotic
cell function by serving as electron acceptor of the mitochondrial
electron transport chain. This biological process that reduces oxy-
gen to water is not perfect but produces a significant amount of
reactive oxygen species (ROS) such as the superoxide anion, hydro-
gen peroxide, and the hydroxyl radical (Balaban et al., 2005). In
addition, ROS can be generated by an array of other enzymatic
and non-enzymatic reactions (Ufer et al., 2010). On one hand
ROS pose a hazard for cell survival by being able to modify vir-
tually all biological molecules. Oxidative modifications may alter
the properties of affected molecules and impair normal cellular
processes. Most importantly, oxidative modifications of nuclear
DNA can alter the genetic information of cells, which may subse-
quently lead to the development of cancer (Poulsen, 2005). On
the other hand ROS can be vital for maintaining normal cell
function including growth, differentiation and cell death (Van
Leyen et al., 1998; Giorgio et al., 2007). To facilitate precise ROS
action cellular mechanisms have evolved to detect cellular ROS

levels and to counteract ROS production. This intricate system
of ROS homeostasis employs redox-sensitive signaling molecules
and transcription factors on one hand and a robust firewall of
protective anti-oxidative enzymes on the other hand.

The aim of this review is firstly to outline the current knowledge
on the biological significance of ROS during mammalian embryo
development. Secondly, the various contributions of selenium-
dependent GPxs to embryonic ROS homeostasis will be discussed.
Most of the available knowledge has been gained from experiments
in mice. Thus, this review we will mostly focus on mice, but will
make excursions to the human organism when appropriate.

EMBRYO DEVELOPMENT
The developmental sequence begins with a fertilized egg, pro-
ceeds to adulthood, and then repeats itself through reproduc-
tion is known as the life cycle. Developmental biologists divide
the animal life cycle into three major periods: embryo devel-
opment, postembryonic development, and adulthood. The term
embryo is generally used to describe the developing individual
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from fertilization through the formation of differentiation tissues.
Embryogenesis is a period of embryo development, which can be
subdivided into the stages of fertilization, cleavage, gastrulation,
organogenesis, and histogenesis (Gilbert, 2000).

Fertilization is the union of oocyte and sperm. The oocyte is an
extremely large cell, loaded with nutrients to support early embryo
development. The sperm is a cell that is highly specialized for its
function of finding and fertilizing an oocyte. After fertilization by
a sperm, the oocyte is called a zygote. During embryonic cleav-
age, the zygote undergoes a series of mitotic divisions that result
in the formation of the blastomere. The early embryo develops
in the oviduct before migrating to the uterus for implantation.
Compaction and blastulation occur in the transition from oviduct
to uterus before post-hatching development (Boyd and Hamilton,
1952). During gastrulation, embryos undergo a complex series of
morphogenetic movements, in which embryonic cells rearrange
and migrate. At the end of gastrulation the embryo consists
of three germ layers which will undergo further morphogenetic
movements and interactions to form the rudiments of primi-
tive organs. During organogenesis, the developing embryo shows
the basic body plan and finally acquires functional specialization.
These developmental processes involve a series of proliferation
and differentiation processes that are well balanced by spatial and
temporal controls of molecular and cellular programming.

OXYGEN AND DEVELOPMENT
Oxygen is essential during embryo development (Tuuli et al.,
2011). Following fertilization in the oviduct, the early embryo
encounters a decreasing oxygen gradient when moving down the
reproductive tract. The oviductal oxygen concentration is less
than 40% of the atmospheric concentration (Leese, 1995). In the
uterus, oxygen concentration is just about 3–5%. Thus, preim-
plantation and early postimplantation embryogenesis takes place
under hypoxic and even almost anaerobic conditions (Fischer and
Bavister, 1993; Figure 1).

The yolk sac plays an important role for early embryo develop-
ment since it delivers oxygen and nutrients to the embryo during
the postimplantation period. During early implantation, hypoxic
and even anoxic conditions confront the invasion of the trophec-
toderm into the endometrium of the uterus (Leese, 1995). Later
on, the yolk sac regresses and the allantoic placenta takes over its
function to support further embryonic development. These sud-
den alterations in uteroplacental circulation expose the embryos to
high oxygen concentrations (New and Coppola, 1970). Once the
uteroplacental and embryonic circulation systems are established,
the embryo becomes less sensitive for the maternal oxidative status.

ENERGY METABOLISM
Energy is required for most control mechanisms of development
and is based on the production of high-energy adenosine triphos-
phate (ATP) by either glycolysis or oxidative phosphorylation. In
glycolysis glucose is used as substrate and converted to pyruvate. In
oxidative phosphorylation pyruvate and oxaloacetate are used as
substrates. Reduced nicotinamide adenine dinucleotide (NADH)
as an electron donor and oxygen as an electron acceptor in the
electron transport chain convert adenosine diphosphate (ADP)
to ATP. Following ovulation, mammalian oocytes rely on internal

energy resources and on the few metabolites supplied by secre-
tions of the Fallopian tube to survive. However, the oviductal fluid
generally has relatively low oxygen and glucose concentrations
(< 1 mmol/L) which favor glycolytic activity.

The ability of the early embryo to maintain an appropri-
ate energy metabolism is necessary for successful development.
Changes in energy metabolism pathways are involved in the con-
trol of early preimplantation embryo development (Wales, 1975;
Bavister, 1995). In the eight-cell stage glucose is an effective sub-
strate, while in the blastocyst stage pyruvate and/or oxaloacetate
are essential for early cleavage. An increasing role for energy
derived from glycolysis is required during compaction and blas-
tulation. Such a shift in metabolic pathways is essential as the
embryo faces an increasingly hypoxic environment in utero (Har-
vey et al., 2002). Later on, the transition from anaerobic glycolysis
to oxidative metabolism coincides with the time at which the
chorioallantoic circulation is established and the heart starts to
function (Clough, 1985).

Although oxygen is required for embryo development, the use
of oxygen as an energy substrate also poses a potential hazard
via the formation of ROS and reactive nitrogen species (RNS) as
natural by-products of oxygen metabolism, particularly the super-
oxide anion (O−•

2 ) and the hydroxyl radical (OH•). ROS and RNS
are highly active electron acceptors, able to strip electrons from
other molecules to become free radicals. Thus, they are able to
modify all biological macromolecules including lipids, proteins,
RNA and DNA, and impair their function. Hydrogen peroxide
(H2O2) is not a radical per se, but is a product of O−•

2 and metal
ion catalysis. However,both H2O2 and O−•

2 can form the extremely
reactive OH•. The cells must protect themselves from the damage
caused by ROS.

REDOX RESPONSES
Oxidative stress mediated by ROS results in an imbalance of the
intracellular oxidative potential toward an oxidized potential (Bal-
aban et al., 2005). Oxidative stress is associated with impaired
early development and fragmented embryos (Johnson and Nasr-
Esfahani, 1994; Yang et al., 1998). It can induce apoptosis of the
oocyte and the early embryo (Liu and Keefe, 2000; Liu et al.,
2000) and is associated with postovulatory aging of the oocyte
(Tarin, 1996; Fissore et al., 2002). Oxidative stress also is a natural
process needed to maintain normal cell function. ROS actively
mediate cellular responses to a variety of stimuli directly or indi-
rectly regulated by oxidative stress. ROS and RNS metabolites
at lower concentrations function as signal transducers acting on
various regulatory levels and thus affect the cellular phenotype
(D’Autreaux and Toledano, 2007). ROS have a specific function
during hatching of the mouse blastocyst from the zona pellucida
(Thomas et al., 1997). Embryos undergo a specific burst of ROS
production at hatching. The production of ROS may also be an
important regulatory system for programmed cell death in the
blastocyst (Pierce et al., 1991).

The balance of reductive and oxidative (redox) homeostasis
is the key to the orchestration of regulations during embryo
development (Covarrubias et al., 2008). Precise control of cel-
lular redox homeostasis is essential for regular cell function, and
this is of particular importance for the complex developmental
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FIGURE 1 | Oxygen and metabolic status during embryo development in

mouse. Owing to the variable environmental conditions including oxygen and
glucose concentrations in different regions of the female reproductive tract,
the developing early embryo has to adapt its energy metabolism. Before the
circulation system in the ectoplacental cone, the yolk sac, the placenta and
the embryonic heart develop, early embryos transit from relative aerobic (red

area, ∼8% O2) and low glucose to anaerobic (blue area, < 5% O2) and
high glucose conditions. Redox metabolism transits from oxidative
phosphorylation (low glucose, high oxygen) to glycolysis (high glucose, low
oxygen). Pyruvate or oxaloacetate are essential substrates during early
cleavage whereas glucose and lactate prevail from the eight-cell stage
embryos to peri-implanted blastocyst.

processes during embryogenesis (Castagne et al., 1999). Cellular
redox homeostasis affects a variety of basic cellular functions such
as energy supply, proliferation, differentiation, maturation, and
apoptosis (Salas-Vidal et al., 1998). It also plays an important role
in the regulation of the gene expression. Embryogenesis involves a
series of differentiation and maturation processes that are well bal-
anced by spatial and temporal controls of cellular gene expression
involving mechanisms on epigenetic, transcriptional, and post-
transcriptional levels according to an inbuilt biological program
(Ufer et al., 2010).

OXIDATIVE DAMAGE
Reactive oxygen species/RNS at higher concentration pose a
potential hazard in modifying macromolecules and altering their

biological functions. The modifications often lead to cellular dys-
function and may have deleterious consequences. Dysregulations
in the redox equilibrium induce developmental retardations,organ
malformations, teratogenesis, and even embryo lethality (Chen
et al., 1999; Hansen, 2006). The processes controlling embryonic
redox homeostasis are important determinants of teratological
risk. Individual risk of ROS mediated teratogenesis depends on
both genetic as well as environmental factors (Wells et al., 2005).
During certain time windows of embryogenesis, the embryo is
more susceptible to oxidative stress and excessive ROS formation
(Hansen, 2006).

Under normal circumstances, cells are able to defend them-
selves against redox-mediated damage. At certain developmental
periods, including early postimplantation stage, and the
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completion of embryonic circulation, the embryo is particularly
susceptible to redox alterations and at these stages a functional
anti-oxidative defense system is of particular importance. As
for the adult organism, both small molecule antioxidants and
anti-oxidative enzymes play an important role in protecting the
developing embryos from oxidative damage. Unfortunately, the
enzymatic activity of many anti-oxidative enzymes in embryos is
much lower than in adults. Thus, embryos are particularly sen-
sitive to oxidative damage (Parman et al., 1999; Winn and Wells,
1999).

ANTIOXIDANTS
Small molecule antioxidants include ascorbic acid, tocopherol,uric
acid, and glutathione. Glutathione (γ-glutamylcysteinylglycine) is
the major cellular non-protein sulfhydryl compound. This thiol
plays a prominent role in detoxification of exogenous and endoge-
nous compounds, anti-oxidative defense as well as maintaining the
intracellular redox status (Munday and Winterbourn, 1989). Glu-
tathione exists in its oxidized (GSSG) and its reduced (GSH) form
and plays a major role in regulating ROS concentrations within the
cytoplasm, both directly as a free-radical scavenger and indirectly
as a substrate with NADPH for detoxifying ROS (Guerin et al.,
2001).

GSH is involved in the protection against oxidative damage in
both the male and female gametes (Luberda, 2005). GSH con-
centrations in the maturing spermatozoa gradually decline during
spermatogenesis. GSH has been also implicated in maintaining the
meiotic spindle morphology of the oocyte. It plays an important
role in the preparation of a mature oocyte to receive a sperm and
in oocyte maturation (Luberda, 2005). During preimplantation
development embryonic GSH levels continuously decrease (Gar-
diner and Reed, 1995). After fertilization, GSH plays an active role
in the formation of the male pronucleus, and is crucial for early
embryogenesis up to the blastocyst stage. Following preimplan-
tation stage embryos have little capacity for GSH synthesis, GSH
concentrations decrease as early cleavage proceeds and as the late
blastocyst prepares for implantation (Gardiner and Reed, 1995).

Another important group of antioxidants are selenoproteins
such as glutathione peroxidases (GPxs) and thioredoxin reductases
(TrxRs; Brigelius-Flohe et al., 2003). TrxRs are crucial to main-
tain the small antioxidant protein thioredoxin in its reduced state
(Arner, 2009). Overexpression of thioredoxin renders embryos
more resistant to oxidative stress (Kobayashi-Miura et al., 2002),
whereas thioredoxin null mutants exhibit dramatically reduced
proliferation of the inner cell mass resulting in lethality during
the early postimplantation period (reviewed in Ufer et al., 2010).
Accordingly, when thioredoxin function is compromised by block-
ing expression of TrxR enzymes TrxR knockout embryos fail to sur-
vive beyond midgestation (reviewed in Conrad, 2009; Ufer et al.,
2010). This indicates an important role for these selenoproteins in
early embryo development.

Antioxidant enzymes remove various ROS produced by free-
radical reactions. Superoxide dismutases (SODs) scavenge O−•

2 ,
converting it into H2O2 and oxygen (Maier and Chan, 2002). Mice
lacking Sod1 have increased age-related muscle mass loss, early
development of cataracts, macular degeneration, thymic involu-
tion, hepatocellular carcinoma, and a shortened lifespan (Muller

et al., 2007). Mice lacking Sod2 die shortly after birth, indicating
that uncontrolled levels of H2O2 are incompatible with mam-
malian life (Li et al., 1995). Heterozygous Sod2 knockout mice
have a normal lifespan and minimal phenotypic defects but do
suffer increased DNA damage and increased incidence of cancer
(Van Remmen et al., 2003). Data relating to the biological role of
Sod3 in embryo development are still missing. Catalase and per-
oxidases, on the other hand, convert H2O2 into water (O’Brien,
2000; Kirkman and Gaetani, 2007). Mammals have many perox-
idases but only one catalase (Jin et al., 2003). Mice genetically
engineered to lack catalase are phenotypically normal, indicating
that this enzyme is dispensable during development (Ho et al.,
2004).

SELENIUM-DEPENDENT GLUTATHIONE PEROXIDASES AND
DEVELOPMENT
Besides catalases and SODs the family of glutathione-dependent
peroxidases (GPx) constitutes the major player to keep oxidative
stress at bay. GPx1–4 in mice and humans and GPx6 in humans
out of eight known GPx isoforms in mammals contain selenocys-
teine at their active sites and thus are categorized as selenoproteins.
This review is focused on the murine selenium containing GPx
isoenzymes GPx1–4 and the interested reader is referred to other
publications for non-selenium GPx isoenzymes GPx5–8 (Kryukov
et al., 2003; Chabory et al., 2009; Nguyen et al., 2011). The seleno-
cysteine is coded for by an opal codon and incorporated by an
unusual mechanism that recodes this stop codon and facilitates
co-translational insertion of the biogenic amino acid selenocys-
teine into the nascent polypeptide chain (Hatfield and Gladyshev,
2002). GPxs catalyze the reduction of hydroperoxides to the cor-
responding alcohols at the expense of the reducing equivalent
glutathione. Despite a common catalytic mechanism each GPx iso-
form bears unique features with respect to their subcellular local-
ization, tissue distribution, substrate specificity and their apparent
biological function. An interesting characteristic of mammalian
selenoproteins is the so-called selenium hierarchy, which deter-
mines whether a selenoprotein is expressed or not under selenium
deficiency (Behne and Kyriakopoulos, 2001). Within this hierarchy
GPx4 for instance ranks very high permitting stable GPx4 expres-
sion when selenium is rare which indicates a strong dependence
of the organism on this selenoprotein. The underlying molecular
mechanisms of the selenium hierarchy however remain somewhat
unclear.

To assess the impact of selenoproteins on the survival of
mammalian organisms different transgenic mouse models were
employed. Selenoprotein biosynthesis crucially depends on the
availability of the selenocysteine-specific tRNA[Ser]Sec (Trsp).
Targeted deletion of the gene coding for Trsp results in early
embryonic lethality at the egg cylinder stage (gestational day E6.0)
which highlights the importance of selenoproteins for embryonic
survival (Bosl et al., 1997). In mammals selenium can be stored and
transported by the plasma protein selenoprotein P (SePP; Motsen-
bocker and Tappel, 1982), but SePP-/- mice are viable (Schomburg
et al., 2003). In addition to SePP-dependent storage, selenium can
also be made available through nutrition and it was suggested that
selenium uptake via nutrition prevents the development of a more
severe knockout phenotype (Schweizer et al., 2004b). Nevertheless,
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SePP-/- develop ataxia and a wide and clumsy gait, which points
to the importance of selenium for the functionality of the brain.
This is in line with a phenotype associated to a neuron-specific
knockout of the Trsp gene, which induces abnormal neuronal
development and progressive neurodegeneration (Wirth et al.,
2010). Glutathione peroxidases not only depend on selenium but
also on the availability of reduced glutathione (GSH) for their
enzymatic activity. GSH is ubiquitously present in the organism
at varying redox states and constitutes a vital component of the
cellular antioxidant system (Mari et al., 2009). Targeted genetic
abrogation of GSH biosynthesis causes early embryonic death in
mice and impaired biosynthesis of GSH in humans has been corre-
lated with neurological disorders such as schizophrenia (Shi et al.,
2000; Gysin et al., 2007). To exert its antioxidant function GSH
needs to be constantly converted from its oxidized GSSH to its
reduced GSH by a process that requires NADPH. A major source
of NADPH is the oxidative pentose phosphate shunt. When this
metabolic pathway is interrupted and the capacity of the organism
to maintain sufficient levels of reduced GSH is impaired embryos
do not survive past midgestation (Longo et al., 2002). Embryonic
death induced by abrogation of the oxidative pentose phosphate
shunt is considerably delayed (gestational day E8.5 versus E11.5)
to what is observed in embryos lacking GSH de novo biosynthesis.
Thus, other sources for NADPH such as malic enzyme or isocitrate
dehydrogenase may contribute cellular NADPH levels (Dumollard
et al., 2007).

GLUTATHIONE PEROXIDASE 1
Glutathione peroxidase 1 (GPx1) is ubiquitously expressed and
dominantly found in the cytosol, where it scavenges hydrophilic
peroxide species such as H2O2 (Brigelius-Flohe, 1999). In addi-
tion, GPx1 expression has been detected in mitochondria where
it is thought to protect mitochondrial DNA from oxidative dam-
age (Legault et al., 2000; Kienhofer et al., 2009). GPx1 is con-
sidered the major antioxidant enzyme within the GPx family.
However, GPx1-/- mice develop normally and are able to com-
pensate mild oxidative stress (Ho et al., 1997). In that respect
GPx1 shares the fate of many other anti-oxidative genes such as
catalases and superoxide dismutases that also fail to induce sig-
nificant prenatal phenotypes (Ufer et al., 2010). These findings
emphasize the fact that the cellular anti-oxidative defense system
contains many compensatory mechanisms to allow survival. By
controlling cellular levels of H2O2 GPx1 is also implicated in
the regulation of the cell cycle and artificial GPx1 overexpres-
sion is paralleled by faster growth of tumor cells (Lu et al., 1997;
Li et al., 2000). In contrast, GPx1 deficiency renders cells more
sensitive to certain stressors, which results in elevated induc-
tion of apoptotic cell death (Fu et al., 2001; Flentjar et al.,
2002).

The promoter of the GPx1 gene has not yet been systematically
characterized but scattered data on GPx1 expression regulation
are available. The GPx1 promoter lacks a canonical TATA-box
and contains a proximal CpG island, which are typical charac-
teristics for the promoter a housekeeping genes. In silico analysis
(Cartharius et al., 2005) indicates the presence of a number of
potential stimulatory/specificity protein 1 (Sp1) binding sites. In
addition, GPx1 was found to be under the control of the tumor

suppressor protein p53 (Gladyshev et al., 1998; Tan et al., 1999).
The transcription factor p53 is a vital regulator that translates
the occurrence of genotoxic stress into alterations of gene expres-
sion (Tishler et al., 1993). Thus, by inducing GPx1 expression p53
increases the cellular anti-oxidative capacity when DNA damage is
detected. A frequently observed prerequisite for the onset of can-
cer is genomic instability which is affected by aberrant methylation
patterns of the genome (Negrini et al., 2010; Sharma et al., 2010).
Interestingly, the promoters of GPx1 as well as GPx3 were found
to be hypermethylated in gastric carcinoma cell lines (Jee et al.,
2009). Promoter hypermethylation is commonly associated with
a silencing of gene expression. DNA methylation of CpG islands is
an epigenetic modification in higher eukaryotes that affects tran-
scriptional regulation vital for embryonic and neural development
(Bogdanovic and Veenstra, 2009). Dysregulation of CpG methy-
lation has been related to genetic instability, cancerogenesis, and
neuronal degeneration (Nagarajan and Costello, 2009). On the
other hand, epigenetic modifications themselves are sensitive to
changes of the cellular redox tone implying a regulatory loop that
modulates epigenetic mechanisms of gene expression regulation
(Zawia et al., 2009). Thus, expression silencing of GPx1 and GPx3
reduces the capacity of the affected cells to detoxify genotoxic sub-
stances and potentially enhances the development of cancerous
abnormalities.

On the post-translational level, GPx1 activity is positively
affected by phosphorylation of tyrosine residue (Tyr-96) by the
tyrosine kinases c-abl and arg (Cao et al., 2003). C-abl and arg are
activated by an array of extracellular stimuli including growth fac-
tors and cytoplasmic c-abl has been shown to be required for cell
proliferation by promoting G1 progression (Sirvent et al., 2008).
De-regulation of c-abl signaling is observed in various forms of
human cancer. This is in line with the mitogenic effect of GPx1 in
GPx1 overexpression in tumor cells (Lu et al., 1997; Li et al., 2000).

GLUTATHIONE PEROXIDASE 2
In the gastrointestinal system of mammals and in humans also
in the liver the second GPx family member, namely glutathione
peroxidase 2 (GPx2), is expressed (Chu et al., 1993; Dreher et al.,
1997). Its expression pattern suggests a protective role of this iso-
form against ROS derived from the gut. GPx2 ranks very high
within the selenium hierarchy pointing to a strong dependence of
the organism on GPx2 expression (Brigelius-Flohe, 1999). How-
ever, GPx2 knockout mice do not develop an aberrant phenotype
before birth (Esworthy et al., 2000), but exhibit an elevated inci-
dence of squamous cell carcinomas induced by ultraviolet irra-
diation (Walshe et al., 2007). Moreover, a GPx1/GPx2 double
knockout is paralleled by a high incidence of intestinal inflam-
mation as well as increased tumor development (Esworthy et al.,
2001; Chu et al., 2004). These data indicate that ubiquitously
expressed GPx1 can at least partially substitute for a lack of intesti-
nal GPx2 expression. The underlying mechanisms of accelerated
tumor development appear to involve an accumulation of muta-
tions of the genetic and epigenetic code (Lee et al., 2006; Hahn
et al., 2008). Thus, whereas GPx2 may be dispensable during
embryo development it is a vital factor for maintaining a func-
tional intestinal epithelium in adults and protects the organism
from genotoxic substances that are produced in the gut.
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The strong tissue specific expression of GPx2 requires the pres-
ence of tissue specific regulatory expression mechanisms. Similar
to the human GPx1 gene no canonical TATA-box is found in
the proximal GPx2 promoter region. In silico analysis predicts
the presence of a number of nuclear factor-Y (NF-Y) and Sp1-
binding sites, but their functional significance remains to be shown
(Cartharius et al., 2005). Despite the lack of knowledge on the basic
regulation of GPx2 expression a number of regulatory mecha-
nisms were identified that affect GPx2 expression. For instance, the
GPx2 promoter contains so-called antioxidant response elements
that confer sensitivity to oxidative stress via the Nrf2/Kelch-like
ECH-associated protein 1 (Keap1) system (Banning et al., 2005).
The transcription factor nuclear factor erythroid 2-related factor
2 (Nrf2) is sequestered in the cytoplasm by Keap1 and released
into the nucleus following oxidative modification of Keap1 (Lau
et al., 2008). Thereby, the Nrf2/Keap1 system poses a key sen-
sor of oxidative stress in the cell and translates oxidative stress
into gene expression regulation (Kaspar et al., 2009). In addition,
GPx2 expression appears to be under the control of a number
of transcription factors that are involved in the regulation of cell
proliferation and differentiation, such as p63 isoforms, β-catenin,
Nkx3.1, and retinoic acid (Chu et al., 1999; Ouyang et al., 2005; Yan
and Chen, 2006; Kipp et al., 2007). The impact of these regulatory
proteins on GPx2 expression during embryo development has not
yet been determined. However, the GPx2 expression was asserted
to be under negative control of disabled-2 in murine embryonic
stem cells (Huang et al., 2010). Disabled-2 is a regulatory adaptor
protein involved in various process during development includ-
ing mesenchymal differentiation and mesoderm formation (Rula
et al., 2007; Martin et al., 2010). The underlying mechanisms of
GPx2 repression and the functional significance of this regulatory
circuit however remain to be investigated.

GLUTATHIONE PEROXIDASE 3
Glutathione peroxidase 3 (GPx3) is a secreted plasma protein that
is mainly produced in the proximal tubuli of the kidney (Avissar
et al., 1994b) but found in most extracellular fluids (reviewed in
Brigelius-Flohe, 1999). During embryo development GPx3 expres-
sion was detected in many embryonic tissues but also in the
placenta (Avissar et al., 1994a; Kingsley et al., 1998). Unfortu-
nately, very little is known about the biological role of this GPx
isoform. Interestingly, GPx3 uses thioredoxin or glutaredoxin as
reducing equivalents instead of glutathione because of the very
low glutathione levels found in plasma (Bjornstedt et al., 1994).
Recently published knockout data indicate that GPx3-/- mice show
no abnormal phenotype throughout their lifetime (Olson et al.,
2010). The fast reduction of GPx3 expression following selenium
depletion places GPx3 in the lower ranks of the selenium hierarchy
(Brigelius-Flohe, 1999). Very little is known about the mechanisms
driving GPx3 expression. The proximal promoter region lacks a
TATA-box but contains several NF-Y and Sp1-binding sites as well
as a CpG island. Indeed, hypermethylation of the GPx3 promoter
which is associated with reduced GPx3 expression was observed
in prostate carcinoma and tumors associated with Barrett’s esoph-
agus (Lee et al., 2005; Yu et al., 2007). However, the functional
significance of low GPx3 expression in the progression of cancer
has not yet been sufficiently addressed.

GLUTATHIONE PEROXIDASE 4
Glutathione peroxidase 4 (GPx4) was originally identified as an
inhibitor of lipid peroxidation in pig livers (Ursini et al., 1982,
1985). Within the protein family GPx4 takes up a special posi-
tion for a number of reasons. Whereas the other GPx enzymes
exist in the tetrameric form GPx4 was found to be a monomeric
enzyme containing a single selenocysteine moiety (Ursini et al.,
1985). Moreover, in contrast to the other GPx family members
GPx4 exhibits a broad affinity toward its substrate hydroperoxides
as well as its reducing equivalents. GPx4 shares the structural pre-
conditions for its enzymatic activity with the other GPx isoforms
(Scheerer et al., 2007). In contrast to other GPx isoforms however,
the active site of GPx4 is not framed by an exposed surface loop
that potentially limits the accessibility of the active site and its
largely hydrophobic surface allow GPx4 to closely associate with
membranes and lipoproteins. Thus, GPx4 not only reduces small
hydrophilic peroxides such as H2O2 but also more complex sub-
strates such as phospholipid or cholesterol hydroperoxides even
if these are incorporated into membranes or lipoproteins (Ursini
et al., 1985; Thomas et al., 1990; Sattler et al., 1994). When glu-
tathione concentrations are sufficient GPx4 uses glutathione as
reducing equivalent. However, when glutathione becomes limit-
ing such as in developing sperm cells GPx4 accepts thiol groups in
proteins as reducing equivalent (Godeas et al., 1997). This thiol-
oxidase activity toward protein thiols subsequently induces protein
cross-links. In fact, the GPx4 protein itself possesses a number of
cysteine residues on its protein surface, which have been impli-
cated in its ability to form extensive enzymatically inactive protein
polymers (Scheerer et al., 2007). This very particular feature of
GPx4 is crucial for sperm maturation (Godeas et al., 1997). In
addition, the presence of cysteine residues within the GPx4 pro-
tein has been suggested to be critical for its catalytic cycle (Mannes
et al., 2011).

In mammalian cells the GPx4 protein is found in most subcel-
lular compartments including the cytoplasm, the nucleus, mito-
chondria, and the endoplasmic reticulum (Arai et al., 1999).
Accordingly, various biological functions have been attributed
to GPx4 including cellular anti-oxidative defense, anti-apoptotic
activities, eicosanoid signaling, and chromatin condensation
(Kuhn and Borchert, 2002; Imai and Nakagawa, 2003; Conrad
et al., 2005). In mammals the GPx4 gene gives rise to three differ-
ent isoenzymes that exhibit similar enzymatic properties but that
can be distinguished by their specific N-terminal sequences (Kel-
ner and Montoya, 1998; Borchert et al., 1999; Pfeifer et al., 2001;
Figure 2). These N-terminal sequences are attained by alterna-
tive usage of three translational initiation sites (AUGs) that reside
in two alternative exons 1 (exon 1a and 1b). Exon 1a contains
two in-frame translational start sites (5′AUG and 3′AUG) and
codes for an N-terminal mitochondrial leader sequence, which
confers post-translational import into mitochondria (Arai et al.,
1999). Translation initiation at the 5′AUG results in the gener-
ation of a GPx4 isoenzyme, that is targeted for mitochondrial
import (mitochondrial GPx4, m-GPx4). In contrast, translation
from the 3′AUG yields a GPx4 isoenzyme, that lacks this leader
signal (cytosolic GPx4, c-GPx4). Because the mitochondrial leader
peptide is cleaved off after import into mitochondria, c-GPx4 and
m-GPx4 cannot be distinguished on the protein level anymore.
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Another translational initiation site is found in exon 1b. This exon
codes for an N-terminal peptide that causes nuclear localization
(Pfeifer et al., 2001) of the third GPx4 isoform (nuclear GPx4,
n-GPx4).

In addition to the coding multiplicity of the GPx4 gene a tran-
scribed c-GPx4 pseudogene was identified in mice (Boschan et al.,
2002). However, the biological significance of this pseudogene has
not yet been established.

GPx4 expression regulation
Three different mRNA species have been shown to be transcribed
from the GPx4 gene (Figure 2; Esworthy et al., 1994; Pushpa-Rekha
et al., 1995; Knopp et al., 1999; Moreno et al., 2003). Transcripts
starting from the most upstream transcription initiation site of
the GPx4 gene contain translational start sites for both, the mito-
chondrial as well as the cytosolic GPx4. This start site is dominantly
used in spermatogenic cells, but the mechanisms that induce tran-
scription from this site remain largely unknown. A second window
of transcription initiation is located between the 5′AUG and the
3′AUG in exon 1a. This mRNA species is ubiquitously expressed
in most mammalian cell types and only contains the translational
start site for the c-GPx4 isoform. The corresponding regulatory
region upstream exon 1a represents the promoter of a housekeep-
ing gene, that is devoid of a classical TATA-box and instead under
the control of general transcription factors Sp1 and NF-Y (Ufer
et al., 2003). The third window of transcription initiation was
found just upstream exon 1b and generates mRNA species coding
for the n-GPx4 (Moreno et al., 2003). Transcription from this site
is dominantly initiated in developing spermatids and appears to
be under the control of the cAMP-response element modulator
tau (CREM-τ; Borchert et al., 2003; Tramer et al., 2004).

FIGURE 2 | Coding multiplicity of the GPx4 gene. The GPx4 gene gives
rise to three isoenzymes designated m-GPx4, c-GPx4, and n-GPx4. They
can be distinguished by their N-terminal sequences that determine their
subcellular localization [mtp, mitochondrial targeting peptide (light hatching);
nls, nuclear localization sequence (dark hatching)]. The mammalian GPx4
gene consists of seven exons and contains three windows of
transcriptional (arrows) and translational (5′AUG, 3′AUG, n-AUG) initiation,
that are specific to the isoenzymes. Two protein factors (DJ-1, Grsf1) have
been identified that affect post-transcriptional regulation of the GPx4 gene.
cds, coding sequence.

GPx4 isoforms in embryos
Messenger RNAs for all three GPx4 isoforms were detected in
mouse embryos early on during development from gestational
day E6.5 (Borchert et al., 2006; Schneider et al., 2006). In the
developing embryo GPx4 mRNA is expressed in the early neural
tube at E8.0 and later extends into the developing neuroepithe-
lium of the fore-, mid-, and hind-brain (Borchert et al., 2006;
Figure 3). At later stages GPx4 expression is detected through-
out most developing organs in particular in the developing limbs
(Schneider et al., 2006). Interestingly, whereas the mRNA levels for
c-GPx4 remain largely constant throughout embryo development,
expression profiles of the m-GPx4 and n-GPx4 isoforms appear
to be under stage-dependent control and both enzymes obey to
similar expression kinetics (Borchert et al., 2006).

To explore the role of GPx4 during embryo development tar-
geted constitutive GPx4 knockout mice were created (Imai et al.,
2003; Yant et al., 2003). In contrast to the other GPx isoenzymes
GPx1-3 (see above) all GPx4 knockout strategies failed to pro-
duce viable homozygous offspring. Homozygous GPx4 knockout
embryos died by gestational day E8.5 and underwent intrauterine

FIGURE 3 | Functional roles of GPx4 in mouse development. (Upper
panel) Diagrams show spatial expression of mitochondrial GPx (m-GPx4,
blue) and nuclear GPx (n-GPx4, red) in developing mouse embryos at
gestational day E8.5–E10.5. Expression of m-GPx4 and n-GPx4 are
overlapping in frontal forebrain (fb) and otic vesicles (ov). m-GPx4 is mainly
expressed in both rostral and caudal neural tube (rnt and cnt) in early stage
and at forebrain (fb), midbrain (mb), and hindbrain (hb) in later stages.
n-GPx4 is expressed in the developing heart (ht). (Lower panel) Diagrams
show the abnormal embryo development following isoform specific GPx4
knockdown by RNA interference in whole mouse embryo culture. m-GPx4
siRNA constructs induce minor microencephaly and abnormal hindbrain
development (blue arrow) in the fifth and sixth rhombomeres (r5 and r6).
n-GPx4 siRNA constructs induce growth restriction and abnormal heart
formation (red arrow) of the left atrium (la).
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resorption (Imai et al., 2003; Yant et al., 2003). Extraembry-
onic structures remained largely unaffected by GPx4 ablation.
Interestingly, a similar phenotype was observed when de novo
biosynthesis of GSH was interrupted by targeted inactivation of
γ-glutamylcysteine synthase (Shi et al., 2000). This implies that
GPx4 enzymatic activity is the vital glutathione-dependent process
at this embryonic stage.

The key features of GPx4 function are its anti-oxidative and
anti-apoptotic activities. In developing embryos GPx4 expression
correlates with areas of reduced apoptosis in developing limbs
(Schnabel et al., 2006). Indeed, impaired GPx4 expression in devel-
oping embryos resulted in increased DNA fragmentation as an
indicator of increased apoptotic cell death (Imai et al., 2003;
Borchert et al., 2006). Similar observations were made in trans-
genic embryos that are incapable of de novo GSH biosynthesis
(Shi et al., 2000).

The developing brain appears to be the dominant site for GPx4
expression in embryonic mice and rats (Schweizer et al., 2004a).
GPx4 mRNA and protein expression were detected in various
areas of the brain such as pyramidal neurons of the frontal and
entorhinal cortex, dentate granule cells and CA pyramidal neu-
rons in the hippocampus of embryonic rat brains but not in
glial cells (Savaskan et al., 2007). In mice neural GPx4 expres-
sion was most dominant in the cerebral cortex, tectum, and in
the olfactory epithelium (Schneider et al., 2006). Thus, when
GPx4 expression was suppressed by siRNA-mediated knockdown
between gestational day E7.5 and E10.5 abnormal development of
mid and hindbrain structures was observed (Figure 3; Borchert
et al., 2006).

To further dissect the roles of the three GPx4 isoforms for
embryo development different transgenic mouse models were
developed, which aimed at selective inactivation of the GPx4
isoforms. Its localization in the mitochondrial intermembrane
space has implicated the m-GPx4 isoform as the GPx4 isoform
modulating apoptotic cell death (Imai and Nakagawa, 2003) and
this has been suggested as the major cause for embryonic death
in GPx4 deficient mice. Hence, one would expect that targeted
inactivation of m-GPx4 expression induces apoptosis leading to
embryonic death similar to the GPx4-/- mouse model. The m-
GPx4 specific knockout was achieved by the introduction of an
ochre codon within the mitochondrial targeting peptide of m-
GPx4, which prevented m-GPx4 protein translation whilst per-
mitting c-GPx4 expression. Surprisingly, m-GPx4-/- mice were
found to be fully viable suggesting that m-GPx4 is not viable for
embryo development (Schneider et al., 2009). However, m-GPx4-/-

males were infertile confirming the vital role of m-GPx4 expres-
sion for sperm development. This raises the question of whether
the c-GPx4 isoform is able to compensate for its so-called mito-
chondrial sibling to facilitate normal embryo development. This
question was answered by Liang et al. (2009a,b) by means of a
rescue experiment using GPx4-/- mice. For this purpose modified
GPx4 gene constructs were re-introduced into a GPx4-/- back-
ground. These transgene constructs permitted selective expression
of the m-GPx4 or the c-GPx4 isoform by alternative mutation of
the translational start sites for the individual isoforms. Indeed,
the expression of a c-GPx4 transgene in GPx4-/- mice rescued
the homozygous knockout phenotype by restoring embryonic
viability whereas transgenic m-GPx4 expression failed to restore

embryonic viability. Moreover, this group showed that c-GPx4 is
targeted into the mitochondrial intermembrane space although it
lacks a mitochondrial leader sequence (Liang et al., 2009b). The
mechanisms causing mitochondrial localization of the so-called
cytosolic GPx4 isoform however remain unsolved.

Taken together, these data suggest that the 5′AUG is only
employed in post-pubertal sperm cells whereas in developing
embryos only the 3′AUG giving rise to the c-GPx4 isoform is
used (Figure 2). However, in the brains of developing embryos
about half of all GPx4 mRNA species carry translational start
sites for both the m-GPx4 and the c-GPx4 isoforms as well as
an 5′-untranslated region (5′UTR) which has been shown to serve
as binding platform for translational regulators (Borchert et al.,
2006; Ufer et al., 2008). The strong expression of mRNA con-
taining the 5′AUG is rather surprising considering the apparent
redundancy of the m-GPx4 isoform for embryo development.
However, upstream starting codons and extended 5′UTRs are fre-
quently employed as regulatory elements that affect translation
or messenger stability (Wilkie et al., 2003). Thus, these extended
GPx4 mRNA sequences are likely to serve regulatory purposes
rather than as template for translation of an N-terminal mito-
chondrial targeting peptide. The discovery of the RNA-binding
proteins Guanine-rich sequence binding factor 1 (Grsf1) and
Parkinson’s disease-related protein DJ-1, which both bind the
extended 5′UTR of the GPx4 mRNA supports this idea (Ufer
et al., 2008; van der Brug et al., 2008). Targeted knockdown of
Grsf1 expression in developing embryos induces a phenotype that
mimics a GPx4 knockdown phenotype paralleled by increased
apoptotic cell death and lipid oxidation (Ufer et al., 2008). The
translational silencer DJ-1 loses its affinity to RNA when cysteine
residues of the DJ-1 protein become oxidized (Blackinton et al.,
2009). Thus, oxidative stress liberates GPx4 mRNA from DJ-1
mediated translational inhibition subsequently permitting GPx4
protein translation. However, regulation through DJ-1 seems to
be more complex. DJ-1 deficiency as it is frequently observed in
Parkinson’s disease or as obtained by targeted knockout of the
DJ-1 gene is paralleled by increased GPx4 protein translation but
renders DJ-1 deficient embryonic cortical neurons more sensitive
to oxidative stress (Kim et al., 2005). This data indicates that other
DJ-1 targets are involved in this phenotype. Hence, phenotypic
alterations observed when the function of the GPx4 5′UTR is com-
promised either by siRNA targeted at these sequences (Borchert
et al., 2006) or by manipulating the expression of RNA-binding
proteins such as Grsf1(Ufer et al., 2008) that bind these sequences
reflect the importance of this regulatory mechanism for GPx4
expression. In fact, this may at least partly explain the diverg-
ing phenotypes observed in the different experimental set-ups of
targeted knockout versus knockdown of m-GPx4 expression.

Similar to the m-GPx4 isoform the n-GPx4 isoform was also
found to be dispensable for embryo development (Conrad et al.,
2005). However, the c-GPx4 isoform can also be found in the
nucleus (Arai et al., 1999). This raises the question whether c-
GPx4 is also able to compensate for lacking n-GPx4 expression
in embryos. At least this is not the case when sudden repression
of n-GPx4 expression is induced by n-GPx4 specific siRNA in
developing embryos at midgestation. In fact, n-GPx4 knockdown
embryos exhibit abnormal development of the heart lacking the
left atrium (Figure 3; Borchert et al., 2006).
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GPx4 in cell signaling
The precise molecular mechanisms underlying early embryonic
death and neuronal cell death following ablation of GPx4 expres-
sion have so far remained unclear. The anti-apoptotic impact
of GPx4 activity by suppressing cytochrome c release from the
mitochondria is the most appealing mechanism (Imai and Naka-
gawa, 2003). However, GPx4 expression has been shown to affect
various cellular signaling events that may at least partly con-
tribute to the developmental abnormalities observed in embryos
with impaired GPx4 expression. A major hallmark of GPx4 defi-
ciency is extensive membrane oxidation (Seiler et al., 2008; Ufer
et al., 2008) and oxidative modification of the mitochondrial
lipid cardiolipin facilitates the release of cytochrome c into the
cytosol to unleash apoptotic signaling cascades activating caspases
3 (Imai and Nakagawa, 2003). Interestingly, neuronal degenera-
tion in GPx4 deficient cells does not involve caspase-3 activation,
instead the apoptosis-inducing factor (AIF)-dependent pathway
of apoptosis is pursued (Seiler et al., 2008). AIF is attached to the
inner mitochondrial membrane by its N-terminal anchoring pep-
tide. Oxidative modification of AIF exposes an internal calpain
cleavage site near its membrane anchor. Following proteolytic
cleavage by calpain AIF is released from its membrane anchor,
transported into the cytosol and subsequently translocated into
the nucleus, where AIF contributes to DNA fragmentation and
chromatin condensation (Norberg et al., 2010). By counteract-
ing mitochondrial generation of ROS GPx4 appears to protect
neuronal cells from oxidative modification of AIF, which pre-
vents AIF cleavage and release into the cytosol (Seiler et al.,
2008).

Cytoplasmic GPx4 activity is considered important for the
regulation of the cellular redox tone by reducing lipid hydroper-
oxides (Imai et al., 1996; Kuhn and Borchert, 2002). Thereby GPx4
activity affects enzymes such as lipoxygenases and cyclooxygenase,
which require a certain hydroperoxide tonus for their enzymatic
activity (Schilstra et al., 1992). Indeed, GPx4 has been shown to
suppress leukotriene and prostaglandin biosynthesis by inhibiting
lipoxygenase and cyclooxygenase activities (Weitzel and Wendel,
1993; Imai et al., 1998; Chen et al., 2003). Lipoxygenase activ-
ity has been implicated in a broad array of normal physiological
and patho-physiological processes (Kuhn and O’Donnell, 2006).
For instance, the impact of lipoxygenase activity on angiogenesis
has been a controversially discussed matter (Kuhn and O’Donnell,
2006; Mochizuki and Kwon, 2008). Recent experiments indicated a
role for GPx4 in tumor angiogenesis by suppressing lipid peroxida-
tion derived from 12/15-lipoxygenase activity or cycloxygenase-2
possibly via modulation of ROS sensitive tyrosine kinase signaling
pathways (Heirman et al., 2006; Conrad et al., 2010; Schnei-
der et al., 2010). This raises the question, whether GPx4 plays
a role in the formation of the embryonic vasculature. Strategies
of a targeted conditional knockout of GPx4 expression restricted
to the cardio-vascular system may help to answer that question
in the future. Conditional abrogation of selenoprotein synthesis
using an endothelial-specific knockout of the Trsp gene induced
multiple developmental abnormalities (Shrimali et al., 2007) and
correlates with a higher incidence of colon (Irons et al., 2006)
and prostate cancer (Diwadkar-Navsariwala et al., 2006). From
gestational day E14.5 on these embryos suffered massive necro-
sis in the parenchyma of the brain and the spinal cord as well as

greatly retarded development of the vasculature and erythrocytes.
However this experimental approach does not allow the identifica-
tion of a specific selenoprotein which is responsible for this severe
phenotype.

Cellular signaling cascades ultimately affect gene expression
regulation. This involves modulation of transcriptional, post-
transcriptional as well as post-translational events, which all
depend on regulatory protein factors. Many of these regulatory
proteins contain structures such as thiol groups that render them
sensitive to the cellular redox state (Brigelius-Flohe, 2006; Ufer
et al., 2010). Thereby the redox state of a cell can be monitored
and modulated by gene expression regulation. Indeed, GPx4 has
previously been shown to modulate the activity of transcription
factors including nuclear factor κB (NF-κB) and Nrf2 (Brigelius-
Flohe et al., 1997; Banning et al., 2004; Wenk et al., 2004; Banning
and Brigelius-Flohe, 2005). By dampening NF-κB signaling GPx4
reduces expression of matrix metalloproteinase-1 (MMP-1),a pro-
tein frequently upregulated during invasion and metastasis of
various tumors (Wenk et al., 2004). Both, Nrf2 and NF-κB are
expressed during murine brain development from around midges-
tation (Chan et al., 1996; Schmidt-Ullrich et al., 1996). Whereas
Nrf2 appears to be dispensable for prenatal development, dys-
functional NF-κB expression causes embryonic lethality around
gestational day E15 paralleled by increased apoptosis of the liver
parenchyma and impaired embryonic hematopoiesis (Beg et al.,
1995; Ma et al., 2006). The impact of GPx4 expression on NF-κB
activity in embryo development has not yet been tested. However,
expression of the manganese SOD, a known NF-κB target gene
(Mattson and Camandola, 2001), is not changed in mice that arti-
ficially overexpress GPx4 (Ran et al., 2004). Hence, the impact of
GPx4 on NF-κB mediated signaling most likely depends on further
preconditions.

PERSPECTIVES
Reliable determinations of ROS concentration in embryos are still
lacking. Evidences to support an actual developmental role of ROS
are very limited. It is technically very challenging to measure ROS
in situ in the developing embryos. Although the activity of the res-
piratory chain and the levels of antioxidants during development
are not indicative for specific ROS functions, they could serve
as reporters for regions and/or times at which ROS potentially
have a function. Unfortunately, the instability of most ROS species
in vivo precludes a confident determination of their concentration
in developing cells. Taking advantage of the damage caused by
oxidative stress, an alternative indirect way to determine ROS levels
is by measuring the oxidation level of macromolecules. It is impor-
tant to consider the half-life of the damaged molecule and repair
mechanisms, as these will determine whether the measurements
indicate a short-term increase in ROS or an accumulative damage
due to continuous ROS production. The detection of the expres-
sion patterns of anti-oxidative enzymes will become important
because they could either define the areas of high and low ROS lev-
els or reveal the areas exposed to elevated levels of oxidative stress,
as several of those genes respond to this condition. However, the
complexity of the events that take place in such close timely succes-
sion makes it difficult to draw satisfactory conclusions. Moreover,
as shown for the GPx isoenzymes proteins or enzymes might
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behave differently than the general consensus predicts, such as dif-
fering subcellular localizations or enzymatic activities. And such
moonlighting activities may be identified for other gene products.
Moreover, the lethal phenotype of a homozygous GPx4 knockout

makes it difficult to study the physiological role of GPx4 during
embryo development. The creation of inducible or tissue specific
knockouts or knock-ins may provide valuable tools to tackle this
issue and a plethora of such mouse models is available.
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