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The mood stabilizer lithium inhibits glycogen synthase kinase-3 (GSK-3) directly or indirectly
by enhancing serine phosphorylation of both α and β isoforms. Lithium robustly protected
primary brain neurons from glutamate-induced excitotoxicity; these actions were mimicked
by other GSK-3 inhibitors or silencing/inhibiting GSK-3α and/or β isoforms. Lithium rapidly
activated Akt to enhance GSK-3 serine phosphorylation and to block glutamate-induced Akt
inactivation. Lithium also up-regulated Bcl-2 and suppressed glutamate-induced p53 and
Bax. Induction of brain-derived neurotrophic factor (BDNF) was required for lithium’s neu-
roprotection to occur. BDNF promoter IV was activated by GSK-3 inhibition using lithium
or other drugs, or through gene silencing/inactivation of either isoform. Further, lithium’s
neuroprotective effects were associated with inhibition of NMDA receptor-mediated cal-
cium influx and down-stream signaling. In rodent ischemic models, post-insult treatment
with lithium decreased infarct volume, ameliorated neurological deficits, and improved
functional recovery. Up-regulation of heat-shock protein 70 and Bcl-2 as well as down-
regulation of p53 likely contributed to lithium’s protective effects. Delayed treatment with
lithium improved functional MRI responses, which was accompanied by enhanced angio-
genesis.Two GSK-3-regulated pro-angiogenic factors, matrix metalloproteinase-9 (MMP-9)
and vascular endothelial growth factor were induced by lithium. Finally, lithium promoted
migration of mesenchymal stem cells (MSCs) by up-regulation of MMP-9 through GSK-3β

inhibition. Notably, transplantation of lithium-primed MSCs into ischemic rats enhanced
MSC migration to the injured brain regions and improved the neurological performance.
Several other GSK-3 inhibitors have also been reported to be beneficial in rodent ischemic
models. Together, GSK-3 inhibition is a rational strategy to combat ischemic stroke and
other excitotoxicity-related brain disorders.
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INTRODUCTION
Glycogen synthase kinase-3 (GSK-3), an evolutionarily conserved
ubiquitous serine–threonine kinase consisting of α and β isoforms,
is a multifaceted protein with diverse cellular and neurophysiologi-
cal functions. The main structural difference between GSK-3α and
GSK-3β isoforms lies in the N- and C-terminal regions, while their
sequences within the kinase domain are highly homologous. GSK-
3 is considered to be constitutively active under non-stimulated
basal conditions. A growing body of evidence indicates that GSK-
3 is pro-apoptotic and that its dysfunction may be linked to
the pathophysiology of mood disorders, schizophrenia, diabetes,
and various neurological/neurodegenerative diseases, among oth-
ers (for review, Meijer et al., 2004; Huang and Klein, 2006; Jope
et al., 2007; Chiu and Chuang, 2010; Li and Jope, 2010). GSK-
3 inhibition has attracted widespread attention as one of the
critical therapeutic targets whereby lithium exerts its effects on
mood stabilization, neurogenesis, neurotrophicity, neuroprotec-
tion,anti-inflammation,and others (for review, Rowe and Chuang,
2004; Rowe et al., 2007; Beurel et al., 2010). Pharmacological

inhibition or gene knockout/knockdown of this kinase mimics
the anti-depressant and anti-manic effects of lithium observed
in rodent models (Gould et al., 2004; Kaidanovich-Beilin et al.,
2004, 2009; O’Brien et al., 2004; Rosa et al., 2008; Omata et al.,
2011). The activities of GSK-3 are negatively regulated by phos-
phorylation of GSK-3α at Ser21 and GSK-3β at Ser9. GSK-
3 can be inhibited by lithium through direct binding to the
ATP-dependent magnesium-sensitive catalytic site of the enzyme
(Klein and Melton, 1996; Stambolic et al., 1996), and/or indi-
rectly through enhanced serine phosphorylation of GSK-3 iso-
forms by multiple mechanisms (Figure 1). Lithium has been
shown to enhance GSK-3 serine phosphorylation by activation
of protein kinase A (PKA; Jope, 1999; Liang et al., 2008), or phos-
phatidylinositol 3-kinase (PI3-kinase)-dependent Akt (Chalecka-
Franaszek and Chuang, 1999) and protein kinase C-α (Kirshen-
boim et al., 2004). It has also been reported that lithium can
disrupt the β-arrestin-2–PP2A–Akt complex that dephosphory-
lates/inactivates Akt, thereby enhancing GSK-3 serine phospho-
rylation (Beaulieu et al., 2005). Moreover, it has been proposed
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FIGURE 1 | Inhibitory regulation of GSK-3 by lithium. Lithium negatively
regulates the constitutively activated GSK-3 activity through multiple
mechanisms. Lithium, a competitive inhibitor of magnesium, directly inhibits
ATP–magnesium-dependent catalytic activity of GSK-3. The activity of GSK-3
is also reduced by phosphorylation at a specific serine residue. Lithium can
indirectly increase this serine phosphorylation of GSK-3 through
PI3-kinase-mediated phosphorylation/activation of Akt, PI3-kinase-mediated
activation of PKC, and cAMP-dependent activation of PKA. Lithium can also
increase the serine phosphorylation of GSK-3 by disrupting the β-arrestin-2

(βArr2)–PP2A–Akt complex that dephosphorylates and inactivates Akt. In
addition, by disinhibiting the inhibitory action of inhibitor-2 (I-2) on protein
phosphatase-l (PP-1) that dephosphorylates GSK-3 at serine residues,
lithium’s direct inhibition of GSK-3 interrupts this auto-regulation of GSK-3 and
further decreases GSK-3 activity. Lines with solid arrows represent
stimulatory connections; lines with flattened ends represent inhibitory
connections. Dashed lines represent pathways with reduced activity as a
result of lithium treatment. I-2, inhibitor-2; PP-1, protein phosphatase-l.
(Modified from Chiu and Chuang, 2010).

that lithium can interrupt auto-regulation of GSK-3 via disinhi-
bition of the inhibitory action of inhibitor-2 complex on protein
phosphatase-1 (PP-1; Zhang et al., 2003). This article reviews the
findings supporting the role of GSK-3 inhibition in mediating
lithium’s neuroprotective effects against excitotoxicity in both cul-
tured neurons and animal models of ischemic stroke. Potential
down-stream mechanisms underlying lithium’s neuroprotection
against excitotoxicity are also discussed.

REGULATION AND FUNCTION OF GSK-3 ISOFORMS
We have designed isoform-specific small interfering RNAs (siR-
NAs) to distinguish the functional and regulatory differences
between the two GSK-3 isoforms in rat cerebral cortical neu-
ronal cultures (Liang and Chuang, 2007). Transfection with
siRNA for GSK-3α or GSK-3β or with dominant-negative mutants
specific for either isoform produced almost complete protec-
tion against glutamate-induced, N -methyl-d-aspartate (NMDA)
receptor-mediated excitotoxicity. The siRNA-induced neuropro-
tection was associated with enhanced N-terminal phosphoryla-
tion in both GSK-3 isoforms. Moreover, transfection with α or β

isoform-specific dominant-negative mutants of GSK-3 mimicked
lithium-induced neuroprotection against glutamate excitotoxicity.
These results strongly suggest that both GSK-3α and β are involved
in glutamate-induced neuronal death and that both isoforms are
the initial targets of lithium-elicited neuroprotection.

GSK-3 has also been implicated in neuronal development,
maturation/differentiation, and aging in the mammalian CNS
(Spittaels et al., 2002; Kim et al., 2009; Sofola et al., 2010). Sub-
strates phosphorylated by GSK-3 include metabolic, signaling, and

structural proteins as well as transcription factors. It is known
that inhibition of GSK-3 results in activation, and sometimes sup-
pression, of an array of transcription factors (for review, Grimes
and Jope, 2001; Jope and Roh, 2006; Chiu and Chuang, 2010).
Among the long list of transcription factors regulated by GSK-3
are cyclic AMP response element binding protein (CREB), nuclear
factor-κB (NF-κB), activating protein-1 (AP-1), heat-shock factor-
1 (HSF-1),β-catenin, T-cell factor (Tcf)/lymphoid enhancer factor
(Lef), and p53. Dysfunction of GSK-3-mediated phosphorylation
of transcription factors is believed to relate with the pathophys-
iology of various pathological conditions (for review, Chiu and
Chuang, 2010). We found that GSK-3α silencing activated cAMP
response element (CRE)- and NF-κB-responsive transcription
more robustly than GSK-3β silencing (Liang and Chuang, 2006).
Our protein–DNA array further identified two novel GSK-3-
regulated transcription factors, early growth response-1 (EGR-1)
and Smad3/4, both of which play important roles in growth, dif-
ferentiation, survival, and plasticity of brain cells (Harada et al.,
2001; Derynck and Zhang, 2003; Lee and Kim, 2004; Droguett
et al., 2010). Specifically, the binding activity of EGR-1 was
down-regulated by siRNA for GSK-3α, but was up-regulated by
siRNA for GSK-3β (Liang and Chuang, 2006). By using siR-
NAs or dominant-negative mutants specific to GSK-3 isoforms,
inhibition of GSK-3α increased the transcriptional activity of
Smad3/4, whereas inhibition of GSK-3β reduced it. The differen-
tial roles of GSK-3 isoforms are further supported by the opposite
effects of GSK-3α and β siRNAs on the protein levels of plas-
minogen activator inhibitor type-1 (PAI-1), a Smad3/4-regulated
gene product. These results demonstrate that selective silencing or
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inhibition of the two GSK-3 isoforms could produce different and
sometimes opposite effects on the regulation of certain transcrip-
tion factors including novel GSK-3 targets (Liang and Chuang,
2006).

Differential roles of GSK-3α and β have also been suggested
by other investigators. For example, the disruption of GSK-3β in
mice is embryonic lethal, despite the normal expression of GSK-
3α, indicating that the presence of α isoform can not compensate
for the loss of β isoform (Hoeflich et al., 2000). Transfection and
siRNA studies suggested that GSK-3α inhibition decreased the
processing of β-amyloid (Aβ) precursor protein to form Aβ1–40

and Aβ1–42, while GSK-3β appeared to have a lesser role (Phiel
et al., 2003). In addition, GSK-3β, but not GSK-3α, is required for
interferon-γ-induced activation of signal transducer and activator
of transcription-3 (Beurel and Jope, 2009). Together, these find-
ings underscore important similarities and differences between
the roles of GSK-3 isoforms α and β in cell survival as well
as transcription, and suggest that the development of isoform-
specific inhibitors may be essential for therapeutic intervention of
GSK-3-related neuropathological conditions.

We have also explored lithium’s effects on Smad3/4-dependent
transcriptional activity and the underlying mechanisms. Smad3/4
is a down-stream mediator of the signaling pathway triggered by
transforming growth factor-β (TGF-β), and plays a prominent role
in regulating the expression of proteins involved in neuronal sur-
vival, differentiation, and synaptic plasticity (for review, Gomes
et al., 2005). Treating cultured cortical neurons with therapeu-
tically relevant concentrations of lithium significantly decreased
Smad3/4-dependent transactivation and protein levels of PAI-
1, a TGF-β-responsive Smad3/4-dependent gene product (Liang
et al., 2008). Of particular relevance to the therapeutic efficacy
of lithium, PAI-1 has been implicated in the etiology and pro-
gression of neurodegenerative diseases and mood disorders (for
review, Pawlak et al., 2003; Liang et al., 2008).

Lithium’s effects on Smad3/4 likely result from cross-talk of
signaling pathways between cAMP/PKA and PI3-kinase/Akt/GSK-
3β. We have shown that lithium-induced Smad3/4 suppression
involved GSK-3β inhibition through the activation of PKA and
cell survival factor Akt followed by the phosphorylation of GSK-
3β at Ser9 and CREB at Ser133 (Liang et al., 2008). CREB binding
protein (CBP) and p300 are known to be co-activators of CREB.
Our data further demonstrated that over-expression of p300, but
not CBP, completely antagonized lithium-induced reduction of
PAI-1 promoter activity. A series of experimental data support
the notion that, in Smad3/4 signaling, the inhibitory effects of
lithium are due to complex formation of activated CREB and
p300, which results in limited interactions of p300 with the tran-
scription factors/Smad complexes. This in turn prevents efficient
Smad3/4-dependent transcription of Smad3/4-dependent genes
such as PAI-1 and p21 (Figure 2).

INVOLVEMENT OF GSK-3 AND OTHER MOLECULES IN
LITHIUM-ELICITED NEUROPROTECTION AGAINST
GLUTAMATE-INDUCED EXCITOTOXICITY IN CELLULAR
MODELS
Lithium-induced neuroprotection against glutamate excitotoxic-
ity was first noted in rodent primary neuronal cultures of cerebellar

granule cells (CGCs), cerebral cortical neurons, and hippocampal
neurons (Nonaka et al., 1998). This experimental paradigm was
selected because glutamate-related excitotoxicity has been impli-
cated in many neurodegenerative diseases including stroke (for
review, Chuang, 2004; Chiu and Chuang, 2010). Our pioneering
studies have shown that glutamate-induced, NMDA receptor-
mediated excitotoxicity was robustly reduced by extended lithium
chloride pretreatment (5–7 days) in cultured rat CGCs and cor-
tical neurons, partly via inhibition of NMDA receptor-mediated
calcium influx (Nonaka et al., 1998; Hashimoto et al., 2002a).
Moreover, these effects of lithium were likely due to the atten-
uation of constitutive phosphorylation at Tyr1472 of the NR2B
subunit of NMDA receptors, possibly as a result of inhibiting
Src tyrosine kinase (Hashimoto et al., 2002a, 2003). Although
glutamate-induced excitotoxicity in cultured cortical neurons was
blocked by treatment with either lithium or MK-801 (an NMDA
receptor antagonist), the Src kinase inhibitor SU6656 only partially
diminished this toxicity (Hashimoto et al., 2003), suggesting that
other components are involved. In CGCs, lithium-induced neuro-
protection against glutamate excitotoxicity was associated with up-
regulation of the anti-apoptotic protein Bcl-2, down-regulation of
the pro-apoptotic proteins p53 and Bax, and suppressed release
of cytochrome c from mitochondria (Chen and Chuang, 1999),
whereas the involvement of GSK-3 in the regulation of NMDA
signaling by lithium treatment is currently unclear and requires
further investigations.

Cyclin-dependent kinase 5 (Cdk5) also regulates signaling
mediated by NMDA receptors, either directly through phosphory-
lation of the NR2B subunit or indirectly through phosphorylation
of PSD-95 (Morabito et al., 2004; Zhang et al., 2008). Cdk5
activity is primarily regulated by its co-activator p35. However,
when it binds to p25 (the product of calpain-mediated cleavage
of p35), Cdk5 becomes pro-apoptotic and its activity is dysreg-
ulated (Lee et al., 2000; Carmins et al., 2006). Accordingly, p25
accumulation was observed in neurons in response to glutamate
or oxidative stress, and also in the brains of several animal mod-
els of neurodegenerative diseases. Sustained activation of Cdk5
in neurons has been implicated in many neurodegenerative dis-
eases (Cruz and Tsai, 2004; Dhariwala and Rajadhyaksha, 2008).
In cultured rat CGCs, lithium pretreatment prevented colchicine-
induced apoptosis and associated increase in Cdk5 expression and
fragmentation of p35 into p25 (Jorda et al., 2005). Additionally,
pretreatment with lithium also attenuated intracellular calcium
increase, calpain activity, Cdk5 activation, and cellular death in
primary cultured hippocampal neurons and rat striatum following
the treatment of 3-nitropropionic acid (Crespo-Biel et al., 2009),
a succinate dehydrogenase inhibitor (for review, Brouillet et al.,
1999). Therefore, lithium-induced inhibition of calpain and Cdk5
activation may also contribute to protection against glutamate
excitotoxicity.

Prior to changes in gene expression, lithium rapidly and tran-
siently activated the cell survival PI3-kinase and its down-stream
target, Akt-1, through phosphorylation at Ser473, thereby revers-
ing glutamate-induced inactivation of this signaling pathway in
CGCs (Chalecka-Franaszek and Chuang, 1999). Activated Akt is
known to affect several anti-apoptotic targets including Bcl-2 asso-
ciated death promoter (BAD), CREB, members of the forkhead

Frontiers in Molecular Neuroscience www.frontiersin.org August 2011 | Volume 4 | Article 15 | 3

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Chuang et al. Lithium, GSK-3, excitotoxicity, and stroke

FIGURE 2 | Negative regulation of Smad3/4-dependent transcription by

lithium. Transcriptional activations triggered by stimulation of cell surface
TGF-β and BDNF receptors are mediated by Smad3/4- and
PI3-kinase/Akt-dependent pathways, respectively. Lithium treatment-induced
inhibition of GSK-3β, directly and indirectly via cAMP-dependent activation of
PKA as well as BDNF-stimulated activation of PI3-kinase/Akt pathways,
potentiates BDNF-induced phosphorylation/activation of CREB. This in turn
increases CRE-mediated transactivation and expression of survival factors

such as BDNF and Bcl-2. Enhanced gene transcription triggered by BDNF, via
sequestration of transcriptional co-activator p300, suppresses
Smad3/4-dependent transactivation and subsequently decreases the
expression of TGF-β-responsive genes, PAI-1, and p21. Lines with solid arrows
represent stimulatory connections; lines with flattened ends represent
inhibitory connections. Dashed lines represent pathways with reduced
activity as a result of lithium treatment. CRE, cAMP response element.
(Modified from Liang et al., 2008).

family, and procaspase-9 (for review, Neri et al., 2002; Nicholson
and Anderson, 2002; Huang and Reichardt, 2003). In addition,
lithium also triggered Ser21 phosphorylation of the α isoform
of GSK-3 (and hence resulted in inhibition), and this effect was
prevented by a PI3-kinase inhibitor (Chalecka-Franaszek and
Chuang, 1999). Another signaling pathway affected by lithium
is the mitogen-activated protein (MAP) kinase pathway. One of
the down-stream targets of MAP kinase is CREB, a transcription
factor that is involved in learning and memory, and promotes
the expression of Bcl-2 as well as brain-derived neurotrophic
factor (BDNF; for review, Finkbeiner, 2000). In CGCs, toxic con-
centrations of glutamate-induced an NMDA receptor-dependent
decrease in CREB phosphorylation at Ser133 and CREB-driven
transcriptional activity (Kopnisky et al., 2003). Concurrent with
its neuroprotective effects, long-term (but not acute) lithium treat-
ment suppressed glutamate-induced dephosphorylation of CREB.
We also found that glutamate rapidly activated c-Jun-N-terminal
kinase (JNK) and p38 kinase in CGCs, resulting in a robust increase
in AP-1 binding (Chen et al., 2003a). These two kinases are also
activated by a variety of apoptotic insults (for review, Mielke and
Herdegen, 2000), and AP-1 has been known to be activated by

different stress factors as well. Experiments using lithium and
curcumin, a selective AP-1 inhibitor, suggest that NMDA receptor-
mediated apoptotic death requires concerted action of JNK and
p38 to enhance AP-1 binding, and that lithium’s neuroprotection
is mediated, at least in part, by suppressing the JNK and p38 kinase
pathways.

As one of the major neurotrophins, BDNF is essential for cor-
tical development, synaptic plasticity, and neural survival, and is
likely a key mediator of the clinical efficacy of anti-depressants and
anxiolytic drugs (for review, Woo and Lu, 2006). The notion that
BDNF plays a key role in neuronal survival is supported by our
observation that BDNF and neurotrophin-4 (NT-4), but not NT-3,
completely protected immature CGCs from apoptosis induced by
cytosine arabinoside (Leeds et al., 2005). It was first reported that
chronic treatment with lithium increased the expression of BDNF
in the rat brain (Fukumoto et al., 2001), and we have documented
that BDNF protein levels were increased in cortical neurons follow-
ing lithium treatment (Hashimoto et al., 2002b). We hypothesized
that this BDNF up-regulation and subsequent activation of its
receptor TrkB might play a critical role in mediating the neuro-
protective effects of lithium. In confirmation of this hypothesis, we
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found that lithium’s neuroprotection against glutamate excitotox-
icity was blocked by a TrkB inhibitor, K252a, or by a neutralizing
antibody against BDNF, and was mimicked by exogenous BDNF
in rat cortical neurons. In addition, lithium increased intracellu-
lar levels of BDNF and this was followed by activation of TrkB.
Furthermore, lithium-induced neuroprotection was prevented in
cortical neurons from heterozygous (+/−) or homozygous (−/−)
BDNF knockout mice (Hashimoto et al., 2002b).

Rodent BDNF has a complex genomic structure that makes it
an ideal target for multiple and complex regulation. It contains
multiple 5′-untranslated exons and one protein-coding 3′-exon.
Each untranslated exon is alternatively spliced to produce var-
ious species of BDNF mRNA. We found that treatment of rat
cortical neurons with therapeutic concentrations of lithium (e.g.,
1 mM) caused a significant increase in the levels of BDNF exon
IV-containing mRNA, while levels of exon I, II, or VI-containing
mRNA remained unchanged (Yasuda et al., 2009). It is known that
exon IV-containing BDNF transcripts are expressed in response
to KCl-induced depolarization in rat cortical neurons (Tao et al.,
2002). This transcriptional activation requires utilization of the
promoter region 80 bp up-stream from the transcription initi-
ation site of exon IV-containing three calcium responsive ele-
ments (CaREs; Chen et al., 2003b). We generated various BDNF
promoter IV deletion constructs to investigate whether lithium
treatment causes an increase in BDNF promoter IV activity,
and, if so, which region of promoter IV confers the sensitivity
to this drug. We identified that the drug-induced up-regulation
of exon IV-containing BDNF transcript was associated with a
significant increase in the activity of BDNF promoter IV and
total BDNF protein. To our surprise, the lithium-responsive ele-
ment(s) in promoter IV resides in a region up-stream from the
CaREs responsible for depolarization-induced BDNF induction
(−170 to −704 bp). Moreover, activation of BDNF promoter IV
occurred in cortical neurons depolarized with KCl and depletion
of these three CaREs failed to abolish lithium-induced activation.
Importantly, we found that lithium-induced activation of pro-
moter IV was mimicked by pharmacological inhibitors of GSK-3
(SB216763, SB415286, inhibitor I, and inhibitor VII) or by trans-
fection with specific siRNA for GSK-3α or GSK-3β. Additionally,
their dominant-negative mutants also mimicked lithium-induced
activation of promoter IV. These results demonstrate that GSK-3 is
the initial target of lithium to selectively activate BDNF promoter
IV and that BDNF induction by lithium involves a novel responsive
region in promoter IV of the BDNF gene. Lithium-induced, GSK-
3-dependent BDNF promoter IV activation could be a part of the
molecular mechanisms underlying its neuroprotective effects and
as such, possibly accounts for the therapeutic actions in bipolar
patients.

It should be noted that in addition to lithium, other GSK-3
inhibitors have been shown to almost completely block glutamate-
induced excitotoxicity in rat cortical neuronal cultures (Liang
and Chuang, 2007). These include ATP-competitive inhibitors,
SB216763 and SB415286, and ATP-non-competitive inhibitors,
Inhibitor I and VII. As mentioned in the preceding section,
glutamate-induced death of cortical neurons was mitigated by
silencing of GSK-3α and/or β, or both isoforms, or inhibition of
GSK-3 activity via transfection with dominant-negative mutants

of GSK-3α/β isoforms (Liang and Chuang, 2007). Studies from
other laboratories also supported the roles of GSK-3 inhibi-
tion in protecting neurons from glutamate neurotoxicity. For
example, stimulation of NMDA receptors in cultured rat hip-
pocampal or cortical neurons activated GSK-3 by PP-1-mediated
serine dephosphorylation of GSK-3β (Szatmari et al., 2005).
GSK-3 inhibition reduced the PP-1-mediated serine dephospho-
rylation of GSK-3 and CREB. Treatment of primary rat corti-
cal neurons with α-amino-3-hydroxy-5-methyl-4-isoxazole pro-
pionate (AMPA), lithium or SB216763 blocked glutamate-induced
caspase-3 activation and excitotoxicity, and the protective effects
of AMPA required PI3-kinase–Akt-dependent serine phosphory-
lation of GSK-3β (Nishimoto et al., 2008). Further, in organotypic
cultures of chick embryo spinal cord, lithium prevented kainate-
induced excitotoxic death of motoneurons by targeting GSK-3β,
and this neuroprotection was associated with cytopathological
changes (Caldero et al., 2010).

NEUROPROTECTIVE EFFECTS OF LITHIUM IN PRECLINICAL
MODELS OF ISCHEMIC STROKE
Stroke is the third leading cause of death in the United States
and a major global cause of serious long-term disability in adults.
Ischemic strokes represent approximately 87% of all cases, while
the rest are hemorrhagic strokes (Roger et al., 2011). In addition to
physical deficits, stroke victims also suffer from vascular depres-
sion and dementia, both of which are difficult to treat with con-
ventional medicine. It is becoming clear that there is a substantial
increase in extracellular glutamate in the brain following cere-
bral ischemia, and that a significant portion of ischemia-induced
brain damage is mediated by over-stimulation of NMDA recep-
tors. Shortly after ischemia, the interruption of cerebral blood
flow depletes oxygen and glucose and subsequently prevents ATP
production. Inadequate ATP supply will cause the malfunction of
ATP-dependent ion pumps and alter the ion concentration gra-
dient across the neuronal membranes. The resulting failure to
transport glutamate leads to an accumulation of glutamate in the
extracellular space and over-stimulates NMDA receptors, which
leads to a toxic influx of calcium and in turn drives the activa-
tion of damaging calcium-mediated intracellular enzymes. This
cascade of events ultimately results in mitochondrial failure, pro-
duction of reactive oxygen species, neuroinflammation, and cell
necrosis and apoptosis (Allen and Bayraktutan, 2009; Deb et al.,
2010).

GSK-3β has been strongly implicated in the neuronal cell death
caused by cerebral ischemic insult. One study in rats subjected to
transient middle cerebral artery occlusion (MCAO) demonstrated
a rapid increase in the expression of cytoplasmic and nuclear GSK-
3β protein in ipsilateral lamina I, II, V, and VI in young rat brains,
whereas in lamina V and VI in old rat brains (Sasaki et al., 2001).
In addition, the distribution of GSK-3β was well correlated with
TUNEL-staining. Although the phosphorylation status of GSK-
3β was not mentioned, these findings implicate a role of GSK-3β

in cerebral ischemic injury. It is well known that GSK-3β can be
phosphorylated at serine and tyrosine residues in which Ser9 phos-
phorylation renders it inactive, while Tyr216 phosphorylation is
necessary for its functional activity (Hughes et al., 1993). Dis-
crepancies exist in the literature regarding changes of Ser9 and
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Tyr216 phosphorylation levels following cerebral ischemia. The
phosphorylation levels of GSK-3β at Ser9 and Akt at Ser473 were
reported to be markedly enhanced in the vulnerable hippocampal
CA1 region, but not in the ischemia-resistant CA3 region in rats
subjected to transient global cerebral ischemia, while there was
no change in levels of Tyr216 phosphorylation or total GSK-3β

(Endo et al., 2006). Levels of GSK-3β Ser9 phosphorylation were
also increased shortly after permanent focal cerebral ischemia and
decreased to basal levels or even lower 24 h after ischemic onset
(Sasaki et al., 2006; Gao et al., 2008). However, it has also been
reported that transient focal cerebral ischemia in rats caused an
increase in GSK-3β Tyr216 phosphorylation in degenerating cor-
tical neurons with no alteration in Ser9 phosphorylation (Bhat
et al., 2000). This discrepancy may stem, in part, from the dif-
ference of ischemic severity and ischemic models across various
studies. It appears that transient focal cerebral ischemia tends
to activate GSK-3β and subsequently to induce apoptotic cell
death. In contrast, GSK-3β is inactivated shortly after perma-
nent focal cerebral ischemia or global cerebral ischemia, which in
turn may promote survival of vulnerable neurons. A very recent
study showed that following hypoxia–ischemia both GSK-3α and
GSK-3β mediated the expression of a lethal protein, neuronal pen-
traxin 1 (Russell et al., 2011). In light of these findings, GSK-3
inhibition may provide neuroprotective effects against cerebral
ischemia-induced injury. The beneficial effects of lithium in rodent
cerebral ischemic models demonstrated by us and others support
this notion.

In an initial study, long-term lithium pretreatment at thera-
peutically relevant doses decreased brain infarct volume, reduced
apoptotic cell death and improved behavioral performance after
permanent cerebral ischemia-induced by MCAO (Nonaka and
Chuang, 1998; Xu et al., 2003). In a subsequent study, we demon-
strated that subcutaneous injection of rats with lithium at thera-
peutic doses (e.g., 0.5 and 1.0 mEq/kg) after the onset of transient
MCAO markedly decreased infarct volume, reduced TUNEL-
positive DNA damage, and suppressed neurological deficits mea-
sured by sensory, motor, and reflex tests (Ren et al., 2003). The
time window for these beneficial effects was at least 3 h after
the onset of ischemia. Heat-shock protein 70 (HSP70), a well-
established cytoprotective factor against apoptosis, was induced
in the ischemic penumbra where neuronal recovery takes place.
Post-insult treatment with lithium increased the DNA bind-
ing activity of HSF-1 to the heat-shock element, superinducing
HSP70 which inhibits brain ischemia-induced apoptosis (Ren
et al., 2003). Lithium-elicited GSK-3 inhibition is likely associ-
ated with HSF-1 activation and HSP70 induction (Bijur and Jope,
2000). Notably, post-insult lithium treatment mitigated apopto-
sis and brain damage by preventing GSK-3β and ERK dephos-
phorylation, suppressing calpain and caspase-3 activation, and
inhibiting mitochondrial release of cytochrome c and apoptosis-
inducing factor in a neonatal hypoxic–ischemic rat model (Li
et al., 2010). These findings suggest that lithium-induced GSK-3
inhibition contributes to its anti-apoptotic effects under ischemic
conditions.

In addition, it was found that lithium pretreatment largely
suppressed ischemia-induced exploratory behavioral changes and
memory impairments in gerbils after global cerebral ischemia

(Bian et al., 2007). These behavioral benefits were associated
with an increase in the number of viable cells and a decrease
in apoptotic cells in the CA1 hippocampal area of ischemic ger-
bils. Moreover, lithium-induced neuroprotection in the ischemic
brain was accompanied by down-regulation of pro-apoptotic
p53 in the CA1, and up-regulation of anti-apoptotic Bcl-2 and
HSP70, both of which are targets of GSK-3. It is likely that
lithium protection against ischemia-induced injury involves mul-
tiple mechanisms. In the rat hippocampus, lithium was reported
to inhibit ischemia-induced NMDA receptor hyperactivation by
inhibiting NMDA subunit 2A tyrosine phosphorylation and its
interactions with Src and Fyn through PSD-95 (Ma and Zhang,
2003). Lithium also attenuated hypoxia-induced serine dephos-
phorylation of GSK-3α and β in the mouse brain (Roh et al.,
2005). Additionally, in organotypic cultures of rat hippocampus
subjected to oxygen and glucose deprivation, lithium showed neu-
roprotection in conjunction with HSP27 activation (Cimarosti
et al., 2001).

It is widely recognized that neuroinflammation plays a causative
role in ischemic stroke injury. Post-ischemic inflammation is
a dynamic process involving a complicated set of interactions
between inflammatory cells and molecules (Iadecola and Alexan-
der, 2001). A recent study documented the anti-inflammatory
effects of lithium in a neonatal rat hypoxic–ischemic model. Post-
insult lithium treatment significantly reduced total tissue loss
following hypoxia–ischemia, and this beneficial effect of lithium
was associated with inhibiting microglia activation and attenu-
ating levels of pro-inflammatory cytokines or chemokines, such
as interleukin-1β and chemokine ligand 2 (Li et al., 2011). One
possible underlying mechanism is through HSP70 superinduc-
tion. HSP70 over-expression can inactivate the key inflammatory
transcription factor NF-κB by stabilizing the NF-κB-IκB complex,
and thereby preventing nuclear translocation of activated NF-κB
subunits in a mouse MCAO model (Zheng et al., 2008).

Besides anti-inflammation, lithium also increased proliferation
and differentiation of hippocampal neural progenitor cells in both
non-ischemic and ischemic brains without altering the relative lev-
els of neuronal and astrocytic differentiation, and this effect lasted
at least 7 weeks after hypoxia–ischemia in neonatal rats (Li et al.,
2011). In line with this finding, chronic lithium pretreatment was
found to increase the generation and survival of newborn cells in
the hippocampal dentate gyrus, and did not affect the neuronal
or astrocytic differentiation of these newborn cells in a transient
four-vessel occlusion model (Yan et al., 2007). ERK1/2 phospho-
rylation following ischemia was enhanced by lithium treatment,
while ERK1/2 inhibitor U0126 prevented the effects of lithium
in increasing BrdU-positive cells and improving spatial learning
and memory (Yan et al., 2007). In fact, chronic lithium treatment
has been demonstrated to increase activity in the MEK/ERK path-
way in vivo, and lithium’s neuroprotection has been suggested to
depend on the induction of this signaling pathway (Einat et al.,
2003). In addition, it was reported that activation of ERK associates
with and phosphorylates GSK-3β at the Thr43 residue, which
primes this kinase for its subsequent phosphorylation at Ser9 by
p90RSK, resulting in inactivation of GSK-3β and up-regulation
of β-catenin (Ding et al., 2005). Therefore, lithium might affect
GSK-3β phosphorylation through the MEK/ERK pathway, which
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in turn inhibits this kinase via RSK. GSK-3β is also negatively reg-
ulated by the Wnt/β-catenin signaling pathway and, accordingly,
activating the canonical Wnt pathway has been shown to con-
tribute to adult hippocampal neural progenitor cell proliferation
triggered by lithium treatment (Wexler et al., 2008).

In a collaborative study, the neurohemodynamic aspects of
recovery induced by delayed chronic lithium treatment were
assessed using functional magnetic resonance imaging (MRI; Kim
et al., 2008). Rats were subjected to transient MCAO and then
injected with lithium (LiCl, 1 mEq/kg, s.c.) 12 h after the ischemic
onset. This delayed lithium injection was followed by daily injec-
tions, and on day 15, an MRI scan was performed to monitor
changes in blood oxygen level dependence (BOLD) and functional
cerebral blood volume (fCBV) responses using electric stimu-
lation of forelimbs. The mean activated volume ratio and total
activation magnitude ratio between ipsilateral and contralateral
cortices for both BOLD and fCBV were significantly higher in
the lithium-treated than in the saline-treated rats. The lithium-
induced increase in fCBV in the peri-infarct regions suggests a
possible vascular transformation. Indeed, the size and distribution
of immunohistochemical staining of CD31, a microvasculature
marker, were enhanced by lithium treatment in the peri-infarct
regions. Co-localized with CD31, the tissue staining of matrix
metalloproteinase-9 (MMP-9) was also much more pronounced
following lithium treatment, suggesting MMP-9-dependent neu-
rovascular remodeling in the recovering brain area. Moreover,
treatment of cultured rat brain endothelial cells with lithium in
a follow-up study was also found to increase the protein levels
of vascular endothelial growth factor (VEGF) via a mechanism
involving the PI3-kinase and GSK-3 signaling pathways (Guo et al.,
2009). Since VEGF has been linked to angiogenesis, neurogene-
sis, and neuroprotection (for review, Fan and Yang, 2007), VEGF
over-expression may contribute to lithium’s ability to promote
neurovascular remodeling and to induce functional recovery after
ischemic stroke.

Ample evidence supports the therapeutic potential of mes-
enchymal stem cells (MSCs) in several human diseases including
stroke. However, it is increasingly recognized that the effectiveness
of MSC transplantation is limited by their poor migration toward
disease target sites such as ischemic brain regions. In a recent
study, we investigated whether treatment of MSCs with lithium
and another mood stabilizing drug, valproic acid (VPA), would
enhance cell migration (Tsai et al., 2010). We found that treatment
of MSCs with lithium (2.5 mM for 1 day) selectively elevated the
transcript and protein levels of MMP-9 and its enzymatic activ-
ity. These effects were mimicked by pharmacological inhibition
or gene silencing of GSK-3β. Lithium treatment also potentiated
stromal cell-derived factor-1α (SDF-1α)-dependent MSC migra-
tion across the extracellular matrix, which was suppressed by two
MMP-9 inhibitors, doxycycline and GM6001. Short-term (3 h)
exposure of MSCs to a relatively high concentration (2.5 mM) of
VPA markedly increased the transcript and protein levels of CXC
chemokine receptor 4 (CXCR4). VPA-induced CXCR4 expres-
sion required its ability to inhibit histone deacetylases (HDACs),
including the HDAC1 isoform, and involved histone hyperacety-
lation at the CXCR4 gene promoter. VPA treatment enhanced
SDF-1α-mediated MSC migration, which was completely blocked

by AMD3100, a CXCR4 antagonist. Notably, combining lithium
and VPA treatment further increased MSC migration, and the
additive enhancement of migration was completely blocked by the
co-presence of AMD3100 and GM6001. Our results suggest that
lithium andVPA stimulate MSC migration through distinct targets
and mediators: GSK-3β–MMP-9 and HDAC–CXCR4, respectively
(Tsai et al., 2010).

In a follow-up in vivo study, MSCs were primed with lithium
and/or VPA and then injected into the tail vein of transient
MCAO rats 24 h after ischemic onset. Priming with lithium or VPA
increased the number of MSCs homing to the cerebral infarcted
regions such as the cortex and striatum 2 weeks after transplanta-
tion, and co-priming with lithium and VPA further enhanced this
migratory effect (Tsai et al., 2011). MCAO rats receiving lithium-
and/or VPA-primed MSCs showed improved functional recov-
ery, reduced infarct volume, and enhanced angiogenesis in the
infarcted penumbra regions. These beneficial effects of lithium
and VPA priming were reversed by pharmacological inhibition of
MMP-9 and CXCR4, respectively, suggesting that these effects were
likely mediated by lithium-induced MMP-9 up-regulation and
VPA-induced CXCR4 over-expression. Together, these findings
raise the potential utility of using MSCs primed with inhibitors of
GSK-3 and HDAC to enhance the migration and homing capacity
for transplantation into stroke victims.

In addition to lithium, other pharmacological GSK-3 inhibitors
have been shown to exert neuroprotective effects against cerebral
ischemia by various groups. A specific GSK-3β inhibitor, Chir025,
was demonstrated to protect cultured hippocampal neurons from
glutamate excitotoxicity and to attenuate death of cortical neu-
rons following oxygen–glucose deprivation, an in vitro model of
cerebral ischemia (Kelly et al., 2004). Moreover, Chir025 reduced
infarct size in focal cerebral ischemic rats, but did not affect
TUNEL-positive neurons or caspase-3/9 activities, although Bcl-2
expression was increased. GSK-3 enzymatic activity was markedly
elevated after transient MCAO in rats, and this GSK-3 activa-
tion was blocked by jugular vein injection of GSK-3 inhibitor
VIII (Koh et al., 2008). Pre- or post- (up to 2 h) MCAO injection
with inhibitor VIII also reduced blood glucose levels, infarct size,
caspase-3 activity, and water content in the ipsilateral brain hemi-
sphere. Furthermore, ischemia-induced inflammation-related sig-
nals such as COX-2 over-expression and neutrophil infiltration
were alleviated by this GSK-3 inhibitor. Prophylactic or therapeu-
tic administration of a GSK-3β inhibitor TDZD-8 reduced infarct
volume and cerebral injury in the rat hippocampus after transient
ischemia (Collino et al., 2008). This was accompanied by suppres-
sion of ischemia-induced oxidative stress, apoptosis, and neuroin-
flammation. Delayed treatment with Compound I, a GSK-3β and
Cdk inhibitor, decreased TUNEL-positive cells in the ipsilateral
hippocampus and striatum of adult (but not juvenile) mice sub-
jected to hypoxic–ischemic injury (Cowper-Smith et al., 2008).
These neuroprotective effects of Compound I were associated
with long-lasting functional recovery. Finally, GSK-3 inhibition
by SB216763 counteracted oxygen–glucose deprivation-induced
mitochondrial biogenesis impairment and reduced mitochondr-
ial reactive oxygen species generation in primary cortical neurons
(Valerio et al., 2011). When systematically administrated to per-
manent MCAO mice, SB216763 decreased infarct volume and
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restored the loss of mitochondrial DNA, thus supporting a novel
role of GSK-3 inhibitors in stimulating the renewal of functional
mitochondria following ischemic stroke.

CONCLUSION
A growing body of evidence supports that lithium, a mood stabi-
lizer used to treat bipolar disorder, has neuroprotective properties

FIGURE 3 | Proposed lithium’s neuroprotective effects against cerebral

ischemia. The neuroprotective effects of lithium against cerebral ischemia are
proposed to result from its interactions with cell survival and apoptotic
machinery. A significant portion of brain damage following cerebral ischemia
is caused by an increase in extracellular glutamate and subsequent
over-stimulation of NMDA receptor-mediated toxic increase in intracellular
calcium. This signaling pathway plays a critical role in mediating
glutamate-induced caspase activation and apoptosis. Lithium at
therapeutically relevant concentrations inhibits NMDA receptor-mediated
calcium influx, which in turn decreases subsequent activation of JNK, p38
kinase, and transcription factor AP-1. Inhibition of intracellular calcium increase
also attenuates the activity of calpain and calpain-mediated activation of
pro-apoptotic Cdk5/p25 kinase. On the other hand, lithium can directly and
indirectly reduce the activity of constitutively activated GSK-3 by multiple
mechanisms, leading to disinhibition of several transcription factors, such as
CREB and HSF-1, and resulting in induction of major cytoprotective proteins
such as BDNF, VEGF, MMP-9, HSP70, and Bcl-2. A decrease in GSK-3 activity
further reduces the activity of pro-apoptotic protein p53 and its

downregulating effect on Bcl-2. BDNF, via activating its cell surface receptor
and the down-stream ERK and PI3-kinase/Akt pathways, induces
neuroprotective effects in part by inhibiting GSK-3 and stimulating CREB.
Induction of BDNF is an early and essential step for neuroprotection and is
involved in lithium-induced neurogenesis. In addition, superinduction of
HSP70 by lithium treatment not only inhibits brain ischemia-induced
apoptosis, but also contributes to the anti-inflammatory effects of lithium
through inactivation of NF-κB. Counteraction of GSK-3 inhibition of VEGF and
MMP-9 by lithium enhances angiogenesis and neurovascular remodeling.
MMP-9 is also a key molecule involved in potentiating MSCs migration by
lithium. Improvement in transplanted MSCs migration toward ischemic sites
might increase neurogenesis as well. Taken together, these effects of lithium
in reducing apoptosis, suppressing inflammation, enhancing angiogenesis
and neurogenesis, contribute to behavioral improvement and functional
recovery after ischemia. Lines with solid arrows represent stimulatory
connections; lines with flattened ends represent inhibitory connections.
Dashed lines represent pathways with reduced activity as a result of lithium
treatment. NMDA-R, NMDA receptor.
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in both cellular and in vivo experimental settings. One of the major
targets of lithium is GSK-3, a serine/threonine kinase implicated in
the pathogenesis of diverse CNS disorders. Lithium inhibits GSK-3
activity by direct binding to the enzyme or indirectly by enhancing
serine phosphorylation of both α and β isoforms through multi-
ple mechanisms. Lithium has been used as a prototype drug to
seek evidence for the involvement of GSK-3 inhibition in lithium-
induced protection against excitotoxicity in cultured neurons and
animal models of cerebral ischemic stroke. Lithium at therapeu-
tically relevant concentrations robustly protected primary brain
neurons from glutamate-induced, NMDA receptor-mediated exci-
totoxicity. The neuroprotective effects of lithium were associated
with GSK-3 inhibition, and were mimicked by other pharmaco-
logical GSK-3 inhibitors, by silencing GSK-3α and/or β isoforms,
or by expression of isoform-specific dominant-negative mutants.
These results support the roles of GSK-3 inhibition in lithium-
elicited protection against excitotoxicity. Lithium rapidly activated
the cell survival PI3-kinase–Akt signaling pathway to enhance
GSK-3 serine phosphorylation and to block glutamate-induced
Akt inactivation as well as apoptosis. Lithium also caused an
increase in the expression of cytoprotective Bcl-2 and suppressed
glutamate-induced up-regulation of pro-apoptotic p53 and Bax,
resulting in blocking cytochrome c release from mitochondria.
Induction of BDNF and activation of the BDNF–TrkB signaling
were prerequisite for lithium’s neuroprotection. BDNF promoter
IV was selectively activated by GSK-3 inhibition using lithium
or other drugs or through gene silencing/inactivation of either
isoform. This effect on promoter IV resulted in BDNF transcrip-
tional activation and protein up-regulation. However, there is a
gap in the understanding of how GSK-3 inhibition causes an
increase in BDNF promoter activity. In addition, lithium’s neu-
roprotective effects were associated with inhibition of NMDA
receptor-mediated calcium influx and suppression of p38/JNK and
AP-1 activation, thus reducing apoptosis. This effect appears to
stem from inhibition of Src/Fyn kinase to suppress NR2B Tyr1472
phosphorylation of the receptor. It remains to be explored as to
whether this lithium-induced action on NMDA receptors is related
to GSK-3 inhibition. It should be noted that lithium has other
direct targets such as inositol phosphatases. The potential roles of
these other targets in mediating the neuroprotective effects of this
drug also deserve future investigation.

It is well known that glutamate overflow and NMDA receptor
hyper-stimulation are early events following cerebral ischemia. In
rodent ischemic models, pre- or post-insult treatment with thera-
peutic doses of lithium decreased infarct volume,caspase-3 activity

and apoptotic cells in the injured brain. Importantly, lithium
administration ameliorated neurological deficits, and improved
functional recovery. The beneficial time window of lithium is
at least 3 h after the ischemic onset. Up-regulation of HSP70
and Bcl-2 as well as down-regulation of p53 likely contributed
to the protective effects of lithium in the ischemic conditions,
thus supporting similar underlying neuroprotective mechanisms
in the excitotoxic cellular models and animal models of ischemic
stroke. Limited data suggested that lithium might also display anti-
inflammatory effects by inhibiting ischemia-induced microglia
activation and pro-inflammatory factors release. Delayed and
chronic injections of lithium improved functional MRI responses
such as increases in BOLD and fCBV. The improved fCBV was con-
current with enhanced angiogenesis and neurovascular remodel-
ing. Indeed, lithium was found to induce two pro-angiogenic fac-
tors, MMP-9 and VEGF in a GSK-3-dependent manner. Lithium
has also been reported to stimulate ERK1/2 activity and to enhance
proliferation of hippocampal neural progenitor cells and memory
performance after ischemia. Finally, lithium promoted migra-
tion of MSCs in vitro by up-regulation of MMP-9 through
GSK-3β inhibition and this migratory effect was potentiated by
co-treatment with VPA, another mood stabilizer. Notably, trans-
plantation of lithium–VPA co-primed MSCs into ischemic rats
markedly increased MSC migration to the injured brain regions,
decreased infarct size and improved the neurological perfor-
mance. Lithium-induced stem cell migration, neurogenesis, and
angiogenesis all likely contribute to functional recovery. Figure 3
illustrates proposed molecular events leading to lithium-induced
beneficial effects following cerebral ischemia. It should be noted
that several other GSK-3 inhibitors have also been reported to
exert beneficial effects in rodent ischemic models and their actions
were accompanied by suppression of ischemia-increased GSK-3
activity. Accordingly, GSK-3 inhibitors have therapeutic potential
to treat stroke and other excitotoxicity-related neurodegenerative
diseases. Lithium has been used in bipolar patients over 60 years
and its clinical profiles are well understood. Therefore, lithium is a
prime candidate for use in clinical trials of new therapies for stroke
victims.
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