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Increased GSK-3 activity is believed to contribute to the etiology of chronic disorders like
Alzheimer’s disease (AD), schizophrenia, diabetes, and some types of cancer, thus sup-
porting therapeutic potential of GSK-3 inhibitors. Numerous mouse models with modified
GSK-3 have been generated in order to study the physiology of GSK-3, its implication in
diverse pathologies and the potential effect of GSK-3 inhibitors. In this review we have
focused on the relevance of these mouse models for the study of the role of GSK-3 in
apoptosis. GSK-3 is involved in two apoptotic pathways, intrinsic and extrinsic pathways,
and plays opposite roles depending on the apoptotic signaling process that is activated. It
promotes cell death when acting through intrinsic pathway and plays an anti-apoptotic role
if the extrinsic pathway is occurring. It is important to dissect this duality since, among
the diseases in which GSK-3 is involved, excessive cell death is crucial in some illnesses
like neurodegenerative diseases, while a deficient apoptosis is occurring in others such
as cancer or autoimmune diseases. The clinical application of a classical GSK-3 inhibitor,
lithium, is limited by its toxic consequences, including motor side effects. Recently, the
mechanism leading to activation of apoptosis following chronic lithium administration has
been described. Understanding this mechanism could help to minimize side effects and to
improve application of GSK-3 inhibitors to the treatment of AD and to extend the application
to other diseases.
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Glycogen synthase kinase-3 (GSK-3) was initially identified more
than two decades ago as an enzyme involved in the control of glyco-
gen metabolism (Cohen, 1979; Embi et al., 1980). In mammals
two closely related isoenzymes, GSK-3α and GSK-3β are present
(Woodgett, 1991). The more conserved isoform in evolution is
GSK-3β with a widely expression throughout the animal king-
dom, while GSK-3α is only found in vertebrates (Plyte et al., 1992;
Alon et al., 2011). GSK-3α and βare ubiquitously expressed in all
tissues, with particularly abundant levels in the brain (Woodgett,
1990; Yao et al., 2002; Perez-Costas et al., 2010).

GSK-3 is implicated in several signaling pathways like the
insulin and insulin-like growth factor-1 (IGF-1)-mediated sig-
nal transduction or the wnt/wingless signaling pathway. GSK-3
phosphorylates and thereby regulates the functions of many meta-
bolic, signaling, and structural proteins. Some metabolic and
signaling proteins that are phosphorylated by GSK-3 are glyco-
gen synthase, insulin receptor substrate-1 (IRS-1), cyclin D1, and
eIF2B. Examples of structural proteins regulated by GSK-3 are
microtubule associated proteins (MAPs) among others. Given
the numerous targets and the implication in several signaling
pathways, GSK-3 is involved in regulating many processes like
cellular structure, function, and survival. Regarding the latter, as
we will see below, GSK-3 plays a key role in apoptosis (Grimes
and Jope, 2001; Jope and Johnson, 2004). Thus, GSK-3 is now
recognized as an important regulator of a large number of cel-
lular processes and, when deregulated, is thought to play a role

in the etiology of various diseases. These include diabetes and/or
insulin resistance (reviewed in Eldar-Finkelman, 2002), muscle
hypertrophy (reviewed in Hardt and Sadoshima, 2002), cancer
(reviewed in Manoukian and Woodgett, 2002), bipolar mood dis-
order (reviewed in Manoukian and Woodgett, 2002), schizophre-
nia (Emamian et al., 2004; reviewed in Jope and Roh, 2006), and
neurodegenerative diseases like Alzheimer’s disease (AD; reviewed
in Avila et al., 2004) and Huntington’s disease (Carmichael et al.,
2002; Berger et al., 2005).

DUAL ROLE OF GSK-3 IN APOPTOSIS
Programmed cell death is a major component of both nor-
mal development and disease. Apoptosis is a process that takes
place with condensation of the nucleus, DNA fragmentation and,
finally, disintegration of the cell in small apoptotic bodies that
are destined to be phagocytized (Assuncao Guimaraes and Lin-
den, 2004). Two opposing roles have been established for GSK-3
in apoptosis (Figure 1). Under certain conditions GSK-3 acts as
a strong inhibitor of apoptosis and in other conditions plays a
pro-apoptotic role. What determines whether GSK-3 acts in one
way or the other is the type of apoptosis that occurs, which
may be intrinsic (type I) or extrinsic (type II). Consequently,
inhibitors of GSK-3 provide protection from intrinsic apoptosis
signaling but potentiate extrinsic apoptosis signaling (Beurel and
Jope, 2006). The concept that GSK-3 inhibits apoptosis came from
the discovery that GSK-3β knockout mice died during embryonic
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FIGURE 1 | Diagram showing the intrinsic (left) and extrinsic (right)

apoptotic pathways. In the intrinsic apoptotic pathway, GSK-3 exerts a
pro-apoptotic role, acting on targets as Bax, Bim, and VDAC, thus contributing

to the disintegration of mitochondria and the release of cytochrome c. On the
contrary, the role of GSK-3 is anti-apoptotic in the extrinsic pathway, by
preventing DISC complex formation.

development due to massive apoptosis of hepatocytes (Hoeflich
et al., 2000), which demonstrated that GSK-3β is an important
inhibitor of apoptosis. However, this observation appears to be in
direct opposition to the finding that overexpression of GSK-3β is
sufficient to induce apoptosis (Pap and Cooper, 1998). It is impor-
tant to understand this duality, since, among the diseases in which
GSK-3 is involved, some are characterized by excessive cell death
(neurodegenerative diseases), while in others a deficient apoptosis
is occurring (cancer or autoimmune diseases).

(a) The intrinsic apoptosis involves the loss of integrity of mito-
chondria with release of cytochrome c leading to cell destruc-
tion. In the cytoplasm, released cytochrome c binds to APAF,
ATP, and procaspase 9, thus forming the apoptosome and
leading to activation of caspases which finally induces cell
death. GSK-3 participates in the intrinsic apoptosis pathway
by acting on targets such as Bax (Linseman et al., 2004), Bim
(Hongisto et al., 2003), or VDAC (Pastorino et al., 2002), thus
contributing to the disintegration of the mitochondria (Beurel
and Jope, 2006).

The stimuli able to trigger this type of cell death are diverse and
they include,among others,DNA damage,oxidative stress or endo-
plasmic reticulum stress. Numerous pieces of evidence have shown
that under conditions that activate the intrinsic pathway, GSK-3

plays a pro-apoptotic role. Initially it was found that GSK-3 was
involved in apoptosis in response to inhibition of the PI3K path-
way (Pap and Cooper, 1998). Later it was found that, in cultures
of rat cortical neurons, GSK-3 not only was promoting apoptosis
caused by inhibition of the PI3K pathway, but also it was involved
in the apoptosis in response to a withdrawal of trophic factors
(Hetman et al., 2000, 2002). Moreover, due to the withdrawal
of trophic factors in PC12cells, phosphorylation of GSK-3β at
Tyr 216 increases (activation), and can be reversed by lithium or
insulin, which affects the phosphorylation at Ser 9 (inactivation)
but not at Tyr 216 (Bhat et al., 2000). In response to thapsigargin,
an inducer of endoplasmic stress, not only caspase-3 is activated,
but it also significantly increases GSK-3 activity (Song et al.,
2002). Three pro-apoptotic stimuli such as serum withdrawal,
staurosporine, or heat shock produced increased nuclear local-
ization of GSK-3β. This change in subcellular localization seemed
to be independent of phosphorylation and prior to caspase-9 and
-3 activation, thus indicating that nuclear accumulation of GSK-3
is an early event in the intrinsic apoptotic signaling. Nuclear GSK-
3 or GSK-3 targets present in the nucleus, as transcription factors,
may be promoting intrinsic apoptosis signaling (Bijur and Jope,
2001).

An interesting fact was described in Rat-1 and PC-12 cells
where, in the absence of apoptotic stimuli, overexpression of GSK-
3 resulted in cell death by itself, being able to reverse apoptosis with
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the expression of a dominant-negative form of GSK-3 (K85R-
GSK-3; Pap and Cooper, 1998). In most of these studies induction
of apoptosis can be reversed by lithium or other inhibitors of GSK-
3, establishing a neuroprotective role with a potential therapeutic
application of such inhibitors (Cohen and Goedert, 2004; Wada,
2009).

(b) The extrinsic apoptosis involves activation of death receptors
of the TNF receptor family located in the plasma membrane,
such as TNF-R, Fas (also called CD95), DR4, and DR5 (Ashke-
nazi and Dixit, 1998). Although each of these receptors is
activated by its own ligand, they share a common mechanism.
The stimulation by the ligand results in receptor trimerization
to which the protein Fas-associated death domain (FADD)
and procaspase-8 can bind. This promotes the formation of
the death-inducing signaling complex (DISC; Peter and Kram-
mer, 2003). Subsequently a self-activation of caspase-8 occurs,
which leads to activation of effector caspases and completion
of apoptosis (Beurel and Jope, 2006).

The role of GSK-3 as an anti-apoptotic agent of the extrinsic path-
way has been less studied. Most of these studies were conducted
in tumor cell models, following the hypothesis that inhibition of
GSK-3 improves response to chemotherapy. The earliest evidence
dating back to 1989 when Beyaert et al. found that LiCl enhanced
the toxicity by TNF, in murine and human tumor cells, in a man-
ner similar to the effects of cycloheximide, the actinomycin D,
or interferon γ (Beyaert et al., 1989). As a result, a combination
of both was proposed as a treatment to improve the response to
chemotherapy in cancer patients.

Other studies show potentiation of the extrinsic pathway of
apoptosis by selective inhibitors of GSK-3 in tumor cell lines (Liao
et al., 2003; Ougolkov et al., 2007). A recent study, also in tumor
cell lines, depth in this mechanism, and places GSK-3 complexed
with death receptor, thus preventing the formation of DISC. When
activated, the death receptor induces changes in the complex and
inhibits GSK-3, favoring apoptosis (Sun et al., 2008). In 2004, also
the group of R. S. Jope published the first study of GSK-3 as a
component of the extrinsic pathway in neuronal cells. This study
revealed that apoptosis induced by the extrinsic pathway, specifi-
cally by Fas receptor signaling, was enhanced by lithium and other
GSK-3 inhibitors (Song et al., 2004).

MOUSE MODELS WITH GENETIC MODIFICATIONS OF GSK-3
In order to investigate the involvement of GSK-3 in cellular
processes and to clarify its implications in diseases, a great effort
was and is still being made to generate animal models that mimic
pathological conditions through the deregulation of GSK-3. Up to
date the main effort has been invested in creating animal models
with altered expression of GSK-3, especially the evolutionary well
conserved isoform GSK-3β.

To achieve this goal, different strategies have been applied: over-
expression, suppression, and modulation of the expression of the
enzyme. Many of these models direct expression or modification
of GSK-3 to the central nervous system (CNS) for the generation
of mouse models of AD. Nowadays several other species apart
from the mouse are also used as model systems, which include

Drosophila melanogaster and zebrafish. In this review we will focus
on results obtained from mouse models.

MOUSE MODELS WITH INCREASED GLYCOGEN SYNTHASE KINASE-3
ACTIVITY
One of the earliest diseases linked to dysfunctions of GSK-3β was
AD. More recently, it has been proposed that the deregulation
of GSK-3β might affect other tauopathies like frontotemporal
dementia with Parkinsonism linked to chromosome 17 (FTDP-17;
Perez et al., 2000). Regarding AD, it has been demonstrated that
GSK-3β mediates tau hyperphosphorylation, β-amyloid-induced
neurotoxicity, and mutant presenilin-1 pathogenic effects (Jope
and Johnson, 2004). Increased levels of GSK-3 have also been
reported in postmortem analysis of brains from AD patients com-
pared to age-matched control samples (Pei et al., 1997), where
as a spatial and temporal pattern of increased active GSK-3β

expression correlates with the progression of NFT and neurode-
generation (Leroy et al., 2002). Thus, the first GSK-3 mouse models
focused on the study of the implications of GSK-3β overexpression
in the CNS on the development of AD and related neuropatholog-
ical diseases. To achieve this goal, promoters with known neuronal
expression like NF-L, thy1, or the more region specific promoter
CaMKIIα, were used.

In 1997, Brownlees et al. generated the first two GSK-3 mouse
models. One carried the human wild-type GSK-3β isoform as
the transgene and the other one the mutant form of GSK-3β in
which serine-9 of GSK-3β was mutated to alanine (S9A), thus
supposedly resulting in a more active form by preventing inacti-
vation through the phosphorylation on Ser9 (reviewed in Grimes
and Jope, 2001). These transgenes were under the transcriptional
control of either the ubiquitous murine sarcoma virus (MSV)
promoter or the neuronal specific promoter of the murine neu-
rofilament light chain (NF-L; Brownlees et al., 1997b). In spite of
detecting the two transgenes mRNAs through reverse-transcribed
PCR, no substantial increase in total activity of GSK-3β was
observed, neither regarding the wild-type GSK-3β nor the mutated
form. They also observed that the expression of the mutated
form of GSK-3β (S9A) was much lower, probably due to the
fact of its increased activity. Despite no detectable GSK-3 over-
expression, Western blot analysis of the two mouse lines with the
highest levels of transgenic GSK-3β activity revealed that the phos-
phorylation status of tau was elevated at the AT8 epitope. The
authors postulated that toxicity elicited by GSK-3β overexpres-
sion during embryonic and postnatal development of the CNS
may explain why they were unable to generate mouse lines with
detectable GSK-3β overexpression. Conversely, as it will be com-
mented below, GSK-3β knockout mice die during embryonic life
(Hoeflich et al., 2000). From this first model of GSK-3 increased
activity we extract the notion of an embryonic lethality but no
further analysis regarding the role of GSK-3 in apoptosis was
achieved.

The second transgenic animal published also expressed the S9A
mutant form of the kinase, i.e., GSK-3β (S9A); this time under
the control of the modified murine thy1 gene (Spittaels et al.,
2000). The engineered thy1 construct used in this model drives
the expression of the transgene only postnatally and only in neu-
rons. This mouse shows a twofold increase in GSK-3β activity.
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Accordingly, an increase in phosphorylated tau was demonstrated,
but only in older transgenic mice (7–8 months). In a second round
of characterization of this mouse line, Spittaels et al. also observed
in these mice a significant decrease in overall brain weight and
volume, with the largest reduction occurring in the cerebral cor-
tex. This reduction was not due to apoptosis, since there was
no increase in TUNEL or in cleaved caspase-3 positive neurons
(Spittaels et al., 2002). The resulting compacted architecture was
further demonstrated by an increased neuronal density, by reduced
neuronal cell bodies and of the somatodendritic compartment of
pyramidal neurons in the cortex. The overall reduction in size
of the entire CNS induced by constitutive active GSK-3β caused
only very subtle changes in the psychomotor ability of adult and
aging GSK-3β transgenic mice. Overexpression of GSK-3β in this
model also has been shown to up- or down-regulate the expression
of numerous proteins in neurons, including down-regulation of
MAP2 (Tilleman et al., 2002). In spite of increased tau phosphory-
lation and decreased brain weight these GSK-3β transgenic mice
performed normally in the Morris water maze test (Spittaels et al.,
2002).

One of the characteristics of persons affected by FTDP-17 is
an increased expression of the longest human protein tau isoform
containing the four repeat regions in the carboxyl-terminal part
(Heutink, 2000). For this reason Spittaels et al. (1999), in another
approach, cross-bred their GSK-3β (S9A) mice with transgenic
mice that carry the longest human protein tau isoform expressed
under the same promoter (thy1). The authors observed a reduction
of the number of axonal enlargements and motor impairments
typical of these tau transgenic animals (Spittaels et al., 2000).
In these mice, an increase in phosphorylation of human tau was
demonstrated, although neither an increase in insoluble tau aggre-
gates nor the presence of paired helical filaments was observed.
Spittaels et al. concluded that the improvement of axonopathy and
motor problems found in htau40 mice when mixed with GSK-3β

(S9A) mice was due to phosphorylation of tau induced by GSK-
3β which decreases its affinity for microtubules and consequently
rescues axonal transport. The same group crossed this mutant
GSK-3β (S9A) mice with a tau model overexpressing Tau (P301L;
Terwel et al., 2008) observing an increase in forebrain tau pathol-
ogy although conversely the bigenic mice survived longer than the
parental Tau (P301L).

In a similar approach Li et al. (2004) used the isoform GSK-3β

(S9A), isoform resistant to inhibition by phosphorylation, under
control of the neuron specific human platelet-derived growth fac-
tor (PDGF) β-chain promoter. This promoter drove the expression
mainly to the cortex and hippocampus of the transgenic brain.
They observed an increase in GSK-3 activity without changes in
the total level of GSK-3β. They also observed an increase in tau
phosphorylation detected by the AT8 antibody by Western blot
analysis. This approach did not show any evidence of apoptosis
although they show increased pretangle morphology which could
be indicating a neurodegenerative process.

Overall, the GSK-3β (S9A) mice generated by Spittaels and
co-workers show decreased brain weight and volume, more pro-
nounced in the cortex that cannot be attributed to an apoptotic
effect as there is no evidence of increased TUNEL or caspase-3
levels.

In view of the postulated lethality of embryonic GSK-3β over-
expression (Brownlees et al., 1997a) as well as the known role of
GSK-3β in development, a further GSK-3β transgenic mouse was
generated (Lucas et al., 2001) by using the conditional tetracycline-
regulated system. In these mice transgene expression was under
the control of the CaM kinase II α-promoter to achieve substan-
tial overexpression of wild-type GSK-3β in forebrain neurons and,
therefore, in regions more relevant for AD.

In this transgenic line (Tet/GSK-3β mice), GSK-3β overexpres-
sion was restricted to certain cortical neurons and hippocampal
neurons. It was in the hippocampal region were a 30% increase
in GSK-3β activity was observed by enzymatic assay on tissue
homogenate (Hernandez et al., 2002). Hippocampal overexpres-
sion of GSK-3β resulted in an increase in the phosphorylation
of tau in Tet/GSK-3β animals, as detected with antibodies raised
against the phosphorylated tau modified in AD, like PHF-1/AD2.
This hyperphosphorylated tau was found in the somatodendritic
compartment, not because of an increase in the total amount of
tau protein, but exclusively due to the hyperphosphorylation of
tau by GSK-3β. In spite of a substantial increase in hyperphos-
phorylated tau, the aberrant tau aggregation found in AD was
not observed in these GSK-3β transgenic mice. In this model, β-
catenin, another GSK-3 substrate relevant to AD (Zhang et al.,
1998), was also analyzed. GSK-3 is a key enzyme involved in β-
catenin stabilization and nuclear translocation (reviewed in Barth
et al., 1997; Anderton, 1999). Increased GSK-3β in Tet/GSK-3β

mice was seen effective in modifying β-catenin in neurons of
the CNS in vivo, since nuclear β-catenin was reduced by ∼75%
in hippocampal granular cells (Lucas et al., 2001). Considering
that the genes transactivated by β-catenin are poorly character-
ized, these mice may serve as a good tool to identify such genes.
Tet/GSK-3β mice also demonstrate neuronal stress and neuronal
death as revealed the presence of reactive glia, TUNEL labeling,
and cleaved caspase-3 staining. These data are in agreement with
the known role of GSK-3β in the survival pathway, as well as sup-
porting the neuroprotective effect of lithium (reviewed in Chuang
et al., 2002). The hyperphosphorylation of hippocampal tau in
transgenic Tet/GSK-3β mice, despite the lack of filament forma-
tion, results in a behavioral impairment that can be measured in
the Morris water maze test (Hernandez et al., 2002) and in the
object recognition test (Engel et al., 2006a).

Animal models generated by using the tetracycline-regulated
system make it possible to explore any potential reversal of their
phenotype (Mayford et al., 1996; Yamamoto et al., 2000). Thus
the Tet/GSK-3β should be a good tool to test the neuroprotec-
tive effect of forthcoming GSK-3β specific inhibitors. In 2006
Engel and co-workers published a study of the effect of silenc-
ing transgene expression by the administration of tetracycline to
the Tet/GSK-3β mice (Tet-OFF system). They show that transgene
shutdown in symptomatic mice leads to normal GSK-3 activ-
ity, normal phospho-tau levels, diminished neuronal death, and
suppression of the cognitive deficit, thus further supporting the
potential of GSK-3 inhibitors for AD therapeutics (Engel et al.,
2006b).

The tetracycline-regulated system also gives us the opportunity
to overexpress the GSK-3β transgene in other regions than the
CNS, using another promoter for the tetracycline-activator. This
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would provide the great opportunity to study the implications of
a deregulation of GSK-3β in other cell types, other tissues, and to
generate animal models for other diseases.

The implication of wild-type GSK-3β in tau pathology was
further analyzed by combining this transgenic model with trans-
genic mice expressing tau with a triple FTDP-17 mutation which
develop prefibrillar tau aggregates (VLW mice; Lim et al., 2001). In
the VLW single transgenic mice, which express the longest human
tau isoform with three FTDP-17 point mutations (G272V, P301L,
and R406W, hTauVLW) under the control of the modified thy1
mouse promoter, thin filaments with a width of ∼5 nm can be
observed. The triple transgenic mice Tet/GSK-3β/VLW showed
an increase in tau phosphorylation in the hippocampus, the area
where the two transgenes, GSK-3β and hTauVLW were co-expressed
and where GSK-3 activity was increased. In addition, hyperphos-
phorylated tau with an aberrant high molecular weight was present
in these triple transgenic mice but not in the single transgenic mice
VLW or the Tet/GSK-3β mice. Similarly, thioflavine-S positive neu-
rons were only observed in the hippocampus of Tet/GSK-3β/VLW
mice and filaments with a width wider than 10 nm (a width sim-
ilar to that found in tauopathies) could be purified only from
Tet/GSK-3β/VLW mice. This model demonstrates that an increase
in GSK-3β activity is a key factor able to induce tau aggregation
(sarkosyl-insoluble material as well as tau filaments). Neurode-
generation studies in these mice showed a decrease in the volume
of the dentate gyrus of Tet/GSK-3β/VLW mice at 5 months, not
seen in Tet/GSK-3β mice of the same age. At the advanced age
of 18 months both Tet/GSK-3β and Tet/GSK-3β/VLW exhibited a
severe atrophy of the dentate gyrus at a similar level in both trans-
genic mice. Thus, the neurodegenerative process occurring in the
dentate gyrus of Tet/GSK-3β transgenic mice is accelerated by the
presence of mutated tau.

As a proof of concept that tau modification by GSK-3 plays a
role in neurodegeneration found in the previously exposed mod-
els, GSK-3 overexpressing mice were brought to tau knockout
(Tau−/−) background. Interestingly in Tet/GSK-3β + Tau−/−
mice the toxic effect of GSK-3 overexpression is milder and slower
in the absence of tau (Gomez de Barreda et al., 2010).

What we can extract from studies in Tet/GSK-3β is that an
increase in GSK-3 activity correlates with an increase in apoptosis
which seems to involve tau modification, as seen when mice were
combined with models of tau modifications.

Another approach used to study the deregulation of GSK-3 is
the generation of knock-in mice with a modified GSK-3 transgene.
In 2005, McManus et al. have generated a GSK-3 homozygous
knock-in mice in which the protein kinase B (PKB/AKT) phospho-
rylation sites on GSK-3α (Ser21) and GSK-3β (Ser9) were changed
to a non-phosphorylatable Ala residue (McManus et al., 2005).
This protein modification would enable studying the role played by
the inactivation of GSK-3 through these phosphorylation events in
insulin and Wnt signaling pathways. These knock-in mice develop
and reproduce normally and were not diabetic, despite insulin
being unable to stimulate glycogen synthase in muscle. In double
GSK-3 knock-in mice the GSK-3 isoforms are present at normal
levels. Analyzing this model it was demonstrated that insulin reg-
ulates muscle glycogen synthase mainly through GSK-3β rather
than GSK-3α. Regarding the CNS, this model shows altered

neurogenesis as well as a deficient production of the support-
ing vascular endothelial growth factor (VEGF) in the hippocam-
pus (Eom and Jope, 2009). In vivo chronic co-administration of
lithium and fluoxetine increases proliferation in the dentate gyrus
of wild-type but not GSK-3α/β (S21A/S21A/S9A/S9A) knock-in
mice. Following these results it was suggested that blockade of
the inhibitory control of GSK-3 results in impaired neurogenesis
(Eom and Jope, 2009). At this respect, it has been described that
GSK-3 is a master regulator of neuronal progenitor homeostasis
during embryonic development (Kim et al., 2009). In the specific
case of adult neurogenesis taking place in the subgranular zone of
the dentate gyrus, a role for tau phosphorylation (by GSK-3) has
been found in the migration and differentiation of neuronal pre-
cursors into mature neurons (Fuster-Matanzo et al., 2009; Hong
et al., 2010). Interestingly, Tet/GSK-3 mouse model of GSK-3 over-
expression showed an impairment in proliferation and maturation
that together with increased apoptosis, contribute to the atrophy
of the dentate gyrus (Sirerol-Piquer et al., 2011).

Overall GSK-3 increased activity induced in homozygous
GSK-3α/β (S21A/S21A/S9A/S9A) knock-in mice results in altered
neurogenesis, without clear implications in apoptosis.

An additional transgenic model overexpressing wild-type GSK-
3β was generated to be crossed with mice overexpressing FAD-
mutant APP (Rockenstein et al., 2007). These mice showed an
improvement in Morris water maze compared with single mutant
APP mice, and strikingly, they had a decrease in tau phospho-
rylation as well as a decrease in APP phosphorylation and Aβ

levels. To explain these unexpected results, the authors argued that,
although GSK-3β was overexpressed, this resulted in an increase in
the inhibitory domain of the kinase. That was the reason to name
this animal model, in a confusing way, as a dominant-negative
GSK-3β model. Overall the manuscript demonstrates that GSK-3
is able to modulate the amyloid aspect of AD in vivo, but has no
implications in apoptosis.

In summary, the role of GSK-3 in apoptosis when explored
in mouse models with increased GSK-3 activity seems to be pro-
apoptotic. Even if apoptosis has not been studied in detail, a toxic
effect seems to be common to these mouse models.

ANIMAL MODELS WITH REDUCED GLYCOGEN SYNTHASE KINASE-3
ACTIVITY
Several genetic approaches have been used to generate mice with
a decrease in GSK-3 levels. The first study to suppress its expres-
sion in a mouse model was the generation of GSK-3β-KO mice
by Hoeflich et al. (2000). In this study the GSK-3β gene has
been disrupted by targeted deletion. These investigators showed
that GSK-3β is absolutely essential for survival. The generated
GSK-3β-knockout mice developed normally to mid-gestation, but
died around embryonic day 14 following massive tumor necro-
sis factor-α (TNF-α)-induced hepatocyte apoptosis, which could
be prevented by the injection of antibodies that block the func-
tion of TNF-α. Nuclear factor κB (NF-κB) activation is known
to counteract TNF-α- induced apoptotic signaling to promote
survival by turning on a set of anti-apoptotic genes (Pomerantz
and Baltimore, 2000). The intriguing finding made by Hoeflich
et al. is that GSK-3β is required for the NF-κB-mediated sur-
vival response. This study therefore demonstrates for the first time
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an isoform-specific GSK-3 function since GSK-3α was unable to
compensate for the loss of GSK-3β.

Although the GSK-3β knockout mice died during mid-
gestation, heterozygotes mice were viable and appeared morpho-
logically normal. Mouse embryonic fibroblasts derived from the
GSK-3β heterozygotes knockout mice expressed reduced levels
of GSK-3β protein without a compensatory increase in GSK-3α

protein levels, indicating a partial loss of function in GSK-3β het-
erozygous. The authors also observed a reduced GSK-3β activity
in the brains of the heterozygous mice (Hoeflich et al., 2000).

These GSK-3β heterozygous knockout mice were used by
Beaulieu et al. and O’Brien et al. (2004) in two subsequent studies.
In the first study Beaulieu et al. (2004) demonstrated in dopamine
transporter knockout mice that dopamine can exert its behavioral
effects by acting on a lithium-sensitive signaling cascade involving
Akt/PKB and GSK-3. In this study increased dopamine neuro-
transmission resulted in inactivation of Akt and concomitant acti-
vation of GSK-3α and GSK-3β. These biochemical changes were
effectively reversed by the administration of the GSK-3 inhibitor
lithium or when combined with the GSK-3β heterozygous knock-
out mice, thus establishing this cascade as an important mediator
of dopamine action in vivo. Interestingly, these DAT-KO mice, with
increased GSK-3 activity, also show increased microgliosis, and a
small percentage of apoptotic neurons associated with increased
tau phosphorylation (Cyr et al., 2003).

O’Brien et al. (2004) compared the behavioral effects of chronic
lithium treatment on mice with the behavioral phenotype of the
GSK-3β heterozygous knockout mice. In this study the authors
observed that lithium treated mice spent less time immobile in
the forced swimming test, test widely used as a predictor of anti-
depressant efficacy. The same result was obtained when they used
the GSK-3β heterozygotes knockout mice. In the exploratory test,
both, lithium treated and GSK-3β heterozygotes knockout mice,
acted in the same way with less exploratory activity as compared
to wild-type mice. Molecular targets of GSK-3 dependent signal-
ing, such as β-catenin, are also affected similarly by lithium and
GSK-3β haploinsufficience with a substantial increase of ∼30%.
These behavioral and molecular correlations strongly support the
hypothesis that GSK-3 is an important target for the behavioral
effects of lithium.

However, another heterozygous mice generated by homolo-
gous recombination in Takashima’s lab have no defect regarding
learning and memory in Morris water maze test although they
show impaired memory reconsolidation in fear conditioning test
(Kimura et al., 2008).

In summary, GSK-3β knockout mice present an embryonic
lethality promoted by massive apoptosis in hepatocytes. Liver
degeneration correlates with excessive TNF-α toxicity. As TNF-α is
a member of death receptor family, we could conclude that apopto-
sis in hepatocytes is taking place by extrinsic pathway of apoptosis.
Studies in fibroblasts from −/− embryos revealed decreased NFκB
activation which seems to be GSK-3β dependent. No further analy-
sis of apoptosis in CNS has been made in the heterozygous mice
generated by Hoeflich et al. (2000) nor in the heterozygous made
by Kimura et al. (2008).

Mice without GSK-3α are viable and show an increase in
glucose and insulin sensitivity accompanied by liver glycogen

accumulation and a reduction in fat mass (MacAulay et al., 2007).
Respect to CNS these animals show an increase in cerebellar vol-
ume, although normal brain volume, suggesting a role for GSK-3α

in this area. In addition, GSK-3α KO mice present alterations in
a wide range of behavior tests involving this isoenzyme in nor-
mal brain function. Some defects found in exploratory activity,
decreased immobility time and anti-aggression behavior remind to
those found in GSK-3β ± mice. Abnormal behaviors as decreased
locomotion, decreased social motivation, impaired sensorimo-
tor gating, associative memory, and coordination are specific for
GSK-3α −/− mice (Kaidanovich-Beilin et al., 2009).

In order to delete GSK-3 specifically from neurons, deletion of
GSK-3α/β was carried out. Thus, mice with a GSK-3α null back-
ground and also carrying the construction GSK-3β (loxP/loxP)
were crossed with nestin-cre line (Kim et al., 2009). These ani-
mals showed bigger heads and died at P0. The main finding
was a massive hyperproliferation of neural progenitors by expan-
sion of the radial progenitor pool. These effects were linked with
β-catenin deregulation, Sonic Hedgehog, Notch, and fibroblast
growth factor signaling. This model mainly demonstrates the role
of GSK-3β in brain development (reviewed in Hur and Zhou,
2010). Besides, it has been recently demonstrated that GSK-3β is
involved not only in embryonic neural development but also in
adult neurogenesis. Thus, GSK-3 is able to phosphorylate tau pro-
tein in doublecortin positive cells in adult dentate gyrus (Fuster-
Matanzo et al., 2009; Hong et al., 2010). In addition, GSK-3α/β
(S21A/S21A/S9A/S9A) knock-in mice, described previously (Eom
and Jope, 2009), present a drastic impairment in adult neurogen-
esis in vivo. In good agreement, adult neurogenesis is also altered
in Tet/GSK-3β mice (Sirerol-Piquer et al., 2011).

From these studies we can extract that decreasing GSK-3 activ-
ity would translate in diminished apoptosis as indicated by the
phenotype of bigger heads in both mouse models which is similar
to the exencephaly observed in knockout mice for caspase-9 and
caspase-3 (Haydar et al., 1999).

The study of a long term genetic suppression of the GSK-3
activity was difficult to achieve because of the embryonic lethal-
ity reported by Hoeflich et al. (2000). An alternative approach
to study neurological consequences of sustained GSK-3 inhibition
has been to generate mice with conditional expression of a canoni-
cal dominant-negative form of GSK-3(Gomez-Sintes et al., 2007).
More precisely the K85R mutant form of GSK-3β (DN-GSK-3)
was chosen in view of its previously shown efficacy in decreas-
ing GSK-3 activity (Dominguez et al., 1995). The mouse design
is similar to the one used for generating Tet/GSK-3β mice (Lucas
et al., 2001). It consists in a transgenic mouse with conditional
tetracycline-controlled system (Tet-OFF system), in which the
expression of the tTA transgene is driven by CaMKIIα promoter.
This promoter addresses the expression of tTA, and consequently
of the Myc-K85R-GSK-3β construction, specifically to adult neu-
rons in the forebrain. The transgene expression was evident in
striatum, cortex, and hippocampus of Tet/DN-GSK-3 mice. GSK-
3 activity measured in cortex and striatum homogenates revealed
decreased GSK-3 activity. Subsequently, in these regions both
GSK-3α and β showed increased phosphorylation in Ser 9 and 21
respectively and decreased phosphorylation in tau epitopes, PHF-
1 and AT8. As a neurological consequence of decreased activity in
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postnatal neurons of the forebrain they showed impaired motor
coordination. The motor deficit correlates with an increase of
neuronal apoptosis, detected by activated caspase-3 immunostain-
ing and TUNEL selectively in areas responsible of motor control,
like cortex and striatum. Interestingly these consequences were
restored after shutdown expression (doxycycline administration).
In this model,an increased apoptosis as a consequence of decreased
GSK-3 activity was found. Regarding the paradoxical dual role
of GSK-3 in apoptosis exposed previously, these results suggest
that apoptosis induced by GSK-3 inhibition is occurring via the
extrinsic pathway.

Models with increased GSK-3 activation had revealed a com-
mon effect in increasing apoptosis/toxicity. Intriguingly, studies
in mouse models with decreased GSK-3 have raised different
results regarding the role of GSK-3 in apoptosis. These con-
troversial data are probably dependent on the isoform affected
α or β, the cellular type or the developmental state in which
GSK-3 activity has been decreased. If the isoform lacking dur-
ing development is GSK-3α, the consequence is an increase in
cerebellar volume which could be indicating a defect in apop-
tosis. When GSK-3β is decreased at early embryonic stage as in
the two knockout mice of GSK-3β, it results in increased apopto-
sis/lethality. On the contrary, if GSK-3β is deleted specifically in
neurons over a GSK-3α −/− background, then has an opposed
effect of bigger heads which again indicates decreased apopto-
sis. Finally, mice with decreased GSK-3β activity occurring once
the CNS is formed as Tet/DN-GSK-3β revealed an increased in
apoptosis in striatum and cortex where expression of the trans-
gene is more remarkable. This apoptosis seems to act through
extrinsic signaling pathway. However, despite these experimental
data, the contribution and the physiological role of both GSK-
3 isoenzymes in relation to apoptosis are still not clear. Thus,
it will be necessary to understand their relative contribution to
apoptotic signaling cascades and, as a consequence, their relative
contribution to neurodegeneration.

CORRELATE WITH PHARMACOLOGICAL INHIBITION
Deregulation of GSK-3 has been shown to be involved in all
mechanisms described for AD neuropathology (Grimes and Jope,
2001). Interestingly, there is indirect evidence of increased activ-
ity of GSK-3 in AD patients (reviewed in Imahori and Uchida,
1997; Pei et al., 1997; Blalock et al., 2004; Hye et al., 2005; Leroy
et al., 2007; Hooper et al., 2008). Some studies have also impli-
cated GSK-3 in the pathology of type 2 diabetes (Eldar-Finkelman
and Krebs, 1997; Eldar-Finkelman, 2002; Jope and Johnson, 2004).
Thus, regarding the previous data, GSK-3 inhibitors were pre-
sented as a promising therapeutic tool for the treatment of AD,
type 2 diabetes and possibly other neurodegenerative diseases
(Cohen and Goedert, 2004; Meijer et al., 2004; Martinez and Perez,
2008).

Moreover, taking into account that cancer is characterized by a
defect in apoptotic mechanism, inhibition of GSK-3 has been pos-
tulated as useful pharmacological approach to improve response to
chemotherapy (Beyaert et al., 1989; Beurel et al., 2004; Luo, 2009).
This therapeutic strategy would be only effective when directed to
certain types of cancer, since directed to other types may have the
opposite effect.

A reliable approach to test the validity of GSK-3 inhibitors for
the treatment of AD would be the restoration of normal levels of
GSK-3 in the Tet/GSK-3β mouse model (Lucas et al., 2001). These
mice permit to explore whether the biochemical, histopathologi-
cal, and behavioral consequences of increased GSK-3 activity are
susceptible to revert after the shutdown of transgene expression.
In this study Engel et al. (2006b) found that 6 weeks of doxycy-
cline administration were sufficient to lower GSK-3 activity and
tau phosphorylation to normal levels, to diminish neuronal cell
death, and to improve cognitive deficit, thus further supporting
the potential of GSK-3 inhibitors for AD therapy. However, GSK-3
inhibition leading to levels of GSK-3 activity below normal could
be counterproductive. This was evidenced by the characteriza-
tion of Tet/DN-GSK-3 mice carried out in our lab that showed
increased levels of apoptosis and motor deficits as a consequence of
sustained inhibition of GSK-3 (Gomez-Sintes et al., 2007). Fortu-
nately this toxicity can be reverted when restoring normal activity
of GSK-3, which suggests that GSK-3 should be maintained within
certain physiological levels. The study performed by Frautschy
et al. support this notion. They perform intracerebroventricular
infusions of Aβ42 oligomer, which produces an increase in GSK-3
activity, and/or SB 216763, a selective inhibitor of GSK-3. Their
results show a beneficial effect of SB 216763 to revert toxicity
induced by Aβ42 oligomer. Intriguingly, they have also found a
certain toxicity of SB when administered to control animals with
normal levels of GSK-3 activity (Hu et al., 2009).

In view of the potential use of GSK-3 inhibitors for the treat-
ment of AD and maybe other diseases in which deregulation of
GSK-3 has been involved, many efforts have been directed to the
development of selective and effective GSK-3 inhibitors (reviewed
in Cohen and Goedert, 2004; Frame and Zheleva, 2006; Gould
et al., 2006; Martinez and Perez, 2008). Indeed, two GSK-3 selec-
tive inhibitors from the pharmaceutical company Noscira are at
the present under clinical trials phase II (Medina and Castro, 2008;
Sereno et al., 2009; Del Ser, 2010). Nowadays this company is in the
most advanced stage of the development of GSK-3 inhibitors. We
must still wait for future studies in analysis of postmortem tissue
to evaluate the effect of these inhibitors regarding apoptosis.

A classical non-selective GSK-3 inhibitor, lithium, has been
used in clinics for decades (Klein and Melton, 1996; Stambolic
et al., 1996). Since its introduction into psychiatric pharmacother-
apy 60 years ago, lithium remains the most effective agent in the
treatment and prophylaxis of major mood disorders, particu-
larly bipolar disorder (BD; Manji et al., 1999; Baldessarini et al.,
2002; Grof and Muller-Oerlinghausen, 2009; Kovacsics and Gould,
2010). Despite the obvious advantages of chronic lithium therapy,
its clinical use is often curtailed by its narrow therapeutic index and
its devastating overdose-induced toxicity (Macritchie and Young,
2004). Accordingly, patients must be closely monitored not only
at the beginning of treatment, but also during treatment mainte-
nance, to keep serum lithium concentrations within a therapeutic
window of 0.6–1.4 mM. Even within this therapeutic range, mild
neurological side effects such as hand tremor are common, and
progressive toxicity to marked neurological impairment correlates
with increasing serum levels above 1.5 mM (Macritchie and Young,
2004). The biochemical and cellular basis for lithium’s therapeu-
tic efficacy and the precise molecular mechanisms through which
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FIGURE 2 | Scheme summarizing the proposed mechanism for

lithium induced neuronal apoptosis (Gomez-Sintes and Lucas, 2010).

Prolonged administration of lithium produces inhibition of GSK-3, which
promotes entry and accumulation of NFAT into the nucleus. Once in the
nucleus, NFAT activates the production of FasL. When FasL is secreted

outside the cell binds to Fas receptor present in the membrane of the same
cell or cells nearby, which triggers death by apoptosis. When NFAT/Fas
signaling is blocked by co-administration of Cyclosporin A or when lithium is
administered to Fas-deficient mice (lpr ) motor deficits and apoptosis are
absent.

it exerts its unwanted neurological side effects remain to be fully
elucidated. In 2008 a study in AD patients was accomplished to
test the feasibility of chronic lithium treatment for this disease. It
showed that side effects, although mild and reversible, difficult the
application to elder people and the discontinuation rates are high
(Macdonald et al., 2008).

As lithium inhibits GSK-3 in vivo (Klein and Melton, 1996;
Stambolic et al., 1996) and we recently reported neuronal apop-
tosis and motor deficits in dominant-negative GSK-3 transgenic
mice (Gomez-Sintes et al., 2007), we hypothesized that thera-
peutic levels of lithium could also induce neuronal loss through
GSK-3 inhibition and that maybe this is the cause of the known
extrapyramidal side effects, as hand tremor, produced by chronic
treatment with lithium in BD patients. To test this hypothe-
sis chronic lithium was administered to wild-type mice and it
was found that apoptosis and motor coordination impairment
were occurring, similarly as in Tet/DN-GSK-3β mice (Gomez-
Sintes and Lucas, 2010). In this case GSK-3 inhibition was not
restricted to forebrain areas as it was not dependent of CaMKII
promoter. Thus, increased apoptosis was noticeable in areas like
cortex, striatum, globus pallidus, hippocampus, and cerebellum,
all of them involved in motor control. Interestingly chronic
lithium resulted in a poor performance of motor tasks as evi-
denced by vertical pole test or DigiGait apparatus, which mea-
sures footprint pattern and other parameters of walking reg-
ularity. To depth into the mechanism of lithium toxicity, we
elaborated a hypothesis involving NFAT/Fas signaling that we
proceed to test (Figure 2). The results demonstrated that GSK-3

inhibition by lithium increase translocation of nuclear factor of
activated T cells c3/4 (NFATc3/4) transcription factors to the
nucleus, leading to increased Fas ligand (FasL) levels, and Fas
receptor activation, which finally gives rise to extrinsic apopto-
sis signaling (death receptor dependent; Gomez-Sintes and Lucas,
2010).

Interestingly, apoptosis and motor deficits were prevented when
cyclosporin A, that blocks NFAT nuclear translocation, was co-
administered with lithium. These side effects could be also reverted
by blocking Fas signaling. This was tested by treating lpr mice (nat-
urally Fas receptor-deficient) with chronic lithium. These findings
leave an open way to combined therapies. To test the validity of
these results but providing a genetic inhibition of GSK-3, exper-
iments with Tet/DN-GSK-3 mice in lpr background are being
undertaken.

All the mouse models with increased or decreased GSK-3 activ-
ity described in this review have helped to understand the impli-
cation of GSK-3 on neurodegenerative or psychiatric diseases and
also to depth in the physiology of GSK-3. Although there is still a
lot of work to do in this direction, these models constitute a good
tool to achieve these studies.

Understanding the role of GSK-3 in apoptosis would improve
the application of GSK-3 inhibitors to diseases as ADs, as apoptosis
seems to be responsible of motor side effectsGSK-3 inhibition. The
combination of GSK-3 inhibitors and NFAT/Fas signaling block-
ers could be a good clinical strategy to minimize side effects and
extend the use of GSK-3 inhibitors to other neurodegenerative and
neuropsychiatric diseases.
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