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Dynamic changes in somatosensory perception occur as a result of multiple signaling
events. In many instances, over-activation of sensory receptors results in the
desensitization and subsequent increased threshold for activation of receptors. In other
cases, receptor sensitization can occur following tissue injury and/or inflammation. In
both cases, signaling mechanisms that control alterations in receptor activities can
significantly affect organism response to sensory stimuli, including thermal, mechanical,
and chemical. Due to the homeostatic nature of somatosensory recognition, dynamic
changes in receptor response can negatively affect an individual’s way of life, as well
as alert individuals to tissue damage. Here, we will focus on scaffolding structures that
regulate somatosensory neuronal excitability.
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Biochemical reactions that modify receptor response post-
translationally are often governed by protein-protein or protein-
lipid interactions. In many cases, these reactions are dependent
upon substrate/effector proximity, influencing the catalytic con-
ditions required for a biochemical reaction to occur. Certain
receptors are modulated by enzymes tethered within close prox-
imity to the receptor through a scaffolding mechanism. The orga-
nization of receptors and effectors at the plasma membrane is also
influenced by relative associations with discrete domains within
the plasma membrane, providing protein-lipid interactions that
can also dynamically affect synaptic plasticity. Evolutionary stud-
ies on scaffolding proteins indicate expression across multiple
species (Emes et al., 2008; Li et al., 2011a), and also suggest
that their conserved expression emphasizes their importance in
maintaining organism viability. Similarly, plasma membrane lipid
variations are present in all mammalian cells, including neu-
rons, and are required for cellular viability. Indeed, the ability
of a tissue/system/organism to react to its surroundings indi-
cates an increased likelihood of surviving dynamic environmental
changes. Herein, we will discuss certain groups of scaffold-
ing structures that directly associate with and indirectly modify
somatosensory receptors responsible for transducing environ-
mental changes to the nervous system.

HOMER SCAFFOLDS
The family of homer scaffolding proteins consists of three family
members: Homer1, Homer2, and Homer3, with respective splice
variants for each member. These proteins are typically expressed
in a concentrated fashion at post-synaptic densities, but have
been ascribed with certain non-neuronal functions (Babu et al.,
2004; Stiber et al., 2005). The majority of proteins that belong
to the Homer family share two structurally conserved features
in their secondary form: an N-terminal enabled/vasodilator-
stimulated phosphoprotein homology 1 (EVH1) domain respon-
sible for associating with proline-rich sequences contained

within its target/ligand proteins, and a C-terminal coiled-coil
domain containing multiple leucine zipper motifs that control
homo/heteromerization of Homer proteins (Xiao et al., 1998;
Tadokoro et al., 1999). One short Homer protein splice variant,
Homer1A, does not contain this C-terminal region (Brakeman
et al., 1997), allowing it to exist as a dominant-negative inhibitor
to the scaffolding functions of the long forms. Importantly,
Homer proteins have been demonstrated to associate with many
different proteins, including several which are critical to the
transduction of peripheral somatosensory information.

Group 1 metabotropic glutamate receptors (mGluR1/5)
expressed in the spinal cord (Yashpal et al., 2001) and amygdala
(Neugebauer et al., 2003; Kolber et al., 2010; Li et al., 2011b) have
been shown to be important to pain processing, and are tightly
modulated by Homer scaffolding proteins (Brakeman et al., 1997;
Xiao et al., 1998). As shown in Figure 1, Homer proteins link
mGluR1/5 to intracellular calcium stores through inositol-1,4,5-
trisphosphate (IP3) receptor types 1 and 3 (Tu et al., 1998),
thereby regulating calcium release and neuronal excitability. Also,
Homer proteins are suspected to mediate the coupling of mGluR
and N-methyl-D-aspartate (NMDA) receptors, prevalent in post-
synaptic densities (Guo et al., 2004). Homer proteins associate
with numerous other proteins as well, but scaffolding combina-
tions outlined herein have recently been demonstrated to have
significant effects on multiple pain models.

The shortened splice variant Homer1A and its dominant-
negative ability to associate with target proteins but not scaffold
additional Homer proteins, has been demonstrated to be an
important mediator of peripheral pain. In 2006, Tappe et al.
reported that Homer1A protein expression is significantly greater
in activated sensory synapses (Tappe et al., 2006), in agreement
with other groups that report neuronal activation-dependent
increases in protein expression (Brakeman et al., 1997; Kato et al.,
1997; Bottai et al., 2002; Vazdarjanova et al., 2002). For example,
short hairpin RNA (shRNA) designed to knock-down Homer1A
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FIGURE 1 | Homer protein scaffolding at post-synaptic synapses. The Homer scaffolding complex links mGluR1/5 receptors to intracellular calcium stores
via IP3 receptors, and also links to NMDA receptors to dynamically regulate the transfer of somatosensory information.

protein expression significantly prolongs thermal hyperalgesia
following viral administration of CFA-injected animals (Tappe
et al., 2006). Indeed, through viral expression of Homer1A, Tappe
and colleagues demonstrated that the short splice variant func-
tions as an activity-dependent negative modulator of mGluR scaf-
folding to intracellular calcium stores. This inhibition can serve
as a negative modulator of neuronal sensitization at first affer-
ent pain synapses following peripheral inflammation. In short,
Homer1A exists in post-synaptic densities to reduce inflamma-
tory hyperalgesia by preventing the longer Homer proteins from
associating with mGluR1/5 and scaffolding other proteins to
the receptor.

Multiple groups have since demonstrated that Homer pro-
teins participate as critical modulators of synaptic plasticity
as scaffolding proteins. In the amygdala, Homer1A expression
reduces arthritic pain hypersensitivity and negatively affects typi-
cal changes in interneuron plasticity following an inflammatory
challenge (Tappe-Theodor et al., 2011). Further, the induction
of chronic compression of the L4/L5 dorsal root ganglia (CCD)
induces rapid expression of Homer 1A in the spinal dorsal horn,
thereby reducing synaptic plasticity and hence, associated pain
(Ma et al., 2009). Given that Homer1A can interfere with intracel-
lular calcium mobilization (Yuan et al., 2003), it could also protect

against inflammatory pain and other mGluR-activated signaling
mechanisms that influence second-order neuron sensitivity, such
as MAPK activation (Ji et al., 2002). Therefore, Homer-dependent
scaffolding mechanisms significantly affect afferent pain trans-
duction, serving as an important modulator that could be phar-
macologically manipulated in the future to provide therapeutic
benefit.

AKAP 79/150
Neuronal plasticity is predominantly studied as a function of neu-
ronal activation between pre- and post-synaptic neurons in the
central nervous system. As the rate of depolarization increases,
membrane receptors undergo alterations in expression, post-
translational modification, and/or subcellular localization that
directly affect the likelihood of repeated receptor activation, such
as for Homer1A-dependent manipulations of mGluR systems. In
this scenario, neurons work to endogenously protect the receptor,
the terminal, and the neuron itself from potential damage due to
over-activation. However, few studies have dissected the molec-
ular changes that occur within the primary afferent terminal at
the site of tissue innervation. Recent reports have identified that
the scaffolding protein A-kinase anchoring protein 79/150 (AKAP
79/150) is expressed in the periphery and dynamically recruits
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enzymes to modify Transient Receptor Potential (TRP) receptors,
thereby affecting receptor response to stimuli.

Identified in the early 1990s as a scaffolding protein for
Protein Kinase A (PKA) (Bregman et al., 1991; Carr et al., 1992),
AKAP 79/150 functions to localize certain enzymes to target
substrates on a sub-cellular level. In terms of its designations,
AKAP79 refers to the human isoform of the scaffolding pro-
teins, expressed at 79 kDa in molecular weight, while AKAP150
is the rodent isoform with additional amino acids that push
its molecular weight to 150 kDa (referred to as AKAP150 from
here forth). The additional amino acids in AKAP150 comprise
a series of multiple repeats that have no significant effect on
scaffolding actions, and may have been evolutionarily contracted
down to the human AKAP79 analog. Multiple research groups
have since identified a myriad of substrates and enzymes that
AKAP scaffolds together to establish organized and efficient sig-
nal transduction. In terms of enzymes, AKAP150 is anchored
predominantly at the plasma membrane in multiple cell types,
including neurons, and scaffolds PKA, Protein kinase C (PKC),
and calcineurin (CaN, PP2B) (Coghlan et al., 1995) along dis-
crete sections of its secondary structure (Hoshi et al., 2005). These
enzymes are then able to efficiently act upon membrane targets
that AKAP150 is reported to associate with, including the NMDA
receptor (Colledge et al., 2000), α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor (Colledge et al., 2000),
Kv7.2/KCNQ2 potassium channel (Hoshi et al., 2003), and L-type
voltage-gated calcium channels (Gao et al., 1997). Recent work by
several labs has also confirmed AKAP150 association with TRP
channels, including TRPV1 (Jeske et al., 2008; Schnizler et al.,
2008; Zhang et al., 2008). This scaffolding association affords sen-
sory neurons with the plasticity required to dynamically respond
to various stimuli known to cause pain.

The first link between AKAP150 and TRPV1 was established
in experiments investigating PKA catalytic subunit proximity to
neuronal plasma membranes following administration of inflam-
matory mediators (Rathee et al., 2002). TRPV1 was found to act
as the PKA-sensitive heat transducer responsible for inflamma-
tory hypersensitivity to a thermal stimulus, although the hyper-
sensitivity was itself sensitive to St-Ht31, a peptide that blocks
PKA association with AKAP150. Indeed, forskolin–dependent
sensitization of TRPV1 currents in dorsal root ganglia (DRG)
neurons was blocked following pre-incubation with St-Ht31, sug-
gesting that AKAP150 exists as part of the TRPV1-signaling
module that mediates inflammatory sensitization of the chan-
nel. Although reports at that time were unable to demonstrate a
physical interaction between Gαs subunit, AKAP150, and TRPV1
in any model system, the significance was established that scaf-
folding proteins dynamically affected receptor sensitivities to
pro-algesic effectors.

AKAP scaffolds support multiple enzymes to modify sub-
strate proteins in specific sub-cellular compartments. While some
AKAP scaffolds bind enzymes including phosphodiesterase 4
D3 (PDE4D3) (Dodge et al., 2001; Tasken et al., 2001), pro-
tein kinase N (Takahashi et al., 1999), and protein phosphatase
2A (Takahashi et al., 1999), AKAP150 primarily orients PKA,
PKC, and CaN with plasma membrane substrates, including
TRPV1 (Figure 2). siRNA knock-down and genetic ablation
studies indicate that the loss of AKAP150 impairs PKA- and
PKC-phosphorylation and sensitization of TRPV1 (Jeske et al.,
2008, 2009), indicating that AKAP150 expression is essential
to certain inflammatory signaling pathways that utilize these
two kinases, including prostaglandin (Schnizler et al., 2008)
and bradykinin (Zhang et al., 2008) receptor-activated pathways.
However, de-phosphorylation and desensitization of TRPV1 by

FIGURE 2 | AKAP 79/150 scaffolding at afferent terminals. AKAP 79/150
(AKAP150) is natively anchored to the plasma membrane via PIP2 linkages
that are hydrolyzed following phospholipase C (PLC) activation, releasing

AKAP150 to associate with substrate receptors, such as TRPV1. AKAP150
association with TRPV1 allows for PKA- and PKC-mediated phosphorylation
and sensitization of the receptor to peripheral stimuli.
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CaN (Docherty et al., 1996; Jeske et al., 2006b) is not depen-
dent upon AKAP150 (Por et al., 2010), suggesting that CaN
may be attracted to TRPV1 by other means, including calmod-
ulin (Numazaki et al., 2003). Although kinase scaffolding by
AKAP150 has been repeatedly demonstrated to regulate TRPV1
activation by multiple stimuli, later studies demonstrate cellular
mechanisms that dictate AKAP150:TRPV1 association in sensory
neurons.

Later work in this field would not only demonstrate phys-
ical association between AKAP150 and TRPV1 in multiple
cell models, but also show that the association is dynamic
and controlled by intracellular factors. Several research groups
have provided indirect evidence of physical protein-protein
interaction(s) between AKAP150 and TRPV1 including co-
immunoprecipitation from transfected homologous cell culture
models as well as primary sensory neuron cultures (Jeske et al.,
2008; Schnizler et al., 2008; Zhang et al., 2008). Additional total
internal reflective fluorescence-Forster resonance energy transfer
(TIRF-FRET) findings indicate strong association at the plasma
membrane in co-transfected cells (Chaudhury et al., 2011).
Importantly, TIRF-FRET studies also demonstrate that AKAP150
association with TRPV1 is a calcium-sensitive process, reveal-
ing that calcium-bound calmodulin significantly reduces TRPV1
interaction with the scaffolding protein (Chaudhury et al., 2011).
This dissociative interaction between calmodulin:TRPV1 and
AKAP150:TRPV1 likely exists as an endogenous desensitization
mechanism, allowing for calcium-sensitive, calmodulin-bound
CaN to associate with and de-phosphorylate TRPV1, while block-
ing AKAP150-bound PKA and PKC from phosphorylating and
re-sensitizing TRPV1. AKAP150 association with TRPV1 is also
negatively controlled by the anchoring of the scaffolding protein
to phosphatidylinositol-4,5-bisphosphate (PIP2) in the plasma
membrane. Working from the previously described anchorage
of AKAP150 with certain phosphoinositides (Dell’Acqua et al.,
1998), recent findings indicate that phospholipase C (PLC) acti-
vation releases AKAP150 from its plasma membrane moorings
by hydrolyzing PIP2 into IP3 and diacylglycerol (DAG). Released
AKAP150 is then free to associate with membrane-associated pro-
teins, such as TRPV1 (Jeske et al., 2011), thereby providing an
explanation for the diverging roles for PIP2 in TRPV1 regulation
(Prescott and Julius, 2003; Lukacs et al., 2007; Rohacs, 2007).

LIPID RAFTS
Although Homer and AKAP scaffolds work similarly to dictate
protein-protein interactions within both subcellular and tem-
poral foci, there are several types of scaffolds that are devoid
of protein structure, yet similarly organize and mediate signal
transduction. Organized structures within the plasma membrane
such as caveolae and lipid rafts serve to regulate the activation
efficiencies of certain receptors by scaffolding these receptors
and/or effector molecules to dictate intracellular signal trans-
duction. Therefore, protein-lipid interactions are as important as
protein-protein interactions in influencing afferent plasticity.

The fluid-mosaic model for biological plasma membrane
organization proposed by Singer and Nicholson 40 years ago
(Singer and Nicolson, 1972) has been modified in recent
years with the discovery and characterization of lipid raft

microdomains (Simons and Ikonen, 1997). Lipid rafts con-
sist of densely packed cholesterol and sphingolipid moieties
that impart a reduced specific density compared to adjacent
plasma membrane constituents. For certain receptor complexes,
lipid rafts serve to concentrate extracellular-to-intracellular com-
munication, thereby focusing signaling cascades. Indeed, cer-
tain receptors and signaling molecules associate with lipid raft
microdomains, providing for energy efficient signal transduction.
In this vein, lipid rafts can be considered scaffolding structures for
organizing receptor activation, as the activation of certain recep-
tor complexes by somatosensory stimuli have been demonstrated
to be dependent upon lipid raft association. Importantly, the
dynamic association/dissociation of receptors and down-stream
effectors with lipid rafts constitute a role in the dynamic synaptic
plasticity of afferent pain transduction.

TRP channel function in both trigeminal ganglia (TG) and
DRG neurons is reported to be sensitive to cholesterol deple-
tion (reducing lipid raft integrity). In cultured DRG neurons,
cholesterol depletion by methyl-β-cyclodextrin resulted in a sig-
nificant reduction in capsaicin-induced currents (Liu et al.,
2003), a TRPV1-specific response. Further, similar treatments
to reduce cholesterol in TG neurons resulted in decreased cal-
cium uptake following capsaicin or resiniferatoxin application in
culture (Szoke et al., 2010). The cold sensing channel TRPM8
also associates with lipid rafts (Morenilla-Palao et al., 2009), and
differentially reacts to cold and menthol stimuli depending on
channel association with the cholesterol-laden microdomains in
DRG neurons. Taken together, data suggest that TRP channel
association with lipid rafts affects channel activities (Figure 3).
Interestingly, TRP channels are composed of multiple plasma
membrane-spanning domains, negating the need for lipid raft
association to target the channels to the extracellular surface.
However, N-terminal prenylation of TRPM8 was found to reg-
ulate most of the channel association with lipid rafts, further
indicating that association with lipid rafts may be dynamic, and
that other biochemical forces dictate channel localization to these
cholesterol microdomains.

G-protein coupled receptor (GPCR) complexes also demon-
strate associative properties with lipid raft moieties (Navratil
et al., 2003; Chini and Parenti, 2004; Monastyrskaya et al., 2005),
as well as G-protein association (Ross, 1995). Given the role of
μ-opioid receptor (MOR) in effectively reducing somatic pain,
reported data demonstrating MOR association with lipid rafts
proves to be highly significant. Work from the Law research
group illustrates that association of the receptor with lipid raft
microdomains (Figure 3) is affected by ligand specificity, demon-
strating that etorphine induces receptor translocation out of lipid
rafts, while morphine has no effect (Zheng et al., 2008). Receptor
localization was found to be dependent upon association with
its Gαi2 signaling molecule, such that agonist activation of MOR
stimulates translocation to non-raft plasma membrane domains.
However, etorphine agonism, which strongly promotes MOR
association with β-arrestin, stimulates receptor complex disso-
ciation from lipid rafts, while morphine agonism, which weakly
promotes receptor association with β-arrestin (Whistler and von
Zastrow, 1998), results in MOR re-association with Gαi2 in lipid
rafts. Therefore, in the case of MOR, dynamic association with
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FIGURE 3 | Lipid raft scaffolding at plasma membranes. Lipid
rafts centralize signal transduction through certain receptors,
including the μ-opioid receptor (MOR), TRPM8 and TRPV1, via
their intracellular association with microdomains concentrated

in cholesterol and sphingolipids. Lipid rafts also anchor extracellular
peptidases EP24.15/16, to metabolize neuropeptides such as
bradykinin (BK), reducing free extracellular content available for
receptor activation.

and internalization by β-arrestin dictates GPCR activation and
propagation of signal, in so much that dynamic association of
MOR with lipid rafts maintains receptor quiescence, while dis-
sociation from lipid rafts allows for proper signal transduction
downstream.

In addition to receptors intracellularly associated with lipid
rafts, certain proteins are also extracellularly bound to raft
microdomains, and constitute important regulators of neu-
ropeptide functions. Metalloendopeptidases EC 3.4.24.15 and EC
3.4.24.16 (EP24.15/16) are two closely related peptidases that co-
localize with bradykinin type-2 receptors (B2Rs) in lipid raft
domains in TG neurons (Jeske et al., 2006a). Among the many
substrates that EP24.15/16 are capable of degrading, bradykinin
(BK) exists as a high affinity substrate (Rioli et al., 1998).
Therefore, the extracellular tethering of EP24.15/16 allows for the
peptidases to degrade free BK before it can bind to and activate
lipid-raft-associated B2R (Gomez et al., 2011). Given the role of
BK as an inflammatory mediator that sensitizes numerous TRP
channels to normally-innocuous stimuli, lipid raft association of
the receptor, as well as extracellular EP24.15/16, provide for a
dynamic micro-environment capable of significantly influencing
afferent somatic activation.

CONCLUSION
Dynamic changes in somatosensory perception occur in many
subcellular locales, including the plasma membrane, through
the reorganization and redistribution of proteins and scaffold-
ing complexes. Post-translational changes target transducers of
environmental stimuli that typically inform an organism that
danger and/or injury is present. These receptor transducers
serve as substrates and points of control in multiple path-
ways, and scaffolding structures maintain dynamic, yet strict
energy-efficient control over reactions that significantly affect
receptor response. Although scaffolding structures exist as large
membrane-associated proteins, as well as microdomains within
the membranes themselves. Both structures function to provide a
framework to support and regulate dynamic changes to transduc-
ers of somatosensory information, prompting continued research
into the roles of scaffolding proteins and structures in injury and
disease pathologies.
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