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Photoreceptors, the light-sensitive receptor neurons of the retina, receive and transmit
a plethora of visual informations from the surrounding world. Photoreceptors capture
light and convert this energy into electrical signals that are conveyed to the inner
retina. For synaptic communication with the inner retina, photoreceptors make large
active zones that are marked by synaptic ribbons. These unique synapses support
continuous vesicle exocytosis that is modulated by light-induced, graded changes of
membrane potential. Synaptic transmission can be adjusted in an activity-dependent
manner, and at the synaptic ribbons, Ca2+- and cGMP-dependent processes
appear to play a central role. EF-hand-containing proteins mediate many of these
Ca2+- and cGMP-dependent functions. Since continuous signaling of photoreceptors
appears to be prone to malfunction, disturbances of Ca2+- and cGMP-mediated signaling
in photoreceptors can lead to visual defects, retinal degeneration (rd), and even blindness.
This review summarizes aspects of signal transmission at the photoreceptor presynaptic
terminals that involve EF-hand-containing Ca2 -binding proteins.+
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INTRODUCTION
Vision belongs to the most important senses of the human body.
The light-sensitive retina within our eyes screens the optical world
around us and transmits this information to the brain. At the
beginning of the complex task of visual perception, photorecep-
tors physically detect light energy and transmit the information to
the inner retina where further processing takes place. The retina
employs two different classes of photoreceptors, rod and cones, to
begin sorting out different components of light. Rod photorecep-
tors are specialized to operate at the lowest level of light, single

Abbreviations: NCS, neuronal Ca2+-sensor proteins; ROS-GC rod outer seg-
ment guanylate cyclase; GC, guanylate cyclase; OS, outer segments; IS, inner
segments; OPL, outer plexiform layer (containing photoreceptor ribbon synapses);
PDE6, cGMP phosphodiesterase 6; CNG, cyclic nucleotide-gated; CNG channel,
cyclic nucleotide-gated channel; HCN channel, hyperpolarization-activated, cyclic
nucleotide-gated channel; LTCC, L-type calcium channels; VGCC, voltage-gated
calcium channels; CSNB, congenital stationary night blindness; GCAP, guany-
late cyclase-activating protein; [Ca2+]i cytoplasmic concentration of free Ca2+;
ER, endoplasmic reticulum; CDI, calcium-dependent inactivation; VDI, voltage-
dependent inactivation; KHD, kinase homology domain; CTR, carboxy-terminal
region; LCA, Leber congenital amaurosis; CORD, cone-rod dystrophy; ON-bipolar
cells, bipolar cells that depolarize in response to illumination; OFF-bipolar cells,
bipolar cells that hyperpolarize in response to illumination; ERG, electroretino-
gram; KO, knockout; SIM, structured illumination microscopy.

photon detection, and are thus saturated in daylight (Pahlberg
and Sampath, 2011). Cone photoreceptors mediate color vision
and operate at higher light intensities. In primates, e.g., humans,
three different types of cones with long (L)-, medium (M)-, and
short (S)- wavelength sensitivities provide color vision; simpler,
non-primate mammals, e.g., mice, are dichromatic and possess
only two types of cones (L-S-cones, for review, see Abramov and
Gordon, 1994).

Mammalian photoreceptors in general are slender, highly
polarized neurons with a bipolar morphology (Figure 1). The
outer segment (OS) is the distal process that contacts the pigment
epithelium and this is where phototransduction takes place. At
the molecular level, phototransduction principally occurs via a
light-induced transduction cascade that finally leads to closure of
cGMP-gated cation channels (CNG-channels; cyclic nucleotide-
gated (CNG) channels) which causes the cell to hyperpolarize
from about −35 mV to −40 mV in the dark to about −70 mV
in very bright light (for review, see Burns and Baylor, 2001;
Chen, 2005). At the “opposite” (vitread) end of the photore-
ceptor, the presynaptic terminal transmits the light information
to dendrites of secondary neurons, bipolar, and horizontal cells
(Figures 1A,B). The vast array of light information detected by
the photoreceptor OS must be transmitted at the first synapse
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FIGURE 1 | (A) Schematic, simplified drawing of rod (R) and cone (C)
photoreceptors. Outer segments (OS) in which phototransduction occurs are
depicted as well as the presynaptic terminal where light information is
passed from photoreceptors to the secondary neurons, bipolar, and
horizontal cells (depicted in yellow and dark green colors in Figure 1B).
Subcellular details of photoreceptors including the inner segments were
omitted for sake of clarity. (B) Schematic, simplified drawing of rod and cone
photoreceptor presynaptic terminals. Rod synapses possess only a single,
large active zone with a single synaptic ribbon (sr) whereas cones possess
multiple active zones (20–50). Only invaginating ribbon synapses are
depicted. Non-invaginating, non-ribbon type synapses (Regus-Leidig and
Brandstätter, 2011) are not shown. (C–E, G–H) Electron micrographs of
photoreceptor terminals. (C) Shows a cross-sectioned ribbon (sr) with its
typical bar-shaped appearance in a rod terminal. The synaptic ribbon is
associated with large numbers of synaptic vesicles (sv) (D). The rod
photoreceptor in (D) is largely sectioned parallel to the plate-like synaptic
ribbon. In the left part, the section passes through the synaptic ribbon (sr);
more to the right, the plane of section is parallel, but close to the plate-like
synaptic ribbon. Many docked synaptic vesicles can be observed at the base
of the synaptic ribbon (small white arrows). The dashed circle indicates the
site where the postsynaptic dendrites enter the postsynaptic cavity formed

by the invagination of the presynaptic photoreceptor terminal. (E) Also shows
a tangential view of the synaptic ribbon. The plate-like character of the ribbon
is visible. White arrows denote the ribbon plate which is bended along the
presynaptic plasma membrane in a horseshoe-like manner. The
horseshoe-shaped appearance of the synaptic ribbon can be also visualized
by immunolabeling with anti-RIBEYE antibodies and super-resolution,
structured illumination microscopy (SIM) (white arrows in F). White
arrowheads in (F) show spherical synaptic spheres (ss), intermediate
structures in the assembly and disassembly of plate-shaped synaptic ribbons
[see also below; in (H); for review, see Schmitz (2009)]. Figure (G)

demonstrates many docked synaptic vesicles at the base of the synaptic
ribbon (white arrows) which are probably readily releasable. (H) Electron
micrograph of an immature, developing terminal from the early, postnatal
mouse retina (postnatal day 6). The ribbon complex is not yet fully
assembled. Besides bar-shaped ribbons (sr), spherical precursors of synaptic
ribbons, the synaptic spheres (ss), are also present in the presynaptic
terminal. Abbreviations: C, cone photoreceptor; R, rod photoreceptor; sr,
synaptic ribbon; ss, synaptic spheres; sv, synaptic vesicle; pr, presynaptic
terminal; po, postsynaptic dendrite; h, horizontal cell postsynaptic dendrite;
b, bipolar cell postsynaptic dendrite. Scale bars: 400 nm (C); 800 nm
(D); 320 nm (E); 1 μm (F), 400 nm (G), 500 nm (H).
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of the visual system, the photoreceptor synapse (for review, see
Wässle, 2004; Heidelberger et al., 2005; Schmitz, 2009; Matthews
and Fuchs, 2010; Regus-Leidig and Brandstätter, 2011).

STRUCTURAL AND FUNCTIONAL SPECIALIZATIONS OF
PHOTORECEPTOR RIBBON SYNAPSES: A SYNAPSE
TUNED FOR PHASIC AND CONTINUOUS RELEASE
Both types of photoreceptors, rods, and cones, form ribbon
synapses to communicate with their secondary neurons, i.e.,
bipolar and horizontal cells in the outer plexiform layer of the
retina. In mammals, ribbon synapses are also made by reti-
nal bipolar cells, photoreceptor-like neurons in the pineal gland
as well as auditory and vestibular hair cells (Schmitz, 2009;
Matthews and Fuchs, 2010; Regus-Leidig and Brandstätter, 2011).
Ribbon synapses are characterized by large, electron-dense struc-
tures, the synaptic ribbons (Figure 1; for review, see Schmitz,
2009). Synaptic ribbons in photoreceptor synapses are plate-like
structures which appear bar-shaped in electron micrographs if
cross-sectioned (Figure 1; Schmitz, 2009). In rod synapses, typ-
ically one synaptic ribbon is contained at a single active zone;
in cone synapses 20–50 active zones are present with each usu-
ally containing one synaptic ribbon (Wässle, 2004; Regus-Leidig
and Brandstätter, 2011). In hair cell ribbon synapses, most synap-
tic ribbons are spherical in shape (for review, see Matthews and
Fuchs, 2010). The synaptic ribbon is associated along its entire
surface area with a large number of synaptic vesicles that are
filled with the neurotransmitter glutamate. It is anchored at the
active zone of the presynaptic plasma membrane; in photore-
ceptors via the electron-dense arciform density (for review, see
Schmitz, 2009; Matthews and Fuchs, 2010; Regus-Leidig and
Brandstätter, 2011). RIBEYE is the major component of synap-
tic ribbons (Schmitz et al., 2000; Magupalli et al., 2008; Schmitz,
2009; Uthaiah and Hudspeth, 2010). It consists of a large and
unique aminoterminal A-domain, and a carboxyterminal B-
domain which is largely identical with the nuclear co-repressor
C-terminal-binding protein 2 (CtBP2). The B-domain/CtBP2
and a related protein, CtBP1, have developed from a family of
dehydrogenases and both specifically bind NAD(H) (for review,
see Schmitz, 2009).

Typically, ribbon synapses do not respond to bursts of action
potentials but are specialized to transmit a large bandwidth
of stimulus intensities via fine, graded changes in membrane
potential. To report even small changes of receptor potential in
response to differing light stimuli, ribbon synapses modulate
the rate of tonic vesicle exocytosis (for review, see Heidelberger
et al., 2005; Matthews and Fuchs, 2010; Wan and Heidelberger,
2011). Photoreceptor terminals may contain up to several hun-
dred thousands of highly motile synaptic vesicles depending upon
the species and type of synapse (for review, see Schmitz, 2009;
Matthews and Fuchs, 2010), which support the high basal synap-
tic vesicle turnover driven by the synaptic ribbon (Figure 1).
Various studies, mostly done with fish retinal bipolar cells, indi-
cated that ribbon-associated vesicles are primed and readily-
releasable (for review, see Heidelberger et al., 2005; Matthews
and Fuchs, 2010; Wan and Heidelberger, 2011). Synaptic rib-
bons were proposed to capture and prime synaptic vesicles for
immediate release. By this way of thinking, the synaptic ribbons

would provide a battery of ready-to-go vesicles that could sup-
port continuous release for extended periods of time (Jackman
et al., 2009). Synaptic ribbons are hot spots of exocytosis as visu-
alized with TIRF-microscopy (Zenisek et al., 2000), and more
recently by the analyses of terminals with photodamaged synap-
tic ribbons that showed strongly depressed release (Snellman
et al., 2011). At the base of the synaptic ribbons, voltage-gated
L-type calcium channels are highly enriched (tom Dieck et al.,
2005). These channels allow voltage-dependent Ca2+-influx at
the ribbon synapse which triggers synaptic vesicle release (for
review, see Heidelberger et al., 2005; Schmitz, 2009; Striessnig
et al., 2010). L-type calcium channels are considered ideally suited
to serve the continuously active ribbon synapses (see below).
Submicromolar (average) concentrations of Ca2+ are capable
of supporting tonic exocytosis in photoreceptors (for review,
see Heidelberger et al., 2005). Specific signaling properties of
ribbon synapses could require higher Ca2+-concentrations that
might be achieved at the base of the synaptic ribbons (Beutner
et al., 2001; Choi et al., 2008; Jackman et al., 2009; Jarsky et al.,
2010; Graydon et al., 2011). A recent study predicted concen-
trations up to 100 μM around the presynaptic Ca2+-channels
(Graydon et al., 2011), which could support coordinated mul-
tivesicular release (Singer et al., 2004; Khimich et al., 2005;
Jarsky et al., 2010; Graydon et al., 2011). RIBEYE is involved in
the clustering of Ca2+-channels in inner ear hair cells (Sheets
et al., 2011), and in agreement with this, several studies found
a correlation between the ribbon size and the dimension of
Ca2+-microdomains (Johnson et al., 2008; Frank et al., 2009,
2010).

The size and number of synaptic ribbons can vary considerably
(Hull et al., 2006; Johnson et al., 2008; Frank et al., 2009, 2010;
Regus-Leidig et al., 2010; Liberman et al., 2011; for review, see
Vollrath and Spiwoks-Becker, 1996; Schmitz, 2009; Regus-Leidig
and Brandstätter, 2011). The plate-shaped synaptic ribbons in
photoreceptors appear to assemble and disassemble via spheri-
cal intermediates, the synaptic spheres (for review, see Schmitz,
2009; Mercer and Thoreson, 2011b). In the mouse retina, struc-
tural changes of synaptic ribbons are activity- (illumination-)
dependent; structural changes of fish synaptic ribbons are also
strongly influenced by circadian signals (Emran et al., 2010;
for review, see Vollrath and Spiwoks-Becker, 1996; Regus-Leidig
and Brandstätter, 2011). The activity-dependent plasticity of the
synaptic ribbon complex is related to the performance of the
visual system also at the systems level (Balkema et al., 2001). At
photoreceptor ribbon synapses, postsynaptic dendrites of bipo-
lar and horizontal cells contact the presynaptic release sites in
an invagination of the presynaptic terminal (Figure 1). At this
site, the released glutamate is detected by the metabotropic glu-
tamate receptor 6 (mGluR6) on the tips of ON-bipolar cells;
horizontal cells as well as OFF-bipolar cells employ ionotropic
glutamate receptors (Wässle, 2004; DeVries et al., 2006; Morgans
et al., 2010).

Recent data revealed that EF-hand-containing proteins play an
important role in the activity-dependent adaptational processes
at the photoreceptor synapse. These findings suggest that the pho-
toreceptor synaptic apparatus is adjusted during changes in illu-
mination, thus allowing synaptic communication to continue in a
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senseful manner if background illumination changes over a broad
range. The processes in the presynaptic photoreceptor terminals
that involve EF-hand-containing proteins, including distinct neu-
ronal Ca2+-sensor (NCS) - proteins and Ca2+-binding proteins
(CaBPs), will be summarized in the present review. Postsynaptic
activity-dependent signaling is covered by other recent reviews
(Burgoyne, 2007; Koike et al., 2010; Morgans et al., 2010).

Ca2+-IONS AND EF-HAND-CONTAINING Ca2+-BINDING
PROTEINS: OUTLINE
Ca2+-ions are crucial intracellular messengers that have central
roles in synaptic transmission ranging from triggering of synap-
tic vesicle exocytosis, vesicle recruitment, and recovery as well
as different aspects of synaptic plasticity (for review, Neher and
Sakaba, 2008). Ca2+-binding EF-hand-containing proteins are
perfect candidates for participating in photoreceptor signaling.
These proteins are characterized by high-affinity Ca2+-binding
motifs and consist of a helix-loop-helix motif (Burgoyne, 2007).
The loop region, typically 12 residues long, is rich in acidic
amino acids that chelate the Ca2+ (as well as Mg2+). The
founder molecule is calmodulin, and related to calmodulin are
two classes of EF-hand-containing proteins (Figures 2 and 3):
(1) the family of neuronal calcium sensor (NCS) proteins that
include the guanylate cyclase activating proteins (GCAPs) and
(2) the family of calcium-binding proteins (CaBPs) that include
calcium-binding protein 4 (CaBP4) (for review, see Haeseleer
et al., 2002; Burgoyne, 2007). Furthermore, individual proteins
contain EF-hand motifs as important functional parts of their
primary structure, e.g., the α1-subunit of L-type voltage-gated
Ca2+-channels (VGCCs).

[Ca2+]i IN PRESYNAPTIC PHOTORECEPTOR TERMINALS
EF-hand-containing proteins typically bind Ca2+ in the submi-
cromolar range and are regulated by [Ca2+]i. In photoreceptor
terminals, presynaptic [Ca2+]i is controlled by various mecha-
nisms. These include [Ca2+]i- influx through calcium-permeable
channels in the presynaptic plasma membrane (VGCCs, probably
also CNG- and hyperpolarization-activated, cyclic nucleotide-
gated (HCN)-channels), Ca2+-buffering systems in the presy-
naptic terminals, Ca2+-release from the ER (e.g., Ca2+-induced
Ca2+-release) as well as extrusion from the cytosol into the
ER and the extracellular space (e.g., via plasma membrane
Ca2+-ATPase; Na+/Ca2+, K+-exchanger) (Rieke and Schwartz,
1994; Savchenko et al., 1997; Krizaj and Copenhagen, 2002;
Suryanarayanan and Slaughter, 2006; Johnson et al., 2007; Knop
et al., 2008; Szikra et al., 2008, 2009; Babai et al., 2010; Seeliger
et al., 2011). Importantly, Ca2+-concentrations in the presynap-
tic terminals of photoreceptors have been imaged in-situ using
two-photon-microscopy (Choi et al., 2008; Jackman et al., 2009).
In the anole lizard (Anolis segrei), 360–600 nm global (average)
Ca2+ were measured in cone terminals of dark-adapted retinas;
190–250 nm of global average Ca2+ after bright illumination at
physiological extracellular Ca2+-concentrations. At the base of
the synaptic ribbon, [Ca2+]i could be much higher than these
average values (>4 μM) (Choi et al., 2008; Jackman et al., 2009).

These [Ca2+]i values in the presynaptic terminal differ from
[Ca2+]i values in the OS. In the OS of mouse retinas, dark values

of 250 nm were measured; down to 23 nm [Ca2+]i were measured
in the OS of mice at saturating illumination (Olshevskaya et al.,
2002; Woodruff et al., 2002; Koch, 2006; Baehr and Palczewski,
2009). Species-dependent differences in OS [Ca2+]i values have
been observed: dark values of ≈700 nm [Ca2+]i were measured
in salamander rod OS; many species have dark [Ca2+]i values
of ≈500 nm (Olshevskaya et al., 2002; Woodruff et al., 2002;
Koch, 2006; Karan et al., 2010). Differences of [Ca2+]i between
presynaptic terminals and outer/inner segments could result
from the elongated, slender shape of photoreceptors and vari-
ous Ca2+-extrusion mechanisms between OSs and presynaptic
terminals (Krizaj and Copenhagen, 2002). Additionally, signals
in the presynaptic terminals are shaped by feedback responses
from secondary neurons (Jackman et al., 2010; Regus-Leidig and
Brandstätter, 2011).

L-TYPE VOLTAGE-GATED CALCIUM CHANNELS IN
PHOTORECEPTOR PRESYNAPTIC TERMINALS
The rate of synaptic vesicle exocytosis at ribbon synapses is highly
dependent on changes in membrane potential, and the role of
voltage-gated calcium channels in this process has been inten-
sively investigated. Synaptic vesicle exocytosis in rod and cone
photoreceptor synapses is triggered via Ca2+-influx through L-
type voltage-gated calcium channels (LTCCs) at the active zones
(for review, see Morgans et al., 2005; Striessnig et al., 2010;
Catterall, 2011). The α1-subunit is the largest subunit of LTCCs.
CaV1.4 (often also denoted as α1F-subunit (Cacna1f); Catterall
et al., 2005) is believed to represent the main pore forming
α1-subunit of LTCCs involved in neurotransmitter release at
photoreceptor synapses. This assumption is based on several
findings: (1) immunocytochemical analyses (Nachman-Clewner
et al., 1999; Morgans, 2001; for review, see Morgans et al.,
2005); (2) analyses of spontaneous and engineered CaV1.4 mouse
knockouts (for review, see Doering et al., 2007; Striessnig et al.,
2010). (3) human patients suffering from congenital station-
ary night blindness (CSNB) show mutations in the CaV1.4 gene
(for review, see Doering et al., 2007; Striessnig et al., 2010).
Some studies also observed expression of CaV1.3 (also denoted
as α1D-subunit (Cacna1d); Catterall et al., 2005) in photorecep-
tor synapses (Xiao et al., 2007; Kersten et al., 2010). Inner ear
hair cell ribbon synapses employ CaV1.3 as pore-forming Ca2+-
channel α1-subunit (for review, see Striessnig et al., 2010). But
while hearing is severely impaired, vision appears to be normal in
CaV1.3 knockout mice (for review, see Striessnig et al., 2010).

CaV1.4 (α1F) is ≈2000 amino acids long and organized into
four homologous domains (domain I–IV) (Catterall et al., 2005;
Catterall, 2011). Both N- and C-terminus reside in the cyto-
plasm (Figure 2). The C-terminus (CTR) of CaV1.4 possesses
important regulatory functions and consists of a Ca2+-binding
EF-hand domain, a pre-IQ and IQ-domain as well as an impor-
tant regulatory region at the very carboxyterminus, the so-called
CTM (C-terminal modulator) or ICDI (inhibitor of CDI) (Singh
et al., 2006; Wahl-Schott et al., 2006; Striessnig et al., 2010). The
CTM performs functionally important intramolecular interac-
tions with the carboxyterminus of CaV1.4 (see below). The α1-
subunit associates with cytoplasmic β-subunits, predominantly at
the loop region between domain I and II of CaV1.4 (Dolphin,
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FIGURE 2 | (A) Schematic representation of L-type Ca2+-channel
composition of rod photoreceptor synapses [drawn modified based on
Lacinova (2005)]. The channels are immobilized at the active zone close to the
base of the synaptic ribbon. The α1F-subunit is considered the pore-forming
subunit that supports voltage-dependent entry of Ca2+. Ca2+ ions are
depicted as pink spheres. The cytoplasmic C-terminus of CaV1.4 α 1-subunit
contains an EF-hand, Pre-IQ-, and IQ-domain. In other CaV1 channels, e.g.,
CaV1.2, these carboxyterminal domains mediate Ca2+ -dependent
inactivation [for review, see Striessnig et al. (2010)]. In CaV1.4, CDI is
prevented by the additional CTM region that forms an intramolecular
interaction with the above mentioned domains [Singh et al. (2006);
Wahl-Schott et al. (2006)]. The β2-subunit interacts with the α1-subunit at the
cytoplasmic loop connecting domain I with domain II [Catterall (2011)]. The
alpha2-delta4 (α2δ4)-subunit, linked to each other with disulfide-bridges (not
shown), complements the channel composition [Wycisk et al. (2006); Mercer

et al. (2011a)]. The δ-subunit possesses a single transmembrane segment
which is post-translationally cleaved off and replaced by a GPI anchor [Davies
et al. (2010)] (B,C) Schematic depiction of the synaptic ribbon. Protein-protein
interaction cascades are shown that could link RIBEYE to presynaptic calcium
channels. Although all individual interactions (e.g., RIBEYE-Munc119;
Munc119-CaBP4; CaBP4-CaV1.4) have been demonstrated [Alpadi et al.
(2008); Haeseleer et al. (2004, 2008)], it is not clear whether all shown
interactions can occur at the same time. Other interactions that might link
the ribbons to presynaptic calcium channels, e.g., via association with
RIM-proteins are not shown. Domain structures of the interacting proteins
are only schematically depicted. CaBP4 contains 4 EF-hands from which EF2
(depicted in red) is non-functional. EF1, EF3, and EF4 are functional EF-hands
(depicted in yellow). Abbreviations: CaM, calmodulin; PrBP/δ, prenyl-binding
protein delta homology domain; PRD, proline-rich domain; IQ, IQ-domain;
NAD(H), nicotine amide dinucleotide; CTM, C-terminal modulator.
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2003; Buraei and Yang, 2010). The β2-protein appears to be the
main β-channel subunit in photoreceptor LTCCs (Ball et al., 2002,
2011). β-subunits are important for the trafficking of the α1-
subunit and for the kinetics of channel opening (Dolphin, 2003;
Buraei and Yang, 2010). The CaV1.4 channel is complemented
by an α 2δ-subunit, which is the α 2δ 4 protein in photoreceptor
synapses (Wycisk et al., 2006; Mercer et al., 2011a).

The properties of CaV1.4 and CaV1.3 can be modulated over a
wide range (for review, see Striessnig et al., 2010). In some con-
texts, CaV1.4 and CaV1.3 open at relatively negative membrane
potentials (below –40 mV) which is an important requirement
for photoreceptors that vary their membrane potential between
–35 and –40 mV (in the dark) to less than –55 mV in the light
(see above). Furthermore, for the tonically active photorecep-
tor synapses it is important that a sufficient Ca2+-concentration
is maintained that allows sustained, continuous exocytosis. This
could be well accomplished by a calcium channel that does not
inactivate or inactivates only very slowly. CaV1.4 shows no Ca2+-
dependent inactivation (CDI) and very slow voltage-dependent
inactivation (VDI) (Singh et al., 2006; Wahl-Schott et al., 2006;
Striessnig et al., 2010). This low degree or lack of inactiva-
tion could very well support continuous Ca2+-influx and sub-
sequently tonic exocytosis. Further supplies of Ca2+ that may
help maintain sustained release could come from Ca2+-induced
Ca2+ release or store-operated Ca2+-entry (Suryanarayanan and
Slaughter, 2006; Szikra et al., 2008, 2009; Babai et al., 2010).

The biological purpose of CDI (and VDI), in general, is to
provide neurons with a negative feedback mechanism that can
protect from Ca2+-overflow and subsequent cell death. CDI
is mediated by the EF-hand, the pre-IQ-domain, and the IQ-
domain in the CTR of CaV1.4 to which Ca2+/calmodulin can
bind (for review, see Doering et al., 2007; Striessnig et al., 2010).
In CaV1.4, CDI is absent because of a modulatory domain in
the CTR of CaV1.4 that prevents binding of Ca2+-calmodulin to
the pre-IQ/IQ-domain. CDI would probably not be compatible
with the need of continuous, tonic exocytosis at photoreceptor
synapses that also requires tonic Ca2+-influx to drive exocytosis.
Mutations in the CaV1.4 gene are associated with incomplete sta-
tionary night blindness (CSNB2) (for review, see Striessnig et al.,
2010). Inhibition of CDI in inner ear hair cells is mediated by the
binding of CaBP4 to the CTR of CaV1.3 (Yang et al., 2006). CaBP4
is an EF-hand-containing protein of the CaBP-family (Haeseleer
et al., 2004; Haeseleer, 2008).

In photoreceptor synapses, CaBP4 could have an additional
function. Binding of CaBP4 to the IQ-domain of CaV1.4 shifts the
activation curve of the channel to more negative values (Haeseleer
et al., 2004), thereby extending the operational range of the
channel. At –40 mV, the membrane potential in the dark, the
depolarized condition, the channel is at the very beginning of its
activation curve (for review, see Striessnig et al., 2010). At –50 mV,
a membrane potential which is easily achieved during illumi-
nation, the CaV1.4 channel would be closed. A CaBP4-induced
hyperpolarizing shift of the CaV1.4 activation curve (shift of
approximate 10–15 mV) would allow the channel to operate at
more negative membrane potentials. It should be kept in mind
that many of the biophysical characterizations were obtained
from powerful, but simplified, model systems, e.g., transfected

HEK cells. Channel regulation in the synapse could be more
complex.

Mutations in the CaBP4 gene lead to autosomal recessive
CSNB and Leber’s congenital amaurosis (LCA)-like phenotype
in humans (Zeitz et al., 2006; Aldahmesh et al., 2010); CaBP4
knockout mice have severe disturbances in synaptic transmis-
sion emphasizing the physiological importance of this protein.
Interestingly, RIBEYE, the main component of synaptic rib-
bons binds to Munc119 (Alpadi et al., 2008), a protein which
has been linked with a cone-rod dystrophy (CORD) (Kobayashi
et al., 2000). Munc119, on the other hand, interacts with CaBP4
(Haeseleer, 2008; Alpadi and Schmitz, unpublished data). This
multicomponent molecular connection could influence the gating
of Ca2+-channels at the active zone of photoreceptors (Figure 2).

The β-subunit of LTCC—together with other channel subunits
(i.e., α2δ4; Figure 2) and further channel-associated proteins—
plays an important role in the regulation of the kinetics of
Ca2+-channel opening, intracellular channel trafficking, and den-
sity at the plasma membrane (Dolphin, 2003; Davies et al., 2007;
Buraei and Yang, 2010; Striessnig et al., 2010). Deletion of β2-
subunit cause similar phenotypes as in CSNB2 patients with
CaV1.4 mutations (Ball et al., 2002). β-subunit might be involved
in the positional priming of calcium channels and the exocy-
totic machinery. β-subunits of LTCC bind to the RIM family of
active zone proteins (Kiyonaka et al., 2007; Miki et al., 2007;
Gebhart et al., 2010) via a carboxyterminal region that includes
the C2B-domain of RIMs. RIM proteins are important for vesi-
cle exocytosis, various steps of presynaptic plasticitiy and for
the immobilization of Ca2+-channels as shown mostly for con-
ventional synapses (Han et al., 2011; Kaeser et al., 2011). RIMs
are also components of the active zone complex of photore-
ceptors including the synaptic ribbons (Wang et al., 1997). Via
the proline-rich region, RIM proteins bind to the RIM-binding
proteins (RBPs) which associate with the β-subunit of L-type
Ca2+-channels (Hibino et al., 2002). Most interestingly, RIM
knockouts lead to loss of Ca2+-channel immobilization in con-
ventional synapses (Han et al., 2011; Kaeser et al., 2011, for review,
see Kaeser, 2011). RIM proteins are also important in modulating
voltage-gated Ca2+-channels as judged by a mutation in the C2A-
domain of RIM1 that causes cone-rod dystrophy (CORD7) (Miki
et al., 2007).

In conclusion, modulation of L-type Ca2+-channel properties
appears to have a powerful influence on synaptic transmission
at the photoreceptor synapse (Striessnig et al., 2010). The plas-
ticity is mediated by the EF-hand/Pre-IQ/IQ-domain-containing
carboxyterminal region of the α-channel subunits. Tuning of the
Ca2+-channels could be involved in the adjustment of synap-
tic transmission during different levels of illumination and/or
for slower, adaptation of the exocytotic machinery for overall
changes of light- and dark-adaptation during day- and night time.
Interestingly, L-type calcium channel expression in photorecep-
tors is likely under circadian control (Ko et al., 2007).

EF-HAND PROTEINS AND Ca2+-/cGMP-DEPENDENT
PLASTICITY AT THE SYNAPTIC RIBBON
As described above, EF-hand motif-containing proteins
are important Ca2+-dependent modulators of presynaptic
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voltage-gated Ca2+-channel functions. Also the synaptic ribbons
are subject to Ca2+-dependent dynamic changes which in
turn could feedback on presynaptic Ca2+-levels. Presynaptic
Ca2+-channels are anchored at the active zone of photoreceptor
synapses by the synaptic ribbons. RIBEYE appears to have a
central role in the clustering of Ca2+-channels in inner ear hair
cells (Sheets et al., 2011). Ribbon-associated proteins, e.g., the
above mentioned RIM proteins or the protein bassoon, could
potentially also play an important role (Wang et al., 1997; tom
Dieck et al., 2005; Frank et al., 2010; Han et al., 2011; Kaeser
et al., 2011). The ribbon-associated protein bassoon anchors
synaptic ribbons to the active zone probably via its interaction
with RIBEYE (tom Dieck et al., 2005). Bassoon is important for
ribbon synapse development and maintaining the stability of
the synaptic ribbon complex (Dick et al., 2003; tom Dieck et al.,
2005; Regus-Leidig et al., 2010).

Recent studies suggested that activity-dependent structural
changes of photoreceptor synaptic ribbons, i.e., assembly and dis-
assembly of synaptic ribbons, are mediated by GCAP2, the guany-
late cyclase-activating protein 2 (Venkatesan et al., 2010). GCAP2
belongs to a family of small Ca2+-regulated, EF-hand-containing
proteins of the NCS protein family (Koch, 2006; Burgoyne, 2007;
Koch et al., 2010; Sharma, 2010). GCAPs are well known to reg-
ulate guanylate cyclase (GC) activity in photoreceptor OSs in a
Ca2+-dependent manner. How GCAPs could work in the presy-
naptic photoreceptor terminals to regulate synaptic plasticity is
unclear. Current knowledge and ideas about GCAP/GC/cGMP-
mediated signaling events in the presynaptic terminals will be
summarized in the present review. To elucidate possible simi-
larities between regulatory mechanisms in the OS and synaptic
terminals, some key events of OS phototransduction will be also
included.

GUANYLATE CYCLASE-ACTIVATING PROTEINS (GCAPs) IN
PHOTORECEPTORS
Guanalyte cyclase-activating proteins (GCAPs) are small, EF-
hand-containing Ca2+-binding proteins of ≈24 kDa (Figure 3).
GCAPs belong to the subfamily of NCS proteins (Koch, 2006;
Burgoyne, 2007). They contain four EF-hands, and the first EF-
hand in GCAPs is non-functional due to exchanges of critical
amino acids in the Ca2+-binding loop (Figure 3). Instead, EF1
provides a binding interface for the membrane-bound photore-
ceptor guanylate cyclases (ROS-GCs; Ermilov et al., 2001; see
below). EF2–4 are functionally active and bind Ca2+ (as well
as Mg2+). In the OSs, the free intracellular Mg2+-concentration
is largely constant (at ≈1 mM) and not affected by changes in
illumination (Chen, 2005; Peshenko et al., 2011a). In contrast,
free intracellular Ca2+ levels change strongly upon illumina-
tion as described above. If Ca2+ (and cGMP) is high (in the
dark), Ca2+ will replace the bound Mg2+ at the EF-hands of
GCAPs (Stephen et al., 2008; Dizhoor et al., 2010; Peshenko
et al., 2011a). The replacement of Mg2+ by Ca2+ at the EF-
hands of GCAPs is functionally important because this changes
the character of interaction with important effector proteins, the
guanylate cyclases (GC, see below). GCAP proteins are myristoy-
lated at their N-terminus (for review, see Palczewski et al., 2004;
Koch, 2006; Baehr and Palczewski, 2007, 2009). In contrast to

the recoverin-like NCS proteins, GCAPs do not perform a Ca2+-
dependent myristoyl-switch (Stephen et al., 2007; Ames and Lim,
2011). Irrespective whether Ca2+ is bound or not, the myristoyl
chain remains buried inside the molecule and is not involved in
Ca2+-dependent membrane anchoring (Figure 3). Instead, the
myristoyl residue has been suggested to stabilize the conformation
of the protein (Stephen et al., 2007).

Three GCAP isoforms (GCAP1, GCAP2, and GCAP3) are
expressed in mammalian retinas with species-dependent differ-
ences (Palczewski et al., 2004; Koch, 2006; Baehr and Palczewski,
2007, 2009; Dizhoor et al., 2010). In rod photoreceptors of mouse
retinas, both GCAP1 and GCAP2 are expressed. GCAP1 appears
to be the predominant isoform in cones (Palczewski et al., 2004;
Koch, 2006; Baehr and Palczewski, 2007, 2009). Consistently,
mutations of the GCAP1 gene lead to cone-dominated dystro-
phies in the human retina as well as in the respective mouse
models (Jiang et al., 2005; Buch et al., 2011). GCAP3 expres-
sion is restricted to cone photoreceptors in the human retina; in
the mouse retina GCAP3 is not expressed arguing that GCAP3
is probably dispensable for vision in mice (for review, see Baehr
and Palczewski, 2007, 2009). Despite strong sequence similarities,
biophysical and biochemical properties of GCAP proteins differ
(e.g., Ca2+-affinities, dimerization properties, and activation of
GCs; Ermilov et al., 2001; Olshevskaya et al., 2002; Koch et al.,
2010). In photoreceptor outer segments (OS), GCAPs constitu-
tively associate with membranes via interaction with ROS-GCs
(Olshevskaya et al., 2002; Stephen et al., 2007; Ames and Lim,
2011). Mice with a deletion of GCAP1 and GCAP2 genes showed
increased amplitudes of single photon responses and a delayed
recovery phase (for review, see Palczewski et al., 2004; Baehr and
Palczewski, 2007, 2009).

GCAP EFFECTOR PROTEINS IN PHOTORECEPTOR OUTER SEGMENTS
In photoreceptor OSs, GCAP effector proteins have been exten-
sively characterized (Karan et al., 2010; Hunt et al., 2010; Koch
et al., 2010). Main effectors of GCAP proteins are the ≈115 kDa
membrane-bound rod outer segment-guanylate cyclases (ROS-
GCs). Two ROS-GCs are found in mammalian photoreceptors:
ROS-GC1 (retGC1, GC-E) and ROS-GC2 (retGC2, GCF) (for
review, see Olshevskaya et al., 2002; Potter, 2011). ROS-GCs
are large, type 1 transmembrane proteins (≈1100 aa; Figure 4)
with an extracellular domain, a transmembrane domain, and
a cytoplasmic domain that consists of a short juxtamembrane
domain (JMD), a kinase homology domain (KHD), a dimer-
ization domain (DD), a catalytic domain (CCD) that converts
GTP into cGMP and C-terminal extension (CTE). Both ROS-
GC1 and ROS-GC2 are expressed in rods; ROS-GC2 appears to
be absent from mouse cone photoreceptors (Haire et al., 2006;
Karan et al., 2010). ROS-GCs play a crucial role in photore-
ceptor OS phototransduction. A light-induced conformational
change of rhodopsin leads to a transducin-mediated activation
of phosphodiesterase 6 (PDE6) and subsequently reduced lev-
els of cGMP (Burns and Baylor, 2001). Thus, light generates a
drop in cGMP levels in the OSs and subsequent closure of cGMP-
gated CNG-channels (Biel and Michalakis, 2009). As a result of
light-induced closure of CNG channels intracellular Ca2+ levels
drop in the OS from about 250nM (dark) to less than <50 nM
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FIGURE 3 | (A) Sequence alignment of GCAP1 and GCAP2 from the
indicated species (mGCAP1: NP032215, GI: 40254633; mGCAP2:
NP_666191, GI: 22122571; bGCAP2: NP_777211, GI: 27807519). Amino acid
residues identical in all three indicated GCAP proteins are highlighted in
green. Underlined below the aligned amino acid sequences is the
Ca2+-/Mg2+ -chelating loop region located between the E- and F- helices of
the respective EF-hands. It is flanked on both sides by an α-helix (underlined
in amber). The amino acid sequences of the EF-hands of GCAP1 and GCAP2
are highly homologous. Amino acids identical in mGCAP1, mGCAP2, and
bGCAP2 are highlighted in green. EF-hands are highly conserved; the
C-terminus of GCAP1 of GCAP2 is divergent. The CTR of GCAP2, but not of
GCAP1, binds to the NADH-binding sub-domain of RIBEYE(B)

[Venkatesan et al. (2010)]. Amino acids in GCAP2 highlighted in red appear to
be involved in the interaction with ROS-GCs [Ames et al. (1999)]. Residues in
the loop region of EF1 that are incompatible with Ca2+-chelation and also
involved in ROS-GC target interaction are shown in orange [Ames et al.
(1999); Hwang et al. (2004)]. Abbreviations: mGCAP1, mouse GCAP1;
mGCAP2, mouse GCAP2, bGCAP2, bovine GCAP2. (B) Structure of
unmyristoylated GCAP2 (a) [Ames et al. (1999); pdb-file: 1jba] and
myristoylated GCAP1 (b) [Stephen et al. (2007); pdb-file: 2R2I]. The structure
is shown from the front (left) with the Ca2+-chelating loops on top as well as
from the back (right) to document the location of the CTR region that binds to
RIBEYE(B) in the case of GCAP2 [Venkatesan et al. (2010)]. Ca2+ ions are
schematically depicted as yellow spheres.
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FIGURE 4 | Schematic representation of ROS-GC1 and

ROS-GC1-interaction partners in photoreceptors. ROS-GC1 contains an
aminoterminal extracellular domain, transmembrane domain (TM), kinase
homology domain (KHD), dimerization domain (DD), and the catalytic domain
that converts GTP into cGMP. The aminoterminal portion of the KHD is also
referred to as juxtamembrane domain (JMD) [Lange et al. (1999)]. The
borders of the respective domains are schematically depicted in the amino
acid sequence of human ROS-GC1 (NP_000171, GI: 4504217). Numbers
indicated correspond to the mature ROS-GC1 protein (without leader
sequence). The borders of the individual domains were determined by the
analyses of various ROS-GC1 constructs; the precise structure of
photoreceptor ROS-GC1 (e.g., X-ray-structure) is not yet available. At the
intracellular domains of ROS-GC1, different NCS proteins bind at different
locations. GCAP1 binds to the JMD, the aminoterminal portion of the
kinase homology domain of ROS-GC1 probably via its aminoterminal
EF1 hand. In contrast, S100β and GCAP2 bind close to each other to the
catalytic domain. The binding of GCAPs appears to compete with the
binding of the retinal degeneration protein 3 (RD3). While GCAPs inhibit

mostly ROS-GC1 activity at high Ca2+ -concentrations, S100β stimulates
ROS-GC1 activity at high Ca2+. The Ca2+-concentrations needed by
S100β to stimulate ROS-GC1 activity is high but could be achieved at the
active zone of photoreceptors close to presynaptic Ca2+-channels. The
numbers below the schematic depiction of ROS-GC1 domains depict the
respective borders in human ROS-GC1 sequence. Most of the mapping of
the ROS-GC1 interacting proteins has been done with bovine
ROS-GC1 reviewed in Sharma (2010). For some interactions (e.g., GCAP1),
multiple interaction sites were reported. GCAP1 was also reported to bind to
the catalytic domain though with lower affinity than at the KHD [for review,
Sharma (2002, 2010)]. The respective amino acid regions of bovine ROS-GC1
involved in the interaction with the indicated proteins are indicated in square
brackets. Non-photoreceptor-interacting proteins of ROS-GC1 [Sharma,
(2010)] are not depicted. Abbreviations: TM, transmembrane domain;
JMD, juxtamembrane domain; DD, dimerization domain; CTE,
carboxyterminal extension; RD3, retinal degeneration 3. Proteins
and protein domains are only schematically depicted and not drawn
in scale.

(light) in the mouse retina. Light-induced decreased levels of
cGMP need to be replenished in order to be able to detect the
next flash of light. Recovery of cGMP levels is accomplished
by a Ca2+-dependent feedback mechanism mediated by GCAP
proteins. After illumination (at low Ca2+), GCAPs are in the
Mg2+-bound state and stimulate GC activity. In contrast, in the
Ca2+-bound state (at high Ca2+ in the dark) GCAPs inhibit GC
activity (Koch, 2006; Sharma, 2010; Sakurai et al., 2011). Thus,
GCAPs work as bimodal regulators of GCs: as an inhibitor of GC
activity function (if Ca2+ is bound) and as an activator of GC
function (and cGMP synthesis) if Mg2+ is bound. At low Ca2+
levels (light), GCAPs activate GCs and thus raise cGMP levels to
restore pre-flash cGMP levels. These fundamental properties of
GCAP proteins are crucial for the Ca2+-dependent feedback of
the phototransduction cascade. This is necessary to make the OS
responsive to new flashes of light and to reset the sensitivity of
the phototransduction cascade to different levels of illumination.
Particularly EF-hand 3 (EF3) emerged as key region that deter-
mines whether GCAPs act as an activator or inhibitor of GCs
(Olshevskaya et al., 2002; Baehr and Palczewski, 2007, 2009).

GCAP1 binds to the juxtamembrane KHD of ROS-GCs (for
review, see Koch et al., 2010). GCAP2 binds directly to the cat-
alytic domain of ROS-GCs. Despite high sequence similarities,
GCAPs are not functionally equivalent; many regulatory proper-
ties differ (for review, see Koch, 2006; Dizhoor et al., 2010; Koch
et al., 2010). GCAP2 has a higher affinity for Ca2+ than GCAP1
(for review, see Koch, 2006; Dizhoor et al., 2010). Different
Ca2+-affinities of GCAPs could enhance the operational range of
Ca2+-regulation of GCs and give rise to the Ca2+-relay model of

GC activation/inhibition in the OS (for review, see Koch, 2006;
Burgoyne, 2007). At intermediate levels, Ca2+ is still bound to
GCAP2 whereas GCAP1 is already Ca2+-free (Mg2+-bound ver-
sion). As a consequence, GCAP1 would stimulate GC activity at
these intermediate concentrations, whereas GCAP2 would still be
inhibitory. Recently, it was found that the RD3 protein, which is
associated with LCA, also binds to the carboxyterminal of ROS-
GC and inhibits GC activity by an allosteric mechanism (Azadi
et al., 2010; Peshenko et al., 2011b). RD3 binding to ROS-GCs
promotes dissociation of GCAPs from the ROS-GC complex.

GCAPS IN PHOTORECEPTOR PRESYNAPTIC TERMINALS
AND THEIR INVOLVEMENT IN ACTIVITY-DEPENDENT
CHANGES OF SYNAPTIC RIBBONS
Various studies demonstrated the presence of GCAP proteins
in photoreceptor presynaptic terminals (Otto-Bruc et al., 1997;
Kachi et al., 1999; Cuenca et al., 1998; Pennesi et al., 2003; Makino
et al., 2008; Venkatesan et al., 2010). But the significance of GCAP
proteins in the presynaptic terminals is not well understood.
One function of GCAP-mediated signaling appears to medi-
ate the Ca2+-dependent regulation of synaptic ribbon plasticity
(Venkatesan et al., 2010). Synaptic ribbons are dynamic struc-
tures (for review, see Vollrath and Spiwoks-Becker, 1996; Schmitz,
2009). The synaptic ribbon undergoes activity- (illumination-)
dependent changes. Illumination leads to smaller and less numer-
able synaptic ribbons in the mouse retina (Spiwoks-Becker et al.,
2004). The dynamics of these structures is known to be depen-
dent upon Ca2+ and cGMP (Vollrath and Spiwoks-Becker, 1996).
Chelating intracellular Ca2+ leads to a disassembly of synaptic
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ribbons at the electron microscopic level (Spiwoks-Becker et al.,
2004; Regus-Leidig et al., 2010). Immunocytochemical analyses
of these effects revealed a sequential process (Regus-Leidig et al.,
2010). First, synaptic ribbon components, such as RIBEYE, pic-
colo and RIM1, were removed, in parallel to the disassembly of
synaptic ribbons at the ultrastructural level. In a second step,
bassoon, an important mediator of synaptic ribbon stability and
organizer of the active zone (Dick et al., 2003; for review, see
Joselevitch and Zenisek, 2010; Regus-Leidig and Brandstätter,
2011), is removed from the active zone (Regus-Leidig et al., 2010).
Venkatesan et al. (2010) demonstrated that RIBEYE, the main
component of synaptic ribbons, binds to the carboxyterminal
region of GCAP2 in a NAD(H)-dependent manner (Figure 5).
Overexpression of GCAP2 in the presynaptic terminals of pho-
toreceptors leads to disassembly of synaptic ribbons and a reduc-
tion in their number (Venkatesan et al., 2010). Therefore, one
function of GCAP2 could be to regulate the assembly and disas-
sembly of synaptic ribbons. The molecular mechanisms, how this
could be achieved are currently unknown.

Which GCAP effectors in the synapse might execute its synap-
tic functions? ROS-GC1, the GCAP effector in the OS, has been
localized to the photoreceptor synapses by immunoperoxidase
methods and other sensitive techniques (Liu et al., 1994; Cooper

et al., 1995; Duda et al., 2002). Conventional immunofluores-
cence microscopic analyses using mouse retina failed to detect
ROS-GC1 in photoreceptor synapses (Azadi et al., 2010; Karan
et al., 2010). This might be attributed to the lower sensitivity of
immunofluorescence microscopy in comparison to immunoper-
oxidase techniques. Possibly, ROS-GC1 might be masked in the
presynaptic matrix, not accessible to antibodies or the amount
is close to the detection limits. Different antibodies with differ-
ent affinities or species differences might also contribute to the
different levels of immunoreactivities of ROS-GC1 in synaptic
terminals. In the bovine retina, a strong ROS-GC1 was observed
in photoreceptor terminals (Venkataraman et al., 2003). GC activ-
ity was demonstrated also histochemically in photoreceptor ter-
minals (Rambotti et al., 2002). Biochemical data supported the
presence of ROS-GC1 in photoreceptor synapses (Duda et al.,
2002; Venkataraman et al., 2003). In contrast to the photoreceptor
OS, ROS-GC1 in photoreceptor synaptic terminals is stimulated,
not inhibited, by the presence of high concentrations of intra-
cellular Ca2+ (Duda et al., 2002; Venkataraman et al., 2003;
for review, see Sharma, 2002, 2010; Koch, 2006). The Ca2+-
stimulated ROS-GC1 activity is mediated by the EF-hand protein
S100β (previously also called CD-GCAP) that has been local-
ized to the presynaptic photoreceptor terminal (Duda et al., 2002;

FIGURE 5 | (A) Hypothetical model for the assembly of the synaptic ribbon:
the scaffold of the synaptic ribbon is built by RIBEYE proteins, the major, and
unique component of synaptic ribbons via multiple RIBEYE-RIBEYE
interactions [Magupalli et al. (2008); Schmitz (2009)]. In this model, the
A-domain is located in the center of the ribbon to build the core of the
synaptic ribbon. The B-domain faces the cytoplasmic side of the synaptic
ribbon where it interacts with various proteins, e.g., Munc119 (see also
Figure 2) and with the GCAP2. Interaction with GCAP2 could regulate
assembly and disassembly of synaptic ribbons which is known to be
Ca2+-dependent [Vollrath and Spiwoks-Becker (1996); Schmitz (2009)].

Overexpression of GCAP2 leads to ribbon disassembly. The recruitment of
GCAP2 by RIBEYE could influence Ca2+-buffering at the synaptic ribbon thus
also influencing synaptic signaling. The differently colored portions in
RIBEYE(A)-domain represent RIBEYE-RIBEYE interaction sites [Magupalli
et al. (2008)]. How GCAP2 regulates ribbon assembly and disassembly is
unknown but could involve GCAP effectors, e.g., ROS-GCs (Figure 4) which
were reported to be present in the presynaptic terminals. (B) Molecular
dissection of RIBEYE-GCAP2 interaction: the carboxyterminal region (CTR) of
GCAP2 interacts with the hinge 2 region of RIBEYE(B) [Venkatesan et al.
(2010)].
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Venkataraman et al., 2003; Sharma, 2010). S100β binds to the cat-
alytic domain of ROS-GC and subsequently enhances ROS-GC1
activity at high Ca2+-concentrations. These Ca2+-concentrations
could be achieved close to the synaptic ribbon (Choi et al., 2008;
Jackman et al., 2009; Graydon et al., 2011). Thus, S100β binds
to ROS-GC1 at the catalytic domain, similar to GCAP2 (Duda
et al., 2002, 2005; Sharma, 2002, 2010). It is possible that S100β

competes with GCAP2 for binding to ROS-GC1.
The regulation of cGMP levels could be the key in the reg-

ulation of activity-dependent synaptic ribbon plasticity. cGMP
was reported to stabilize synaptic ribbons in the pineal gland
(Seidel et al., 1990; Spessert et al., 1992). cGMP-dependent pro-
tein kinases could be effectors that might mediate the stabilizing
effect of cGMP on synaptic ribbons. cGMP-dependent kinases
have been localized to photoreceptor synapses (Feil et al., 2005).
But the involvement of these kinases in ribbon dynamics has not
yet been elucidated. Interestingly, the RD3 protein, which blocks
binding of GCAP2 to ROS-GC1, is present in the presynaptic
terminals (Azadi et al., 2010; Peshenko et al., 2011b). Thus, a
complex interplay of several proteins that compete for binding
to ROS-GCs modulates cGMP-dependent signaling in the pho-
toreceptor synapse in a complex manner. The recruitment of
GCAP2 to synaptic ribbons and the subsequent disassembly of
synaptic ribbons could be due to changes in cGMP levels that
induce further downstream effects or due to increased GCAP2-
mediated Ca2+-buffering. Future investigations have to discrim-
inate between these possibilities. The importance of cGMP and
cGMP-dependent protein kinases for synaptic ribbon dynamics
is supported by a recent study that showed a synaptic ribbon-
protective effect of cGMP in an inner ear trauma model (Jaumann
et al., 2012). In this study, the authors demonstrated that inhibi-
tion of cGMP-hydrolyzing PDE5 leads to stabilization of synaptic
ribbons in a cGMP-regulated protein kinase 1-dependent man-
ner in inner hair cells. Analyses of GCAP1/2 double knockout
mice also pointed to a synaptic function of GCAPs proteins at the
photoreceptor synapse (Okawa et al., 2010). GCAP1/2 knockout
mice show disturbed signal processing at the synapse: although
the single-photon-responses in OS of GCAP knockout mice were
much larger than in wildtype mice, the synaptic processing of this
information, as measured by recordings from postsynaptic bipo-
lar cells, was more inefficient. A main synaptic function of GCAPs
appears to improve the signal-to-noise ratio of synaptic transmis-
sion (Okawa et al., 2010). The underlying molecular mechanisms
are still unknown but could involve structural changes of the
synapse.

cGMP IS AN IMPORTANT MODULATOR OF SYNAPTIC
PLASTICITY IN PHOTORECEPTOR TERMINALS
Various other aspects of plasticity in photoreceptor presynap-
tic terminals are mediated by cGMP (Rieke and Schwartz,
1994; Vollrath and Spiwoks-Becker, 1996; Savchenko et al.,
1997; Zhang and Townes-Anderson, 2002; Zhang et al., 2005).
The group of Townes-Anderson showed that outgrowth of
neurites in rods and cones photoreceptor depends upon
influx of Ca2+ (for review, see Townes-Anderson and Zhang,
2006). In cones, Ca2+ enters the presynaptic terminal through
cGMP-gated Ca2+-channels to mediate this type of synaptic

plasticity. Hyperpolarization-activated, cyclic nucleotide-gated
(HCN) channels could be further effectors of presynaptic cGMP.
HCN1 channels have been demonstrated in presynaptic photore-
ceptor terminals (Müller et al., 2003; Knop et al., 2008; Seeliger
et al., 2011; Tanimoto et al., 2012). cGMP-regulated channels
could extend the range of synaptic transmission e.g., at very
negative membrane potentials at which L-type calcium channels
might already be closed (Rieke and Schwartz, 1994; Savchenko
et al., 1997). Soluble GCs could also contribute to the genera-
tion of cGMP. Several studies suggest that this source of cGMP
production could play a role in neurotransmitter release and
structural plasticity in photoreceptor terminals (Savchenko et al.,
1997; Kourennyi et al., 2004; Zhang et al., 2005; Blom et al., 2009;
Sato et al., 2011).

IMBALANCE OF cGMP AND Ca2+-HOMEOSTASIS IN
PHOTORECEPTORS LEADS TO DISEASE
As described above, cGMP and Ca2+ homeostasis are intimately
related and possess a central role for phototransduction and light-
adaptation. Tight control of cGMP and Ca2+-levels are of central
importance for the survival of photoreceptors (Hunt et al., 2010).
Various severe neurodegenerative diseases of the retina are asso-
ciated with disturbances of the cGMP/Ca2+-homeostasis (Fain,
2006; Barabas et al., 2010; Paquet-Durand et al., 2011). These
include Retinitis pigmentosa (RP), LCA, and distinct forms of
cone and rod dystrophies (Baehr and Palczewski, 2009; Jiang
and Baehr, 2010; Paquet-Durand et al., 2011). Mutations in the
ROS-GC1 gene can lead to LCA, a devastating degeneration lead-
ing to childhood blindness, or a cone-rod-dystrophy (CORD
6) (for review, see Hunt et al., 2010). Diseases associated with
ROS-GC2 are not known. The gene for GCAP1 has been asso-
ciated with a form of cone-rod dystrophy, CORD3 (for review,
see Jiang and Baehr, 2010). Missense mutations in GCAP1 cause
loss of photoreceptors, particularly cones. Many of the disease-
causing mutations are located in EF3 and EF4 or indirectly affect
the structure of these EF-hands. The disease mutants lead to a
decrease in Ca2+-sensitivity thus making these mutants to con-
stitutive, Ca2+-insensitive activators of GCs. As a result, cGMP
and Ca2+ levels are pathologically increased leading to photore-
ceptor cell death (Baehr and Palczewski, 2009; Jiang and Baehr,
2010; Paquet-Durand et al., 2011). The retinal degeneration 1
(rd1) mouse is characterized by a loss-of-function mutation in
the gene encoding for the β-subunit of the photoreceptor-specific
PDE6 (for a recent review, see Barabas et al., 2010). Consequently,
rd1 mice have low PDE6 activity and high levels of cGMP which
lead to photoreceptor cell death, predominantly in rods. Also
the proteins discussed above, i.e., CaV1.4, Munc119, RIM, and
CaBP4, have high clinical relevance; mutations in the respective
genes cause various severe degenerative diseases of the retina, as
described above.

OPEN QUESTIONS/PERSPECTIVES
Activity-dependent, adaptative signaling in photoreceptor presy-
naptic terminals is just at the beginning of being understood.
Currently, knowledge about these processes in the synapse lags
behind to what is known about dynamic processes in the
OS. Ca2+, cGMP, and EF-hand-containing proteins likely play
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numerous roles in signaling at the photoreceptor synapse and
activity-dependent synaptic changes. Dynamics of synaptic rib-
bons at a molecular level may involve control of RIBEYE-RIBEYE
interactions. How these interactions are controlled at a molecular
level is currently not known. The involved effector molecules and
molecular pathways need to be elucidated. Differences between
rod and cone dynamic signaling need to be worked out since the
purpose of synaptic transmission at these two different types of
photoreceptor synapses is different (although related). Are there
differences in adaptative signaling in cone and rod synapses and
eventually also between the different active zones present in cone
synapses? Recent Ca2+-imaging analyses strongly argue that this
is the case (Johnson et al., 2007; Sheng et al., 2007). Most of
our current knowledge about the physiology of retinal ribbon

synapses was obtained from goldfish bipolar cells and salamander
photoreceptors. The mouse retina with its powerful genetic pos-
sibilities just entered the stage. Mouse knockout models as well
as the possibility of manipulating the mouse retina with recom-
binant viruses can be expected to provide further important
insights into signal processing at the photoreceptor synapse.
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