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Synaptic transmission involves the calcium dependent release of neurotransmitter from
synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of
fluorescent light in response to neuronal activity offer a powerful approach to understand
the spatial and temporal relationship of calcium dynamics to the release of neurotrans-
mitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling
and changes in cytosolic calcium, we developed a red-shifted reporter of vesicle recy-
cling based on a vesicular glutamate transporter, VGLUT1-mOrange2 (VGLUT1-mOr2), and
a presynaptically localized green calcium indicator, synaptophysin-GCaMP3 (SyGCaMP3)
with a large dynamic range. The fluorescence of VGLUT1-mOr2 is quenched by the low
pH of synaptic vesicles. Exocytosis upon electrical stimulation exposes the luminal mOr2
to the neutral extracellular pH and relieves fluorescence quenching. Reacidification of the
vesicle upon endocytosis again reduces fluorescence intensity. Changes in fluorescence
intensity thus monitor synaptic vesicle exo- and endocytosis, as demonstrated previously
for the green VGLUT1-pHluorin.To monitor changes in calcium, we fused the synaptic vesi-
cle protein synaptophysin to the recently improved calcium indicator GCaMP3. SyGCaMP3
is targeted to presynaptic varicosities, and exhibits changes in fluorescence in response
to electrical stimulation consistent with changes in calcium concentration. Using real time
imaging of both reporters expressed in the same synapses, we determine the time course
of changes inVGLUT1 recycling in relation to changes in presynaptic calcium concentration.
Inhibition of P/Q- and N-type calcium channels reduces calcium levels, as well as the rate
of synaptic vesicle exocytosis and the fraction of vesicles released.
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INTRODUCTION
The coupling of calcium influx to the release of neurotransmitter
by exocytosis from synaptic vesicles underlies quantal neuro-
transmission (Katz and Miledi, 1969). Although this process has
been studied in detail in individual synapses electrophysiologi-
cally, optical reporters of Ca2+ flux and synaptic vesicle recycling
offer the opportunity to simultaneously image activity across
numerous synapses in neural circuits and networks (Takahashi
and Momiyama, 1993; Wheeler et al., 1994; Von Gersdorff and
Matthews, 1999; Schneggenburger and Neher, 2000; Zakharenko
et al., 2001; Li et al., 2005b; Dreosti et al., 2009; Tian et al., 2009).
Optical methods allow direct measurement of presynaptic phe-
nomena, which most electrophysiological techniques assess either
indirectly or in a subset of specialized synapses such as the Calyx
of Held (Von Gersdorff and Matthews, 1999; Schneggenburger
et al., 2002). For optical measurements of neural activity, both
genetically encoded fluorescent indicators and small molecule-
based reporters have emerged. Genetically encoded fluorescent
proteins can be targeted to specific neuronal populations, offering

an advantage over small molecule reporters such as Ca2+ sensitive
dyes or the styryl amphipathic FM dyes that label recycling synap-
tic vesicles (Betz and Bewick, 1993; Dreosti and Lagnado, 2011).
Further, fusions with proteins of interest provide a means to tar-
get fluorescent reporters to specific subcellular regions (Shaner
et al., 2008). For example, fusion of the genetically encoded cal-
cium indicator (GECI) GCaMP2 to synaptophysin localizes it to
synaptic vesicles, providing a reliable sensor of calcium transients
in the presynaptic terminal (Dreosti et al., 2009). An improved
GECI, GCaMP3, offers an opportunity to develop a presynapti-
cally localized calcium indicator with a higher signal to noise ratio
and increased dynamic range (Tian et al., 2009).

Targeting the genetically encoded ecliptic pHluorins to the
luminal domains of synaptic vesicle proteins has provided a
powerful method to measure synaptic vesicle recycling. Ecliptic
pHluorins are green fluorescent protein (GFP) derivatives that
are shifted in their pH sensitivity such that their fluorescence is
quenched at the low pH of synaptic vesicles. Exocytosis of synaptic
vesicles relieves this quenching, and endocytosis and subsequent
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reacidification result in decreases in fluorescence. The rates of flu-
orescence change thus measure exo- and endocytosis (Miesenböck
et al., 1998; Sankaranarayanan and Ryan, 2000; Voglmaier et al.,
2006). We wanted to investigate the dependence of synaptic vesi-
cle recycling on Ca2+ dynamics by coexpression of a reporter of
synaptic vesicle recycling along with GCaMP3. However, since
GCaMPs are also derived from GFP, signals from pHluorin and
GCaMP fusions cannot easily be distinguished. The development
of a photostable, pH-sensitive fluorescent protein emitting a dif-
ferent color of light, mOrange2 (mOr2), opens the possibility of
imaging synaptic vesicle dynamics, and changes in presynaptic
Ca2+ concentrations in the same synapses (Shaner et al., 2008).
The red-shifted mOr2 protein was derived from DsRed from Dis-
coma sp., but differs in its pK a. Like pHluorin, the fluorescence
of mOr2 is quenched by the low pH of synaptic vesicles (pH 5.5),
and quenching is relieved at neutral pH.

Fusions of super-ecliptic pHluorin with the synaptic vesi-
cle proteins synaptobrevin, synaptophysin, synaptotagmin, SV2,
and the vesicular glutamate transporter VGLUT1 have all been
used to measure synaptic vesicle recycling (Miesenböck et al.,
1998; Sankaranarayanan and Ryan, 2000; Granseth et al., 2006;
Voglmaier et al., 2006; Kwon and Chapman, 2011). A fusion of
VGLUT1 with super-ecliptic pHluorin (VGLUT1-pH) exhibits a
high signal to noise ratio, likely because very little endogenous or
tagged VGLUT1 is expressed on the plasma membrane or out-
side the presynaptic compartment (Voglmaier et al., 2006; Balaji
and Ryan, 2007; Zhu et al., 2009). Therefore, we fused mOr2 to
VGLUT1 to create an accurate reporter of synaptic vesicle recy-
cling. Engineering two molecules of mOr2 in tandem in an intralu-
minal loop of VGLUT1 optimizes the signal to noise ratio. We also
generated an improved presynaptic GECI by fusing GCaMP3 to
synaptophysin to create SyGCaMP3. Both reporters are expressed
in the presynaptic terminal in transfected neurons. Monitoring
changes in green and red fluorescence in neurons coexpressing
the two reporters provides an optical readout of the spatial and
temporal properties of calcium triggered synaptic vesicle recycling.

MATERIALS AND METHODS
REAGENTS
Bafilomycin, ω-conotoxin GVIA, and ionomycin were obtained
from Calibochem (San Diego, CA, USA). CPP, CNQX, and ω-
agatoxin TK were purchased from Tocris (Ellisville, MO, USA).
FM4-64 was obtained from Biotium (Hayward, CA, USA). All
other chemicals were from Sigma-Aldrich (St. Louis, MO, USA).
All cell culture reagents were from Invitrogen (Carlsbad, CA, USA)
unless otherwise noted. Conotoxin was resuspended in DMSO
at 1 mM and ω-agatoxin TK was resuspended in the recording
medium at 1.2 μM, before dilution to final concentrations.

MOLECULAR BIOLOGY
VGLUT1-mOr2 fusions were constructed by inserting the mOr2
cDNA, flanked with linkers, between Val-103 and Val-104 of
rat VGLUT1, the same site containing pHluorin in VGLUT1-
pH. Overlap extension PCR mutagenesis was used to flank
mOrange2 with a 5′ linker (SGSTSGGSGGTGG) and 3′ linker
(SGGTGGSGGTGGSGGTG). For VGLUT1-2xmOr2, we inserted
two copies of the mOr2 using PCR to insert a linker sequence

(SGTSTGGSGGTGG) between the two mOr2 molecules. Over-
lap extension PCR was used to generate SyGCaMP3 by fusion
of GCaMP3 (gift of Loren Looger, HHMI, Addgene plasmid
22692) to the C-terminus of rat synaptophysin, with short linker
sequences (GGS or GGSGGT). Constructs with both linker
sequences gave similar results; experiments presented here use the
SyGCaMP3 fusion with the six amino acid linker. All cDNAs were
subcloned into pCAGGS for expression under the control of a
modified chicken actin promoter.

PRIMARY HIPPOCAMPAL CULTURE, TRANSFECTION, AND
IMMUNOFLUORESCENCE
Hippocampi from embryonic day 19–20 rats were dissected and
dissociated as previously described (Li et al., 2005a). Neurons
were transfected using the Basic Neuron SCN Nucleofector kit,
according to manufacturer’s instructions (Lonza, Walkersville,
MD, USA). Neurons transfected by nucleofection express similar,
moderate levels of protein (Li et al., 2005a). Cells were sub-
sequently maintained in Neurobasal media supplemented with
1% heat inactivated fetal bovine serum (FBS), 10% NeuroMix
growth supplement (PAA, Dartmouth, MA, USA), 2 mM Gluta-
Max, 15 mM NaCl, and 10 μg/ml primocin (Lonza) and imaged
at 14–21 days in vitro (DIV). 5-fluoro-2′-deoxyuridine (10 μM
final concentration) was added at DIV3–5 as a mitotic inhibitor to
control glial growth. All work with animals was conducted under
the supervision and guidance of the Institutional Care and Use
Committee of the University of California, San Francisco.

For immunostaining, cells were fixed in 4% PFA for 5 min, then
in cold methanol for 5 min at −20˚C, permeabilized, and blocked
in phosphate-buffered saline (PBS) containing 0.02% saponin/1%
fish gelatin/5% BSA, and then stained with rabbit anti-VGLUT1
(gift of R. Edwards, University of California, San Francisco), rab-
bit anti-synaptophysin (Invitrogen, Carlsbad, CA, USA), or mouse
anti-SV2 (gift of R. Kelly, University of California, San Francisco)
followed by appropriate secondary antibodies conjugated to FITC,
Cy3, or Cy5 (Jackson ImmunoResearch, West Grove, PA, USA).
Cells were imaged using confocal laser microscopy (Zeiss LSM
510).

LIVE CELL IMAGING
Coverslips with transfected hippocampal neurons were mounted
in a rapid switching, laminar-flow perfusion, and stimulation
chamber (Warner Instruments, Holliston, MA, USA) on an
inverted epifluorescence microscope (Nikon, Melville, NY, USA)
and imaged at room temperature using a 63× oil objective
(NA = 1.4). Cells were imaged in modified Tyrode’s solution
pH 7.4 (in mM: 119 NaCl, 10 HEPES-NaOH, 30 glucose, 2.5
KCl, 2 CaCl2, 2 MgCl2) containing 10 μM each of the gluta-
mate receptor antagonists 6-cyano-7 nitroquinoxaline-2,3-dione
(CNQX) and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic
acid (CPP). Electrical stimulation to elicit action potentials
(Gandhi and Stevens, 2003; Zhao et al., 2011) was applied using
an A310 Accupulser (WPI, Sarasota, FL, USA) at 10–80 Hz with
1 ms bipolar current pulses through platinum-iridium electrodes,
to yield fields of 5–10 V/cm across the chamber (Voglmaier et al.,
2006). Cells were illuminated using a Xenon lamp (Sutter Instru-
ments, Novato, CA, USA) with either a 470/40-nm excitation and
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a 525/50-nm emission filter (for GFP), a 470/40-nm excitation and
630/75 nm emission filter (for FM4-64), or a 545/25-nm excitation
and 605/70 nm emission filter (for mOr2; Chroma, Bellows Falls,
VT, USA). Images were acquired on a QuantEM CCD camera
(Photometrics, Tuscon, AZ, USA) exposing each fluorophore for
300 ms for images collected every 3 s. For images collected every
400 ms, exposure time was reduced to 50 ms with EM gain. To
measure the integrated responses of SyGCaMP3 to a range of 1–
160 stimuli, the shutter remained open for 2 s. Stimulation, filter
wheels, shutter, and camera are controlled by Metamorph software
(Universal Imaging, Sunnyvale, CA, USA).

DATA ANALYSIS
The fluorescence of manually designated regions of interest was
quantified (Metamorph), baseline values from the first five frames
(prior to stimulation) averaged, and the dynamics of fluorescence
intensity expressed as fractional change (ΔF) over initial fluo-
rescence (F 0). The fluorescence of a 4 × 4 pixel box centered over
the bouton (aVGLUT1-2XmOr2-positive punctum) was averaged,
and the average fluorescence of three 4 × 4 pixel boxes without
cellular elements was subtracted as background. For normalized
measurements, the average pHluorin or mOr2 fluorescence over
individual boutons was normalized to either the peak fluorescence
in each trace or the total amount of fluorescence as determined
by application of modified Tyrode’s solution substituting 50 mM
NH4Cl for 50 mM NaCl to alkalinize all synaptic compartments.
To test the pH dependence of VGLUT1-2XmOr2, we measured the
fluorescence of the indicator in permeabilized cells in the presence
of 50 mM NH4Cl, in modified Tyrode’s solution at pH 4.0–10.0.
The rates of photobleaching of VGLUT1-2XmOr2 and VGLUT1-
pH were determined over the 5-min recording period, collecting
300 ms exposures every 3 s in the absence of stimulation. Pho-
tobleaching of SyGCaMP3 was measured in fixed, permeabilized
cells in modified Tyrode’s solution. Minimum synaptic fluores-
cence of SyGCaMP3 was determined by perfusion of modified
Tyrode’s solution containing 5 μM ionomycin, 0 Ca2+, and 10 mM
EGTA (F min). The maximum change in fluorescence was mea-
sured in the presence of 5 μM ionomycin and 2 mM CaCl2 in
modified Tyrode’s solution (F max). F rest is defined as the base-
line fluorescence of SyGCaMP3 measured in modified Tyrodes’s
with 2 mM CaCl2 in the absence of ionomycin. To generate the
concentration response curve, varying concentrations of CaCl2
were added to Tyrode’s solution containing 1 mM EGTA and iono-
mycin to achieve calculated free Ca2+ concentrations of 0.1–2 mM
(Maxchelator, Stanford; Patton et al., 2004). To measure the flu-
orescence decay of SyGCaMP3 to a reduction in calcium in the
absence of stimulation, PFA/methanol fixed neurons on cover-
slips were mounted in the recording chamber, and the solution
was rapidly changed from modified Tyrode’s solution containing
2 mM CaCl2 to solution containing 0 mM CaCl2 adjusted with
EGTA (Patton et al., 2004), while collecting images every 400 ms
with 50 ms exposures.

To image exocytosis, cultures were incubated in modified
Tyrode’s medium containing 0.5–1 μM bafilomycin A (Cal-
biochem) for 30 s before imaging in the same medium. To assess
exocytosis with FM4-64, the cultures were incubated in modi-
fied Tyrode’s solution containing 15 μM FM4-64 and stimulated

at 10 Hz for 60 s, followed by continued incubation in the same
medium for an additional 60 s. After extensive washing for 10–
15 min at a rate of 6 ml/min in modified Tyrode’s solution without
FM4-64, the FM dye was unloaded by stimulation at 10 Hz for 90 s.
Transfected boutons were identified by visualization of VGLUT1-
2XmOr2 puncta in the presence of 50 mM NH4Cl, with washout
prior to FM4-64 loading. To quench surface fluorescence, we
imaged neurons in Tyrode’s solution at pH 5.5 with MES replac-
ing HEPES. Transporter surface fraction was calculated by first
subtracting the average of five frames with MES from the average
of five frames in standard Tyrode’s solution (both measurements
taken prior to stimulation) and then dividing the total number
of transporters, as determined by fluorescence in the presence
of 50 mM NH4Cl. Fluorescence measurements from twenty to
eighty boutons per coverslip were averaged and the means from
7 to 16 coverslips from at least two independent cultures were
averaged. Data are presented as means ± SEM. The initial rise of
SyGCaMP3 fluorescence within the first 2.5 s of stimulation and
the decrease after stimulation were fit with single exponentials
(Matlab, The Mathworks, Natick, MA, USA or GraphPad Prism,
La Jolla, CA, USA). The rate of exocytosis is estimated from an
exponential fit to the increase in VGLUT1-2XmOr2 fluorescence
during the initial 12 s of stimulation in the presence of bafilomycin.
The increase in fluorescence produced by 40 Hz stimulation in the
presence of bafilomycin is corrected for any increase in the rate of
fluorescence produced by the drug in the absence of stimulation
(Sankaranarayanan and Ryan, 2000; Voglmaier et al., 2006). For
measurements of endocytosis after stimulation, the time course of
fluorescence decay at each bouton after the initial 3 s (Balaji et al.,
2008) was fit with a single exponential.

RESULTS
DEVELOPMENT OF A RED-SHIFTED REPORTER OF SYNAPTIC VESICLE
RECYCLING
VGLUT1-pH has been used extensively to study synaptic vesicle
recycling in real time (Voglmaier et al., 2006; Balaji and Ryan,
2007; Zhang et al., 2007; Fernandez-Alfonso and Ryan, 2008; Zhu
et al., 2009; Nemani et al., 2010). To develop a reporter of synaptic
vesicle recycling that can be distinguished from other green fluo-
rescent indicators, we took advantage of the recent development
of a photostable pH-sensitive protein emitting a different color
of light, mOrange2 (mOr2; Shaner et al., 2008). Replacement of
pHluorin in the first luminal/external loop of VGLUT1 with mOr2
results in a fusion that localizes to synaptic boutons and exhibits
fluorescence changes in response to neural activity. However, the
brightness of mOr2 is lower than pHluorin at pH 7.4, resulting
in fluorescence changes of the VGLUT1-mOr2 fusion that were
not as large as those of VGLUT1-pH (data not shown). Fusion of
two or four copies of pHluorin with synaptophysin resulted in an
improved signal to noise ratio, allowing reliable single vesicle imag-
ing (Zhu et al., 2009). Taking a similar approach, we inserted two
copies of mOr2, separated by a flexible linker sequence, into the
same luminal loop as VGLUT1-pH to generate VGLUT1-2XmOr2
(Figure 1A).

Expressed in primary hippocampal neurons, VGLUT1-
2XmOr2 colocalizes in varicosities with the endogenous synap-
tic vesicle proteins synaptophysin (Figure 1B) and SV2 (data
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FIGURE 1 | Development of an mOrange2-based reporter of VGLUT1

vesicle recycling. (A) Schematic of VGLUT1-2XmOr2 depicts two copies of
mOr2 inserted into the first luminal loop of rat VGLUT1. (B) The fluorescence
of VGLUT1-2XmOr2 colocalizes with synaptophysin staining at varicosities.
Hippocampal neurons transfected with VGLUT1-2XmOr2 were stained with
antibody to synaptophysin, followed by Cy5-conjugated secondary antibody.
Inset shows a 4× magnification of the designated box. Size bar, 10 μm. (C)

The rate of FM4-64 destaining at 10 Hz for 90 s is not significantly different
between boutons from untransfected (black) and transfected (red) neurons.
(D) Time-lapse images show the fluorescence change of VGLUT1-2XmOr2 in
response to neural activity. Hippocampal neurons transfected with
VGLUT1-2XmOr2 were stimulated at 10 Hz for 60 s. After onset of the
stimulus, exocytosis of VGLUT1-2XmOr2 results in a rapid increase in
fluorescence (15, 30, and 60 s), followed by a decay after the stimulus (90,
120, and 300 s) as the vesicle reacidifies. Color scale is shown to the right.

Scale bar, 2 μm. (E) The change in fluorescence intensity over baseline
(ΔF /F 0) at boutons expressing VGLUT1-pH (blue) is approximately twice that
of VGLUT1-2XmOr2 (red) during stimulation at 10 Hz for 60 s (bar).
Photobleaching over the time course of the experiment was measured by
imaging in the absence of stimulation at a range of pH values (black
symbols). Photobleaching of VGLUT1-2XmOr2 (open diamonds) was similar
to that of VGLUT1-pH (+ symbol) at pH 7.4. Inset: normalized fluorescence
change of VGLUT1-2XmOr2 over the range of pH 4.0 to 10.0 in
permeabilized cells indicates VGLUT1-2XmOr2 exhibits a pK a of 6.71. (F)

Kinetics of fluorescence changes normalized to total fluorescence signal in
the presence of NH4Cl are similar for VGLUT1-pH (blue) and
VGLUT1-2XmOr2 (red). Data in (C, E, and F) are means ± SEM of the change
in fluorescence (ΔF ) normalized to initial fluorescence (average of the first
five data points, F 0) over at least 20 boutons per coverslip from 12 to 16
coverslips and at least three independent cultures.

not shown). Expression of VGLUT1-2XmOr2 does not perturb
general features of SV recycling, as measured by depolarization-
induced FM dye staining and destaining (Betz and Bewick, 1993;
Fernandez-Alfonso and Ryan, 2004). We used the styryl dye FM4-
64, exciting at wavelengths that do not excite mOr2. After loading
FM4-64 into synaptic vesicles by stimulation at 10 Hz for 60 s,
we examined the kinetics of destaining in response to 900 elec-
trical stimuli to elicit action potentials (Gandhi and Stevens,
2003; Zhao et al., 2011). Like VGLUT1-pH (Voglmaier et al.,
2006),there is no difference in the exocytosis rate between untrans-
fected neurons and neurons expressing VGLUT1-2XmOr2, sug-
gesting that expression of the red-shifted reporter does not
impair synaptic vesicle recycling (Figure 1C). The fluorescence
of VGLUT1-2XmOr2 changes in response to neural activity.

Electrical stimulation at 10 Hz for 60 s produces a rapid increase in
fluorescence, consistent with the relief of fluorescence quenching
upon exposure of VGLUT1-2XmOr2 to the higher external pH at
the time of synaptic vesicle exocytosis (Figure 1D, first three pan-
els). After stimulation, the peak fluorescence of VGLUT1-2XmOr2
decays consistent with the reacidification of synaptic vesicles
after endocytosis (Figure 1D, last three panels), as demonstrated
previously for synaptopHluorin and VGLUT1-pH (Miesenbock
et al., 1998; Sankaranarayanan and Ryan, 2000; Voglmaier et al.,
2006). There is no fluorescence response to stimulation in the
absence of calcium (data not shown). To test whether different
fluorophores differentially affect VGLUT1 protein trafficking, we
compared the time course of changes in fluorescence intensity
that correspond to exocytosis and endocytosis of synaptic vesicles
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labeled with VGLUT1-pH and VGLUT1-2XmOr2 during and after
stimulation at 10 Hz for 60 s (Figures 1E,F). The peak fluorescence
change over baseline of VGLUT1-2XmOr2 (ΔF /F 0 = 1.16 ± 0.10)
is approximately half that of VGLUT1-pH (ΔF /F 0 = 2.13 ± 0.20,
Figure 1E). Normalized to the total fluorescence signal measured
in the presence of 50 mM NH4Cl, the time course of average
fluorescence changes is similar for VGLUT1-pH and VGLUT1-
2XmOr2 (Figure 1F). There are no significant differences in
the kinetics of fluorescence response between VGLUT1-pH and
VGLUT1-2XmOr2 (Figure 1F). There is also no significant dif-
ference in cell surface expression of VGLUT1-pH or VGLUT1-
2XmOr2, either before or after stimulation (data not shown). Pho-
tobleaching over the course of the experiment is minimal for both
VGLUT1-2XmOr2 (5.40 × 10−4 ± 6.91 × 10−6 au/s illumination
at pH 7.4) and VGLUT1-pH (4.51 × 10−4 ± 6.37 × 10−6 au/s at
pH 7.4, Figure 1E). Photobleaching of VGLUT1-2XmOr2 was also
minimal at all pH values tested (4.66 × 10−4 ± 1.10 × 10−5 au/s at
pH 7.0; 5.25 × 10−4 ± 1.26 × 10−5 au/s at pH 6.5; 7.30 × 10−4 ±
1.84 × 10−5 au/s at pH 6.0; 7.09 × 10−4 ± 2.52 × 10−5 fau/s at pH
5.5, Figure 1E). The indicator exhibits pH dependence and a
dynamic range of up to 3.5-fold over the physiological range of pH
5.5 to pH 7.4 (Figure 1E, inset). VGLUT1-2XmOr2 exhibits a pK a

of 6.71, slightly higher than the value measured for mOr2 (Shaner
et al., 2008). Together, these data suggest that VGLUT1-2XmOr2,
like VGLUT1-pH (Voglmaier et al., 2006) is a reliable reporter of
VGLUT1 trafficking.

DEVELOPMENT OF AN INDICATOR OF PRESYNAPTIC CALCIUM
DYNAMICS DURING REPETITIVE STIMULATION
A fusion of the GECI GCaMP2 at the cytoplasmic C-terminus
of the synaptic vesicle protein synaptophysin provides a reporter
of presynaptic Ca2+ transients during synaptic activity (Dreosti
et al., 2009). An improved GECI, GCaMP3, exhibits an increased
sensitivity and dynamic range (Tian et al., 2009), offering the
possibility of imaging calcium dynamics during prolonged elec-
trical stimulation. A stimulus of 900–1200 pulses is thought to
release the entire recycling pool fraction of synaptic vesicles, a
subset of the total pool in the terminal (Mozhayeva et al., 2002;
Ariel and Ryan, 2010). To monitor changes in calcium during
repetitive stimulation, we generated SyGCaMP3 by fusing the
GECI with a short linker sequence to the C-terminus of synap-
tophysin. SyGCaMP3 fluorescence colocalizes with antibody to
endogenous VGLUT1 (Figure 2A) and SV2 (data not shown) in
primary hippocampal neurons. Depolarization-induced FM4-64
dye destaining is similar in untransfected and transfected neurons,
indicating that expression of SyGCaMP3 does not affect SV recy-
cling (Figure 2B; Betz and Bewick, 1993; Fernandez-Alfonso and
Ryan,2004). The fluorescence of SyGCaMP3 in individual boutons
sharply increases in response to electrical stimulation at 40 Hz,
and decays rapidly after the stimulus ends (Figures 2C,D). Quan-
tification of the time course of fluorescence changes in response
to 1200 stimuli at 40 Hz (30 s) shows an exponential increase in
Ca2+ at the onset of stimulation (τ = 0.883 ± 0.0258 s), peaking
at 2–3 s (80–120 stimuli) followed by a slow decrease in fluores-
cence during stimulation, and a rapid decrease after stimulation
stops (Figure 2D). To determine the maximal SyGCaMP3 sig-
nal, we added the Ca2+ ionophore ionomycin (5 μM), which

exposes the indicator to the Ca2+present in the recording solution
(Dreosti et al., 2009; Tian et al., 2009). The dynamic range of
SyGCaMP3 from 0 Ca2+ and 10 mM EGTA to 2 mM Ca2+in the
absence of EGTA is approximately 6.5-fold (Figure 2E), consistent
with the large dynamic range of GCaMP3 (Dreosti et al., 2009;
Tian et al., 2009). No further increase in ΔF /F 0 was detected at
4 mM CaCl2 (data not shown). The minimum fluorescence signal
is −0.35 ± 0.03 fold relative to the rest condition, the baseline fluo-
rescence of SyGCaMP3 measured in neurons in modified Tyrodes’s
with 2 mM CaCl2 without ionomycin. The maximum fluorescence
change in the presence of 2 mM CaCl2 and ionomycin repre-
sents a 6.15 ± 0.35 fold change relative to rest. The fluorescence of
SyGCaMP3 rises as calcium concentrations increase (Figure 2F;
Llinas et al., 1992). Like GCaMP3 (Tian et al., 2009), the fluo-
rescence response of SyGCaMP3 is non-linearly related to Ca2+
concentration. The peak fluorescence during 40 Hz 30 s stimula-
tion is approximately half maximal, within the dynamic range of
the indicator (Figures 2D,E). No fluorescence response to elec-
trical stimulation is observed in the absence of calcium (data not
shown). To test whether SyGCaMP3 reflects the increased sensi-
tivity of GCaMP3, we collected integrated fluorescence responses
to trains of stimuli elicited at 80 Hz (Dreosti et al., 2009; Tian
et al., 2009). After the initial five stimuli, the integrated SyGCaMP3
fluorescence signal scales linearly with the log of the number
of stimuli up to at least 160 stimuli (Figure 2G). Thus, SyG-
CaMP3 is a robust reporter of calcium levels with a broad dynamic
range.

MONITORING SYNAPTIC VESICLE RECYCLING AND CALCIUM
DYNAMICS IN THE SAME BOUTONS
To assess presynaptic calcium transients and synaptic vesicle recy-
cling in response to action potential stimulation in the same
terminals, we co-transfected primary hippocampal neurons in
culture with VGLUT1-2XmOr2 and SyGCaMP3. We collected
sequential images using excitation/emission filter sets that pass and
collect non-overlapping wavelengths, integrating the fluorescence
signals over 300 ms. Although our imaging protocol measures
the fluorescence of the two reporters in rapid succession, their
fluorescence emission spectra are separable, so they could pre-
sumably be imaged simultaneously. Sustained stimulation results
in both the delivery and retrieval of synaptic vesicle proteins at the
cell surface, so changes in VGLUT1-2XmOr2 fluorescence during
stimulation reflect both exocytic and endocytic processes. To iso-
late the component of fluorescence change due to exocytosis alone,
we used alkaline trapping with the vacuolar H+-ATPase inhibitor
bafilomycin. Bafilomycin blocks the reacidification of synaptic
vesicles that have taken up the drug after exocytosis, eliminating
fluorescence changes due to the endocytic component of synaptic
vesicle recycling, to reveal only exocytosis (Sankaranarayanan and
Ryan, 2000). In the initial 12–15 s of the stimulus, before appre-
ciable endocytosis would be expected to occur (Balaji and Ryan,
2007), the fluorescence of VGLUT1-2XmOr2 reflects the rate of
synaptic vesicle exocytosis (Figure 3B, red). The plateau in fluo-
rescence represents the fraction of the total vesicle pool available
for exocytosis at 40 Hz stimulation. To visualize the total amount
of VGLUT1-2XmOr2, all vesicles are alkalinized at the end of the
experiment by addition of 50 mM NH4Cl (Sankaranarayanan and
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FIGURE 2 | Development of a GCaMP3-based presynaptic calcium

indicator. (A) Fluorescence of SyGCaMP3 colocalizes with antibody against
endogenous VGLUT1 at synaptic varicosities. Inset shows a 4× magnification
of the designated box. Size bar, 10 μm. (B) The rate of FM4-64 destaining is
not significantly different between boutons from untransfected (black) and
transfected (green) neurons. Inset: schematic of SyGCaMP3 showing fusion
of the GECI to the cytosolic C-terminus of synaptophysin. (C) Time-lapse
imaging of SyGCaMP3 fluorescence changes in response to stimulation at
40 Hz for 30 s. After onset of the stimulus, SyGCaMP3 in hippocampal
neurons exhibits a rapid increase in fluorescence (0.4, 1.2, and 3 s), followed
by a decay during (30 s), and after the stimulus (34 and 78 s). Color scale is
shown to the right. Scale bar, 2 μm. (D) Time course of changes in average
fluorescence intensity at boutons expressing SyGCaMP3 during and after

stimulation at 40 Hz for 30 s. Images are collected every 400 ms. (E) The
minimum synaptic fluorescence of SyGCaMP3 (F min) in transfected
hippocampal neurons was determined by perfusion of modified Tyrode’s
solution containing the calcium ionophore ionomycin (5 μm), 0 Ca2+, and
10 mM EGTA, resulting in a decrease of ΔF /F 0 = −0.35 ± 0.03 relative to the
resting condition (modified Tyrode’s containing 2 mM CaCl2 without
ionomycin, F rest). The maximum fluorescence change (F max) in the presence of
ionomycin and 2 mM CaCl2 is ΔF /F 0 = 6.15 ± 0.35. (F) Semi-logarithmic plot
of fluorescence responses to increasing CaCl2 concentration. (G)

Semi-logarithmic plot of integrated fluorescence responses to trains of 1, 2,
5, 10, 20, 40, 80, and 160 action potential (AP) stimuli at 80 Hz. Data in (B, D,

E, F, and G) are mean ΔF /F 0 ± SEM from at least 30 boutons per coverslip
from 7 to 12 coverslips and at least two independent cultures.

Ryan, 2000). The average fluorescence of SyGCaMP3 peaks within
the first 3 to 6 s of stimulation at 40 Hz, then slowly declines during
stimulation (Figure 3A, green). Upon cessation of the stimulus,
the average fluorescence of SyGCaMP3 rapidly returns to base-
line τ = 7.66 ± 0.69 s. In permeabilized cells, the fluorescence of
the SyGCaMP3 indicator itself to a change in CaCl2 from 2 to
0 mM drops to baseline within ∼800–1200 ms (data not shown).
The fluorescence decay rate of cytosolic GCaMP3 following brief
action potential trains is t1/2 ∼600 ms (Tian et al., 2009). Very little
photobleaching of SyGCaMP3 is observed under these conditions
(3.72 × 10−4 ± 6.19 × 10−6 au/s illumination at pH 7.4, data not
shown).

THE FRACTION OF SYNAPTIC VESICLES RELEASED DEPENDS ON P/Q-
AND N-TYPE CALCIUM CHANNELS
P/Q- and N-type channels mediate neurotransmitter release in
hippocampal neurons (Takahashi and Momiyama, 1993; Wheeler
et al., 1994). To assess the role of these channels in the exocytosis
of VGLUT1-containing synaptic vesicles, we monitored the fluo-
rescence of SyGCaMP3 while stimulating neurons in the presence
of P/Q- and N-type Ca2+ channel blockers at concentrations pre-
viously demonstrated to maximally inhibit the channels (Mintz
et al., 1992; Takahashi and Momiyama, 1993; Wheeler et al., 1994).
The fluorescence response of SyGCaMP3 to 40 Hz 30 s stimula-
tion is significantly reduced in the presence of both ω-agatoxin TK
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(300 nM) and ω-conotoxin GVIA (1 μM, Figure 3A). In addition,
the dynamics of the calcium signal are different in the presence
of the toxins. Under control conditions, the fluorescence of SyG-
CaMP3 peaks within the first 3 s of stimulation, whereas in the
presence of the channel blockers, the average fluorescence peaks
later, between 12 and 15 s (Figure 3A). However, in the presence
of agatoxin and contotoxin the decay to baseline after stimulation
ends (τ = 6.04 ± 0.68 s) is not significantly different from control.

In the presence of bafilomycin, the initial fluorescence increase
of VGLUT1-2xmOr2 reflects the rate of exocytosis of synap-
tic vesicles, when corrected for the effect of bafilomycin inde-
pendent of stimulation (Sankaranarayanan and Ryan, 2001).
Inhibition of P/Q- and N-type calcium channels slows exo-
cytosis by about twofold, from 7.47 ± 0.89 s under control
conditions to 13.13 ± 1.72 s. Under both conditions, fluores-
cence of VGLUT1-2XmOr2 plateaus before the end of stimu-
lation (Figure 3B). We average the peak of VGLUT1-2XmOr2
fluorescence over the three time points after stimulation ends
(t = 45–51 s) to represent the total recycling pool of vesicles

FIGURE 3 | Imaging of VGLUT1-2xmOr2 and SyCaMP3 during

exocytosis. The average time course of changes in fluorescence intensity
at boutons expressing both (A) SyGCaMP3 and (B) VGLUT1-2XmOr2 in the
absence (green, red) and presence (blue, black) of agatoxin and conotoxin
during and after stimulation at 40 Hz for 30 s. The increase in fluorescence
produced by 40 Hz stimulation in the presence of bafilomycin is shown here
corrected for the rate of fluorescence increase produced by the drug in the
absence of stimulation (Sankaranarayanan and Ryan, 2000; Voglmaier et al.,
2006). In the presence of the P/Q- and N-type Ca2+ channel blockers,
ω-agatoxin TK (300 nM), and ω-conotoxin GVIA (1 μM), the peak
fluorescence of both VGLUT1-2XmOr2 (black) and SyGCaMP3 (blue) is
decreased. Data are means ± SEM of the change in fluorescence (ΔF )
normalized to initial fluorescence over at least 30 boutons per coverslip
from 7 to 12 coverslips and at least three independent cultures.

participating in exocytosis. Inhibition of P/Q- and N-type chan-
nels also dramatically reduces the number of synaptic vesicles
released, assuming that the fluorescence change varies linearly with
vesicle number. In the presence of the toxins, the fraction of vesicles
released (0.238 ± 0.034) is only about one third of control levels
(0.643 ± 0.021). Taken together, these data indicate that both the
rate of release and the amount of vesicles that undergo exocytosis
depend on Ca2+ entry through P/Q- and N-type channels, rather
than a releasable pool of fixed size that would release more slowly in
lower Ca2+. However other factors, such as neurotrophins, kinase
activity, and ubiquitination, may also contribute to the size of the
pool of vesicles released (Chi et al., 2003; Schweizer and Ryan,
2006; Renden and Von Gersdorff, 2007; Kim and Ryan, 2010).

NO EFFECT OF P/Q- AND N-TYPE CALCIUM CHANNEL INHIBITION ON
ENDOCYTIC RATE
Calcium also plays a critical role in the endocytosis of synaptic vesi-
cles (Sudhof, 2004; Kuromi and Kidokoro, 2005; Balaji et al., 2008;
Yamashita et al., 2010). To measure Ca2+ levels and endocytosis of
synaptic vesicles, we stimulated cells coexpressing SyGCaMP3 and
VGLUT1-2XmOr2 in the absence of bafilomycin (Figures 4A,B).
There is no difference in Ca2+ levels or kinetics with or without
bafilomycin (Figures 3A and 4A). In the absence of bafilomycin,
the decrease in fluorescence of VGLUT1-2XmOr2 after stimula-
tion reflects the rate of synaptic vesicle endocytosis as vesicles
are re-acidified after internalization (Miesenböck et al., 1998;

FIGURE 4 | No effect of P/Q- and N-type calcium channel inhibition on

endocytosis. (A) The time course of changes in average fluorescence
intensity of boutons expressing both SyGCaMP3 in the absence (green)
and presence (blue) of agatoxin and conotoxin during and after stimulation
at 40 Hz for 30 s. Calcium channel blockers reduce calcium levels but do not
affect the decay of SyGCaMP3 fluorescence. (B) Time course of
fluorescence changes of VGLUT1-2XmOr2 in the absence (red) and
presence (black) of the channel blockers. The rate of VGLUT1-2XmOr2
endocytosis is also not changed by addition of P/Q- and N-type calcium
channel blockers. Data are means ± SEM of the change in fluorescence
(ΔF ) normalized to initial fluorescence over at least 30 boutons per
coverslip from 7 to 12 coverslips and at least three independent cultures.
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Sankaranarayanan and Ryan, 2000). Upon cessation of the stim-
ulus, the mean fluorescence of SyGCaMP3 quickly returns to
baseline (τ = 6.41 ± 1.44 s), while the fluorescence of VGLUT1-
2XmOr2 decays with a slower exponential time course
(τ = 12.85 ± 1.7 s), consistent with the time course of endocyto-
sis (Granseth et al., 2006; Balaji et al., 2008). In the presence of
agatoxin and conotoxin, Ca2+ levels are decreased. However the
decay of SyGCaMP3 fluorescence after stimulation, correspond-
ing to the rate of Ca2+ clearance, is not changed (τ = 8.45 ± 2.6 s).
The rate of VGLUT1-2XmOr2 endocytosis after stimulation is
also unchanged in the presence of calcium channel inhibitors
(τ = 13.43 ± 3.14 s). Inhibition of P/Q- and N-type channels thus
does not slow the rate of endocytosis under these conditions.

DISCUSSION
Fusion of VGLUT1 with the pH-sensitive DsRed derivative, mOr-
ange2, provides a red-shifted reporter of synaptic vesicle recycling.
Like VGLUT1-pH, the genetically encoded VGLUT1-2XmOr2
localizes to presynaptic boutons and exhibits activity-dependent
changes in fluorescence reflecting synaptic vesicle exocytosis and
endocytosis. Although mOr2 fusions exhibit smaller fluorescence
changes in response to neuronal stimulation, engineering two
copies of the fluorescent protein into VGLUT1 increases the signal
to noise ratio, while preserving precise targeting to presynaptic
boutons. VGLUT1-2XmOr2 offers an opportunity to combine
imaging of synaptic vesicle recycling with sensitive GFP-based
indicators of other cellular processes. To examine the relationship
between changes in VGLUT1-2XmOr2 exocytosis and endocyto-
sis and Ca2+ levels, we developed a presynaptically targeted GECI,
SyGCaMP3, using a similar strategy as for SyGCaMP2 (Dreosti
et al., 2009). Using synaptophysin to target the GECI to synaptic
vesicles provides a measure of calcium in the area immediately
around vesicles. However, changes in fluorescence may also reflect
a change in location of the vesicle. For example, a vesicle moving
into the periphery of the bouton or the axon in response to stim-
ulation may exhibit a change in fluorescence that is unrelated to
Ca2+ entry at the active zone. The decay of SyGCaMP3 fluores-
cence during stimulation could represent properties of the GECI,
such as the off-rate, in addition to calcium clearance. GCaMP fluo-
rescence decays during sustained, high frequency stimulation may
not reflect calcium (Hendel et al., 2008; Dreosti et al., 2009). This
phenomenon should be less evident with lower frequency or dura-
tion of stimulation. Consistent with the improved properties of
GCaMP3, SyGCaMP3 exhibits an increased dynamic range suited
to assess the calcium response during high frequency stimulation
(Tian et al., 2009). When co-transfected into primary neurons in
culture, fluorescence signals from the two reporters can be read-
ily distinguished. Although we collected fluorescence signals in
separately acquired images, the two fluorophores can be imaged
simultaneously using commercially available filtersets. The expres-
sion of SyGCaMP3 and VGLUT1-2XmOr2 in the same boutons
allows real time comparisons between Ca2+ levels and synaptic
vesicle trafficking.

We examined the relationship between presynaptic calcium lev-
els and recycling of VGLUT1-2XmOr2 using a strong stimulus of
1200 action potential stimuli at 40 Hz to release the recycling pool
of synaptic vesicles. Inhibition of P/Q- and N-type Ca2+ channels

decreases and delays the peak in Ca2+ level. The fraction of vesi-
cles that undergo exocytosis is also significantly smaller, and the
rate of exocytosis is slower. Residual exocytosis observed here may
be due to incomplete block of the Ca2+ current, or it may be
mediated by Ca2+ entry through other channels, such as R- and L-
type channels (Sitges and Galindo, 2005; Perissinotti et al., 2008;
Schnee et al., 2011; Subramanian and Morozov, 2011). Calcium
entering through other channels may require more time for dif-
fusion to the sites near P/Q- and N-type channels where vesicles
are docked (Reid et al., 2003; Cao and Tsien, 2010). The decrease
in exocytosis rate observed in the presence of channel blockers is
consistent with the calcium dependence of the rate of exocytosis
(Heidelberger et al., 1994). The decrease in the number of vesicles
available for release is also consistent with the probabilistic nature
of synaptic vesicle release above a threshold level of calcium. In
addition, lower levels of Ca2+ in boutons may differentially mobi-
lize pools with differing calcium sensitivity or probability of release
(Thoreson et al., 2004; Moulder and Mennerick, 2005; Rizzoli and
Betz, 2005).

Decreases in fluorescence of VGLUT1-2XmOr2 reflect the acid-
ification of synaptic vesicles following endocytosis. Calcium can
regulate synaptic vesicle endocytosis by triggering a faster mode
of endocytosis in some synapses, or by increasing the number of
sites available (Neves et al., 2001; Wu et al., 2005; Voglmaier and
Edwards, 2007; Balaji et al., 2008; Sun et al., 2010). During stimula-
tion, the rates of exocytosis and endocytosis may be dependent on
each other. Synaptic vesicle endocytosis may be required, either
directly or indirectly, for the availability of release sites (Neher,
2010; Haucke et al., 2011). However, with a 40 Hz 30 s stimulus,
we detect no significant difference in the rate of endocytosis of
VGLUT1-2XmOr2 in the presence or absence of the P/Q- and N-
type Ca2+ channel blockers agatoxin and conotoxin. It may be
that under these stimulation conditions, the endocytic machinery
of the synaptic terminal is not saturated. Indeed, higher frequency
stimulation is associated with higher endocytic capacity (Balaji
et al., 2008).

The ability to simultaneously monitor synaptic vesicle recycling
with GFP-based indicators in individual synapses can advance
investigations of the modulation of neuronal connectivity in func-
tional circuits. Imaging ensembles of neurons provides average
measurements, but could also enable the analysis of variance in
the properties of individual boutons. Individual boutons or cells
may exhibit variation in probability of release, reliance on cal-
cium channel subtypes, or modes of synaptic vesicle trafficking
(Fisher and Bourque, 2001; Rizzoli and Betz, 2005; Armbruster
and Ryan, 2011; Weston et al., 2011). Engineering both indicators
onto the same protein could further refine the spatiotemporal res-
olution of these sensors of calcium dependent neurotransmitter
release. Combining VGLUT1-2XmOr2 with GCaMPs expressed
postsynaptically can provide a powerful method to determine the
locus of changes in synaptic efficacy in specific circuits. Com-
bining mOrange2 and pHluorin-based indicators provides an
approach to study trafficking of individual proteins in parallel.
The capacity for simultaneous imaging of neurotransmitter release
and Ca2+ dynamics in real time from defined populations at
synaptic resolution will be useful for addressing a broad spectrum
of neuroscience questions.
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