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The limbic system of the brain regulates a number of behaviors that are essential for
the survival of all vertebrate species including humans. The limbic system predominantly
controls appropriate responses to stimuli with social, emotional, or motivational salience,
which includes innate behaviors such as mating, aggression, and defense. Activation of
circuits regulating these innate behaviors begins in the periphery with sensory stimulation
(primarily via the olfactory system in rodents), and is then processed in the brain by a set
of delineated structures that primarily includes the amygdala and hypothalamus. While the
basic neuroanatomy of these connections is well-established, muchremainsunknown about
how information is processed within innate circuits and how genetic hierarchies regulate
development and function of these circuits. Utilizing innovative technologies including
channel rhodopsin-based circuit manipulation and genetic manipulation in rodents, recent
studies have begun to answer these central questions. In this article we review the
current understanding of how limbic circuits regulate sexually dimorphic behaviors and
how these circuits are established and shaped during pre- and post-natal development. We
also discuss how understanding developmental processes of innate circuit formation may
inform behavioral alterations observed in neurodevelopmental disorders, such as autism
spectrum disorders, which are characterized by limbic system dysfunction.
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INTRODUCTION
The limbic system links external cues possessing emotional,
social, or motivational relevance to a specified set of contex-
tual and species-specific appropriate behavioral outputs. While
a fair amount of these behaviors are enhanced through experi-
ential learning and reinforcement, a number of these behaviors
are innate or inborn, meaning that they manifest without prior
learning. These innate behaviors include courtship, maternal care,
defense (both to conspecific and predator cues) and establish-
ment of social hierarchy, all of which ensure survival of the
individual or offspring and propagation of the species. These
behaviors are regulated and influenced by sensory stimuli such
as touch, sound, and, most importantly in rodents, smell. An ani-
mal’s inability to correctly detect or process social or environmen-
tal cues results in abnormal social behaviors and increases risk of
attack and/or predation. In humans, abnormal development of
aspects of innate behavior, most prominently circuits that regu-
late social behavior, appear to underlie disorders such as autism
spectrum disorders and schizophrenia that are characterized by
inappropriate or altered social interactions.

Until relatively recently, humans were the only species thought
to possess emotion. Initially documented by Papez (1937) and
elaborated by MacLean (1949), social cognition occurs through
a complex neural network of interconnected structures, which
includes areas in the ventromedial aspect of the temporal and
frontal lobes, and their connections with the hypothalamus and
brainstem. This neural network, dubbed the “limbic system” is
centered around the amygdala, a small almond shaped structure

located deep within the temporal lobe. Emotional salience, pro-
duced in the amygdala, is generally thought of as a prime driving
force behind innate human behaviors, typically social in nature
(Brothers, 1989; Barbas, 1995; Aggleton, 2000; LeDoux, 2012).
As the scientific community accepted emotions such as fear,
anxiety, reward, and attraction as a result of neural wiring in
humans, other species including rodents were gradually accepted
as possessing similar circuits and, therefore, similar emotions
(see Figure 1 for comparison of human and rodent limbic sys-
tem structures). Since the realization that emotions are not
exclusively human, understanding the neural circuits involved in
processing emotions and other social cues has advanced rapidly
through the use of experimental rodent models. In rodent mod-
els, emotional states (e.g., fear, anxiety, and social receptivity) are
generally quantified by their behaviors. When translating from
rodent models to humans, it is important to understand that
the sensory inputs of rodents are primarily olfactory, auditory,
and somatosensory, with minimal visual inputs. Therefore, in this
review we focus primarily on chemosensation in the rodent and
how it relates to innate limbic responses to social conspecific cues
such as mating, maternal care, and territorial behaviors as well as
non-social defensive responses to predator cues.

NEUROANATOMY OF INNATE BEHAVIORS
Most of our knowledge of the circuitry that regulates innate
behaviors has come from structural or cellular loss-of-function
lesion and cytotoxic injury approaches. However, as the collection
of brain regions within the innate circuitry contains a number of
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FIGURE 1 | Main structures of the human and rodent limbic system.

(A) Human brain showing the amygdala (green), bed nucleus of stria
terminalis (BNST, blue), hypothalamus (yellow), and hippocampus (pink).
The hippocampus (pink) attaches to the mamillary bodies (orange) through
the fimbria-fornix. Olfactory inputs are received by the olfactory bulbs
(MOB, purple). Other structures include the nucleus accumbens (NuAc),
ventral tegmental area (VTA), and the periaqueductal gray (PAG). (B) Similar
structures are found in rodents. Note the enlarged olfactory bulbs
compared to humans, and the presence of the accessory olfactory bulbs
(AOB, red). Together these structures facilitate the execution and
reinforcement of innate behaviors.

intertwined fibers of passage, lesion studies by their very nature
are limited in their ability to discern the function of discrete nuclei
from other connected brain regions. Despite this drawback, these
types of classical studies have painted a relatively consistent pic-
ture of the major structures that comprise innate circuitry. These
structures include the main and accessory olfactory system, olfac-
tory/piriform cortex, amygdala, bed nucleus of stria terminalis
(BNST) and hypothalamus (Swanson, 2000; Dulac and Wagner,
2006) (see Table 1 for abbreviations).

Many behaviors such as fear/aversion to predator odors and
reward/attraction to odors of the opposite sex are considered
to be innate, meaning no prior learning is needed for their
manifestation. For example, a naïve female rodent shows prefer-
ence to male urine odors over female or no odors (Drickamer,
1992; Sawrey and Dewsbury, 1994). Similarly, a laboratory rat or
mouse that has never encountered a predator of any kind will
display stereotypical signs of fear and avoidance in response to
predator odors (Apfelbach et al., 2005). Specific fear responses

are also initiated by the detection of alarm pheromones thought
to be emitted from dead or stressed conspecifics. These alarm
pheromones are detected in the Grueneberg Ganglion, located
in the tip of the rodent nose (Brechbühl et al., 2008). With the
exception of alarm pheromones, innate responses have been tied
to specific chemicals (Papes et al., 2010; Ferrero et al., 2011;
Isogai et al., 2011) that are detected by two organs in the nose:
the vomeronasal organ (VNO) and to a lesser extent the main
olfactory epithelium (MOE). The VNO, located in the palate, pri-
marily detects non-volatile chemicals such as pheromones with
high specificity, while the MOE located on turbinates deep in the
nasal cavity, detects volatile chemicals. Sensory input from the
VNO and MOE are received by and processed in the accessory
olfactory bulb (AOB) and main olfactory bulb (MOB), respec-
tively. Projections from the AOB and MOB directly or indirectly
synapse on a number of higher order structures including the
olfactory/piriform cortex and amygdala. The amygdala is gener-
ally believed to be a central processing station where the level of
salience is imparted to a given stimulus (or stimuli) (LeDoux,
1993). The amygdala then sends projections to the hypothala-
mus for further integration and coordination with the brain stem
to initiate the body’s “fight or flight” responses (e.g., increase in
blood pressure, respiratory rate, etc.) (Swanson and Petrovich,
1998). Although we will focus our attention on the VNO-AOB-
amygdalar-BNST-hypothalamic circuit (see Figure 2), the main
components of the innate circuit, we would like to empha-
size that these brain hubs and their many feedback loops are
not the sole components of a highly complex neural network
important for the regulation of sociability and innate emotions.
We begin by summarizing what is currently known regarding
the neuroanatomy of circuits for olfactory-based reproductive,
maternal care, predator defense and conspecific defense (aggres-
sion) rodent innate behaviors and the individual functions of
these nuclei in information processing.

MATING BEHAVIORS
Mating behaviors in males and females consist of two phases:
the initial appetitive phase followed by the consummatory phase.
In males the appetitive phase includes angiogenital chemoinves-
tigation, or sniffing, of the female. Pheromonal stimulation of
the VNO-AOB olfactory system is relayed to the medial amyg-
dala (MeA), usually via direct connections (Meurisse et al., 2009;
Kang et al., 2011). The MeA acts as a hub, dispersing the sig-
nal to the BNST, and to anatomically segregated subsets of
nuclei of the hypothalamus including the medial preoptic nucleus
(mPN), ventrolateral portion of the ventromedial hypothalamus
(VMHvl) and ventral premammillary nucleus (PMNv) (Emery
and Sachs, 1976). Lesion studies have found the mPN of the
hypothalamus to be intimately tied to female preference and
pursuit (Kondo and Arai, 1995; Been and Petrulis, 2010). The
mPN integrates inputs from the MeA either directly or via the
BNST to increase dopamine levels (Newman, 1999; Hull and
Dominguez, 2006; Balthazart and Ball, 2007). The mPN then sig-
nals to the ventral tegmental area (VTA) and nucleus accumbens
(NuAc) to initiate appetitive phase responses such as sniffing. The
same circuit (VNO-AOB-MeA-BNST-mPN) also controls con-
summatory phase behaviors such as mounting, intromission and
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Table 1 | Abbreviations of limbic structures and summary of their role in innate behaviors.

Summary of abbreviated anatomical regions

AH Anterior hypothalamus Involved in predator defense/fear and pup aversion; afferents and efferents from/to VMHdm in predator

defense circuit

AOB Accessory olfactory bulb Receives afferents from VNO and projects to limbic structures including amygdala; main relay for

innate behaviors

BNST Bed nucleus of stria Limbic structure with afferents from amygdala and projects to hypothalamus; associated with mating and

terminalis maternal behavior

MeA Medial amygdala Receives afferents from the olfactory bulbs and provides emotional tag to information; projects to

BNST and hypothalamus

MeApd Posterior dorsal MeA Lhx6+, Lmo3+ cells; mating/conspecific defense; projects to mPOA/VMHvl

MeApv Posterior ventral MeA Involved in predator defense; projects to VMHdm

MeAvl Ventral lateral MeA Lhx9+ cells; predator defense; projects to VMHdm; may inhibit VMHvl

MOB Main olfactory bulb Receives afferents from MOE and projects to limbic structures

MOE Main olfactory epithelium Detects volatile chemical cues; olfactory receptor neurons in the MOE project to MOB

NuAc Nucleus accumbens Part of the appetitive phase of mating and maternal care; receives afferents from the mPOA

PAG Periaqueductal gray Part of the consummative phase of innate behaviors (mating, maternal, and defense)

PMN Premammillary nucleus A posterior hypothalamic nuclei involved in innate behaviors

PMNd Dorsal PMN Conspecific defense, afferents from VMHvl/MeA, efferents to PAG

PMNv Ventral PMN Mating, afferents from MeA; and predator defense, afferents from VMHdm; projects to PAG

mPN Medial preoptic nucleus Conspecific defense, afferents from MeA; maternal care and mating, afferents from MeA/BNST; maternal

care, efferent to VTA/PAG; mating, efferents to VTA/NuAc and VMHvl

POA Embryonic preoptic area Ventral telencephalic domain just below the MGE, major source of projection neurons destined for the MeA

PVN Paraventricular nucleus Alar domain of the hypothalamus. Embryonic PVN progenitors express Sim1

VMH Ventral medial hypothalamus Involved in mating and defensive behaviors; stimulated by projections from MeA directly or via mPN

VMHdm Dorsal medial VMH Involved in predator defense, afferents from MeApv, efferents to PMNv

VMHvl Ventral lateral VMH Mating, afferents from mPN; conspecific defense, afferents from MeA

VNO Vomeronasal organ Detects nonvolatile pheromones via V1R and V2R receptors. Olfactory receptor neurons in the VNO

project to AOB

VTA Ventral tegmental area Part of the appetitive phase of mating and maternal care receives afferents from the mPN

ejaculation via afferents to VMHvl and then areas of the midbrain
and spinal cord: periaqueductal gray (PAG), nucleus paragiganta
and finally the lumbosacral spinal cord (see Figure 3A) (Marson,
2004; Normandin and Murphy, 2011a,b).

Female innate reproductive behaviors can be initiated through
the same olfactory-amygdala circuit as males. Both the appetitive
phase and consummatory phase of female mating begins with
pheromonal cues picked up by the VNO and MOE (Baum and
Kelliher, 2009). Signals are then passed to MeA via the olfac-
tory bulb (Kang et al., 2011). Afferents from the MeA connect
to the mPN of the hypothalamus directly or via the BNST and
PMNv in a similar fashion as in the male circuit. While the mPN
controls both the appetitive and consummatory phase in males,
the female mPN primarily influences appetitive responses such as
approaching a male to mate or proceptive behaviors (ear twitch-
ing, running short distances away—“teasing”). However the mPN
is upstream of female consummatory behaviors, explicitly lor-
dosis, which is initiated in the VMHvl. Lesioning of the VMH
results in a decrease in lordosis while electrical stimulation of
this region produces lordosis in primed females out of context
(no male present) (Pfaff and Sakuma, 1979). These brain regions,
particularly the VMH, are highly influenced by the female’s nat-
ural cycle of hormones (estrodiol and progesterone) (Blaustein
et al., 1988; Petitti et al., 1992; Mani et al., 1994; Kow et al., 1995;

Flanagan-Cato et al., 2001). Further supporting these lesioning
studies, many of these regions also show increased expression of
the activity-dependent intermediate early gene, cFos, after sexual
behavior (Coolen et al., 1996). Female consummatory behaviors
such as lordosis, similar to males, are also relayed to the PAG,
nucleus paragiganta and the lumbosacral spinal cord (Lonstein
and Stern, 1998).

Quite interestingly, disruption of particular portions of the
above-mentioned reproductive circuit results in male behaviors
in females or otherwise altered sexual behaviors. Specifically,
surgical removal of the VNO or genetic deletion of TRPC2, a
channel involved in translating pheromone reception into an elec-
trical signal in olfactory receptor neurons, has been shown to
increase male mounting behaviors toward other males (Leypold
et al., 2002). Conversely, female mice without a functioning VNO
(TRPC2−/− females) mount males (Leypold et al., 2002; Stowers
et al., 2002). Moreover, in V1R receptor knockout (V1R recep-
tors in the VNO identify physiological state of the animal) male
mice display a decrease in mounts with females, and females
display decreased maternal aggression (Del Punta et al., 2002).
Despite these interesting findings, results to the contrary have
been observed in studies directly probing the role of VNO in
sex discrimination in mice and other rodents using either volatile
(detected in MOE) or non-volatile (detected in the VNO) urinary
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FIGURE 2 | Limbic processing of olfactory information in the rodent.

The rodent limbic system is highly influenced by olfactory cues received by
the main olfactory epithelium (MOE, purple) and vomeronasal organ (VNO,
red). The Grueneberg ganglion (pink), which senses stress in conspecifics,
is depicted in the tip of the rodent nose. The VNO, located on the palate, of
the mouth detects non-volatile or lipophilic chemicals that are channeled by
the tongue through a pore in the roof of the mouth. Volatile chemical scents
are more readily aerosolized and travel further back into the nasal cavity to
reach the MOE on the turbinates. Projections from sensory neurons in the
VNO and MOE are received in the accessory olfactory bulb (AOB) and main
olfactory bulb (MOB), respectively, located in the brain. Signal is then
passed to other structures of the limbic system including the amygdala
(green), bed nucleus of stria terminalis (BNST, blue), and hypothalamus
(Hypo, yellow).

odors as a stimulus (Beauchamp et al., 1982; Petrulis et al., 1999;
Pankevich et al., 2004). When exposed to whole urine, mice with
their VNO removed compensated by using their MOE to detect
volatile discriminatory odors. Yet, mice lacking a VNO lose their
discriminatory abilities when exposed exclusively to non-volatile
odor elements of urine undetectable by the MOE (Keller et al.,
2006). While these results reveal a partially redundant role for
the MOE in sex discrimination, it appears clear that the VNO
is central to the expression of appropriate sex-specific mating
behaviors. Interestingly, other accounts of unusual feminization
also occur by lesioning deeper portions of the male innate repro-
ductive circuit. Lordosis, a female consummatory behavior, has
been observed in males after lesioning the preoptic nucleus of
the hypothalamus (Hennessey et al., 1986). Thus, appropriate
sexual behavior appears to be controlled at multiple levels of
the circuit, from pheromone detection in the VNO down to the
hypothalamus and spinal cord.

DEFENSE/FEAR
Innate fear and the resulting defensive/aversive behaviors can
be evoked by odors from predators, dominant conspecifics, or
the “scent” of fear from a conspecific. Fear responses can be
conditioned (learned) or unconditioned (innate). Rodents will
innately respond with stereotypical fear behaviors when pre-
sented with the scent of stressed or dead mice. Detection of

FIGURE 3 | Specific innate behaviors are controlled by distinct regions

of the limbic system. (A) Sexual behaviors include activation of the
vomeronasal organ (VNO), accessory olfactory bulb (AOB), and medial
amygdala (MeA). Signal transduction from sensation to physical motivation
is not always linear; once signal has reached the MeA, it is dispersed to a
few areas: bed nucleus of stria terminalis (BNST), medial preoptic nucleus
(mPN), and premammillary nucleus (PMN). The BNST will shunt signal from
the MeA to the mPN. The mPN can activate appetitive behaviors (sniffing
and pursuit) through innervation of the nucleus accumbens (NuAc) and
ventral tegmental area (VTA). Additionally, the mPN passes information to
the ventrolateral portion of the ventral medial hypothalamus (VMHvl), which
in turn can initiate consummative behaviors through the periaqueductal
gray (PAG) and spinal cord. Consummative behaviors such as mounting,
intromission, and ejaculation can also be influenced by PMN inputs on the
PAG and spinal cord. (B) Defensive behaviors trigger slightly different areas
of the amygdala and hypothalamus depending if the stimulus is a predator
or an animal of the same species (conspecific). Defense in response to a
predator initiated in the AOB sends signals to the posterioventral MeA
(MeApv), then to the dorsomedial portion of the ventral medial
hypothalamus (VMHdm). The VMHdm will then cross-talks with the
anterior hypothalamus (AH), an instance of bidirectional communication.
The VMHdm, then signals to the ventrolateral portion of the dorsal PMN
(PMNd), which then signals to the dorsolateral and dorsomedial PAG.
Defense responses to a conspecific are initiated in the AOB which sends
afferents directly to the anterior dorsal and posterior dorsal MeA (MeApd).
The MeApd acts as a hub dispersing signal to three areas: mPN, VMHvl,
and dorsomedial portion of the PMNd. The VMHvl will engage in cross-talk
with the PMNd, which ultimately communicates with the dorsomedial and
lateral PAG. (C) Maternal behavior circuit may begin in the AOB, which
sends signal to the MeA. The MeA will send information to the mPN either
directly or through the BNST. Pup avoidance is suppressed in the MeA and
AH to initiate pup approach. Appetitive behaviors such as pup retrieval
occur through activation of the VTA by the mPN. Consummative behaviors
such as nursing are executed via activation of the PAG and spinal cord by
the mPN.

these conspecific alarm pheromones evokes freezing after stim-
ulation of the Grueneberg ganglion cells (Brechbühl et al., 2008).
Rodents also have an innate fear of cat and fox odors even
in lab settings without prior exposure. Additionally for mice,
there is an innate fear of rats, a natural predator of mice in the
wild. Exposure to rat odors may induce flight, hiding, freezing,
or risk assessment behaviors in mice as part of the uncondi-
tioned fear response (Blanchard et al., 2001). These uncondi-
tioned responses suggest an evolutionary “hardwiring” of cir-
cuits for such behaviors. Upregulation of cFos expression after
introduction to predator odors has been documented in the pos-
terior ventral medial amygdala (MeApv) and VMH (Canteras

Frontiers in Molecular Neuroscience www.frontiersin.org April 2012 | Volume 5 | Article 55 | 4

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Sokolowski and Corbin Limbic system development and behavior

et al., 1997). Similar to reproductive olfactory cues, predator
odors appear to be processed more readily in the AOB as opposed
to the MOB (McGregor et al., 2004). This also indicates the exis-
tence of “kairomones,” a chemical emitted by one species that
conveys information to another. Recent comprehensive mapping
of receptor expression in conjunction with neuronal activation
in the VNO has uncovered the receptor-based molecular code
by which rodents identify cues associated with defense (preda-
tor and conspecific) and mating (Isogai et al., 2011). Perhaps the
most striking finding of this study was the revelation that sub-
sets of these receptors are solely dedicated to predator cues from
individual species. Thus, in rodents the VNO appears to have
evolved specifically to respond to cues that depend on the ani-
mal’s survival in the wild, consistent with the notion that these
circuits are largely hardwired. Downstream of the VNO, preda-
tor cues are processed in the AOB, and then conducted to the
MeA (primarily the ventral aspect) and in turn feed directly to
the dorsomedial portion of the VMH (VMHdm). However, as
part of a conditioned fear response when context is dependent,
cues are relayed from the hippocampus to the anterior nucleus
of the hypothalamus (AH). Both the conditioned and innate fear
response circuits converge on the dorsal premammillary nuclei
(PMNd) of the hypothalamus which acts as an “amplifier” by trig-
gering the pituitary and adrenal hormone release (Canteras et al.,
1997; Dielenberg et al., 2001; Cezario et al., 2008) (see Figure 3B).
Although a specific role in defense has not been found in the
BNST, there are suggestions that it may modulate defensive rage
and startle reflex (Dong and Swanson, 2004).

Similar endpoints, namely the PMNd, are involved in defense
responses to dominant conspecifics. A common behavior test
replicating a dominant conspecific scenario involves placing an
“intruder” male in a “resident” male’s cage. The resident male
assumes a dominant role, threatening the intruder with postur-
ing, biting, and attack. Interestingly, the medial hypothalamic
circuitry of reproductive behaviors (VMH) is activated in the
intruder, evidenced by increased cFos expression (Kollack-Walker
and Newman, 1995; Kollack-Walker et al., 1999; Veening et al.,
2005). However, in contrast to reproductive circuits, the defense
response circuits converge on the “amplifier” of the predator
aversion, the PMNd (Cezario et al., 2008; Motta et al., 2009).
Intruders may react with passive (freezing) or active defense (rear-
ing, boxing, or dashing away) in response to the approach of
the resident. Lesioning of the PMNd results in decreases in pas-
sive defense while active defenses are maintained, suggesting the
possibility that the intruder has a reduced fear of the dominant
conspecific (Motta et al., 2009) (see Figure 3B).

MATERNAL CARE
Similar to reproductive behaviors, maternal care can be parsed
into appetitive and consummatory phases, with appetitive behav-
iors including nesting and pup retrieval while consummatory
behaviors consist of pup grooming and nursing. It has been sug-
gested that there are two mechanisms at play during maternal
behaviors: activation of pup attraction and repression of pup
avoidance. Pup avoidance has been observed in unprimed virgin
female mice. However, the natural avoidance response in these
virgins can be damaged with lesions of the MeA, thus stimulating

maternal care of pups (Numan et al., 1993). Likewise, lesioning
the AH results in the same behavior (Sheehan et al., 2001), sug-
gesting that pup olfactory cues are processed in both the MeA and
AH (regions associated with predator fear response) to stimu-
late avoidance behaviors in young virgin rodents. The opposing
circuit regulating pup attraction, is seeded within the mPN of
the hypothalamus. The mPN expresses receptors for estrogen,
prolactin, and oxytocin, suggesting it may be a major target of
hormone activity (Rosenblatt et al., 1994; Consiglio and Bridges,
2009; Ruthschilling et al., 2012). Lesions of this area decrease pup
retrieval and nest building in postpartum females, and cFos has
been noted to increase in this region after maternal behaviors
(Numan and Smith, 1984; Champagne et al., 2003). It is very
likely that activation of the mPN by hormones causes an inactiva-
tion of the anterior hypothalamic avoidance behaviors in addition
to activating the VTA and NuAc to initiate the appetitive phase
and the PAG-lumbosacral spinal cord to advance consummatory
behaviors (see Figure 3C) (Lonstein and Stern, 1998).

CIRCUIT CONTROL AND REGULATION
Through classical neuroanatomical approaches, we have now
reached a stage at which the basic circuitry regulating reproduc-
tive, defensive and maternal care behaviors are generally estab-
lished. More recent studies utilizing a combination of techniques
at the vanguard of science are revealing the molecular under-
pinnings of circuit formation and function. For example, novel
optogenetic techniques allow for the subtype-specific and tempo-
ral control of neuronal activity in order to elucidate the circuitry
driving innate behaviors. In addition, we are also gaining a sig-
nificantly greater understanding of not only the genes that are
required for normal circuit formation and function, but also how
non-cell autonomous stimuli such as hormones shape neuronal
populations comprising innate circuits.

One of the first studies to correlate gene expression patterns
to subsets of innate behaviors made use of reporter gene knock-
in methodologies to trace projections of genetically marked
neuronal subpopulations (Choi et al., 2005). By gene expres-
sion analysis it was revealed that anatomically distinct subsets
of MeA populations differentially express combinations of the
LIM-homeodomain containing genes (Lhx5, Lhx6, and Lhx9),
genes which are known to endow neuronal identity across the
neuraxis (Shirasaki and Pfaff, 2002). Interestingly, these marked
populations seperately respond to different innate behavioral
cues (reproductive or defensive). Specifically, Lhx6+ neurons in
the posterior dorsal MeA (MeApd) are almost exclusively acti-
vated by reproductive olfactory cues and project to an area
of the hypothalamus involved in initiating mating behaviors,
the ventral lateral portion of the ventral medial hypothalamus
(VMHvl). Complimentary, Lhx6− cells in the posterior ventral
MeA (MeApv) respond to predator odors and project to an area of
the hypothalamus regulating defense, the dorsal medial portion of
the ventral medial hypothalamus (VMHdm). Most surprisingly,
molecular mapping also revealed that predator cue-responsive
Lhx6− cells in the MeAvl also project to areas of the hypothala-
mus regulating reproductive behaviors, the VMHvl, an apparent
contradiction. To reconcile this discrepency a model was put
forth in which predator odor-activated Lhx6− cells can inhibit
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the VMHvl, thereby suppressing reproductive behaviors, while
simultaneously activating the VMHdm and initiating defensive
behaviors (Choi et al., 2005).

Following this study, the same group more recently used opto-
genetic activation combined with pharmacological silencing of
hypothalamic neurons to determine how mating and defensive
behaviors are coordinated in the hypothalamus (Lin et al., 2011).
Direct light stimulation of the neurons in the VMHvl expressing
channel rhodopsin evokes mice to not only display the appropri-
ate defensive behaviors to other males, but also inappropriately to
females and inanimate objects (Lin et al., 2011). However, light-
activation of this circuit during consummative mating behav-
ior will not evoke aggression. Thus, utilizing state of the art
approaches; both genetic and optogenetic, these studies revealed
that the VMH collectively integrates information for apparently
non-compatable behaviors (e.g., mating and defense/aggression).
However, at what level these context-appropriate behavioral out-
puts are controlled by cross-talk between VMH subdivisions
remains to be elucidated. This analysis also resolves previous
apparently contradictory studies, which showed that the VMH
is activated by both mating and aggression (Kollack-Walker and
Newman, 1995; Kollack-Walker et al., 1999; Veening et al., 2005).
These tools will also most likely prove invaluable for understand-
ing how information is gated at the synaptic level as well as which
genetic networks are involved in specification and function of
these subcircuits.

The neural circuitry that regulates innate behaviors, perhaps
more so than other brain circuits, are dramatically shaped by
endocrine factors, primarily sex hormones such as testosterone
and estrogen (Simerly, 2005). Both circulating and local brain lev-
els of testosterone and estrogen are expressed in a sex-dependent
manner act to refine the neural circuits involved in sexually
dimorphic behaviors (Reviewed in Hill and Boon, 2009; Wu and
Shah, 2011). Major structures of the limbic circuit (e.g., amyg-
dala, BNST, mPN) express estrogen receptors in both females
and males. In females, estrogen is the primary hormone in the
induction of maternal care. Specifically, virgin female rats will
inhibit their aversion and stimulate attraction to pups after sup-
plementation with estrodiol, thereby behaving more like nursing
females (Fleming, 1986). The role of estrogen is especially inter-
esting in the context of development of the male brain. Recent
work has revealed that estrogen is required for the development
of sexual dimorphism in the amygdala and even male-specific
defensive behaviors (Wu et al., 2009). In male brains, testos-
terone is converted to estrogen by the enzyme aromatase, which
is found in select neurons of the MeA, BNST, and hypotha-
lamus (Ogawa et al., 1998). Circulating levels of testosterone
can be controlled experimentally through gonadalectomy; how-
ever, even castrated males generate estrogen from testosterone
produced in the adrenals. Therefore, only genetic deletion of
aromatase in male mice eliminates estrogen action, resulting in
a complete loss of aggressive behaviors against intruder males.
Supplementation with estradiol in aromatase-null males soon
after birth restores intermale aggression, albeit mild compared
to wild type males. However, estradiol replacement one week
after birth does not restore male-typical aggression in aromatase-
null males (Toda et al., 2001), suggesting a developmental time

window in construction of the male neural circuit. These hor-
mones also appear to regulate neuronal plasticity in the adult
(Cooke et al., 2003; Cooke, 2006; Dugger et al., 2008; Morris
et al., 2008). For example, estrogen affects alterations of dendritic
morphology in the MeA (Gomez and Newman, 1991), which can
alter the perception of external cues (Mohedano-Moriano et al.,
2007). As mentioned before, the circuit controlling reproduction
and defense occupy similar limbic nuclei, and influence con-
flicting behaviors (sexually receptivity or aggression) to a single
stimulus (male approach) in females depending on her mater-
nal/hormonal status. Thus, an alternative hypothesis is that the
hormonal state of an animal influences the connectivity, thereby
affecting behaviors.

While estrogens shape the programming of sexually dimorphic
circuits, testosterone acting directly via the androgen receptor is
required for the activation and modulation of components of
male-typical displays such as mating, territorial aggression, and
urine marking. In addition to dramatic anatomical changes such
as decrease in angio-genital distance and visibility of a nipple line,
genetic deletion of the androgen receptor in male mice causes
reduced male-typical behaviors (Juntti et al., 2010). This is in
contrast to estrogen receptor-null males, which never or rarely
display aggressive behaviors. Therefore, while testosterone or the
androgen receptor is not necessary for establishing the circuitry
required for innate behaviors, it is necessary to modulate the
degree of innate sex-specific behaviors. Thus, in both sexes neu-
roendocrines, such as estrogen and testosterone have important,
but genetically separable functions, in shaping sexually dimorphic
brain circuits and related innate behavior.

While much focus has been given to the role that sex hormones
play in modulating behavior and associated circuits, a number of
studies have also revealed important roles for non-sex hormones.
The most prominent of the neuropeptides are oxytocin and
vasopressin, which are expressed within the diencephalon and
function throughout numerous telencephalic structures includ-
ing the amygdala and BNST (Hammock and Young, 2006). As
supported by a number of experimental lines of evidence, oxy-
tocin, and vasopressin play key roles in promoting mating and
bonding (both pair and maternal) behaviors. Indeed, oxytocin
administration via nasal spray is currently under clinical trials in
attempt to alleviate the social withdrawal associated with autism
(Guastella and Macleod, 2012). However, aside from these well-
characterized pathways, much still remains unknown regarding
how genetic pathways work in concert with hormones to regulate
the full repertoire of innate behaviors. Toward bridging this gap
in understanding, a recent study by Xu et al. (2012) stands out.
Using unbiased microarray transcriptome screening, validated
with in situ hybridization expression analyses, they identified a
novel cohort of genes expressed in a sexually dimorphic man-
ner in the amygdala, BNST, and hypothalamus. While many of
these genes were not previously implicated in sexually dimor-
phic behavior, expression of many were found to be modulated
directly by hormone levels. Moreover, a battery of innate behav-
ior tasks in mice mutant for one of four genes (Brs3, Cckar, Irs4,
or Sytl4) revealed specific non-overlapping defects in aspects of
male sexual behavior, intermale aggression, maternal behavior or
female sexual behavior (Xu et al., 2012). Thus, it appears that
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while hormonal influences modulate sexually dimorphic gene
expression, distinct genetic modules control the complete pat-
tern of sexually dimorphic innate behaviors. The results of this
study also suggest that more sensitive screening methodologies
such as RNAseq, will also be fruitful in identifying other com-
ponents of genetic networks regulating the full cohort of innate
behaviors.

EMBRYONIC PATTERNING OF THE INNATE LIMBIC
SYSTEM AND POTENTIAL LINK TO BEHAVIOR
Since innate behaviors are established without prior experience,
the regulatory circuitry must be established during embryonic
or early post-natal stages of neurodevelopment, likely through a
series of hierarchical stages of genetic programming. Below we
review our current knowledge of innate limbic system develop-
ment, and present a novel model in which innate behaviors are
generated by a coordination of genetic expression events and
environmental (hormonal) cues.

Birth dating studies in labeled neurons reveal that the vast
majority of neurons that comprise the innate limbic system are
generated during early embryonic neurogenesis, embryonic day
11–15 (E11–15) in mice (McConnell and Angevine, 1983). By
late gestation, E18, most neurons dedicated for the limbic system
(with the notable exception of subsets of olfactory bulb interneu-
rons and hippocampal granule cells of the dentate gyrus which are
generated throughout the lifetime of the animal) have migrated
to their final locations in the brain and, in some cases, begun
to make connections (Marín and Rubenstein, 2003; Batista-Brito
and Fishell, 2009; Corbin and Butt, 2011). The early post-natal
period is then primarily characterized by the elaboration of both
short- and long-range connections and shaping of circuits via
experience and, as described above, sex-specific hormonal levels.
The embryonic events of neuronal patterning and specification
of neurons throughout the entire neuraxis is accomplished via
the actions of delineated sets of transcription factors, typically of
the homeodomain and bHLH classes (Campbell, 2003; Wonders
and Anderson, 2006; Corbin et al., 2008). These genes have been
conserved through evolution and act in multiple species from fly
and worm to mammals, underscoring their importance in neu-
ronal development. As described below in more detail, embryonic
developmental studies over the past decade have elucidated the
“how” and “where” neurons of the limbic system are generated.
Similar to what has been found in the spinal cord and forebrain,
neuronal subtype identity in the limbic system appears to be
established during the proliferative phase of embryogenesis before
migration, suggesting this is a common mechanism used in the
nervous system. This early endowment of identity implies that the
remainder of development may largely be dedicated to carrying
out a genetically predetermined program of migration, differenti-
ation, synaptogenesis and maturation. Therefore, understanding
development, especially the genetic mechanisms by which diverse
types of neurons are specified, will likely have broad implications
for understanding behaviors.

DEVELOPMENT OF THE MOE AND VNO
Neurons that comprise the structures of the innate limbic system
are generated within the first two weeks of gestation. The innate

circuit begins with the peripheral olfactory sensory neurons, also
called receptor neurons, that reside in two areas of the rostrum:
MOE and VNO. In rodents, the MOE covers the surface of the
convoluted ethmoid turbinates formed during the first two weeks
of gestation when the nasal cavity begins to develop from the
olfactory placodes, which indent forming the olfactory pits. The
olfactory pits deepen and eventually fuse to form the primitive
nasal cavity and ventral margins of the embryonic nasal septum
between E12–13 (Herbert and Leininger, 1999). The VNO devel-
ops from bilateral invaginations of the olfactory epithelium in the
ventral anterior portion of the developing nasal septum. By E15
the VNO is completely formed, however studies have suggested
that it is not fully functional until after post-natal development
(Coppola et al., 1993), and thus may be highly influenced by early
olfactory cues.

Olfactory epithelial neurons arise from the olfactory placode
and have recently been shown to be in part neural crest-derived
(Katoh et al., 2011). Studies investigating lineage determination
and differentiation of olfactory sensory neurons have impli-
cated the bHLH transcription factors Mammalian Achaete Scute
Homology 1 (Mash1) and Neurogenin1 (Ngn1) as important fac-
tors for epithelial neuronal specification. Mash1 appears to be
required for the generation of the deeper layer of the olfactory
epithelial neurons, while Ngn1 regulates genes that fine-tune the
neuronal lineage to a more differentiated fate (Cau et al., 2002).
Ngn1+ progenitors will terminally differentiate into olfactory sen-
sory neuron precursors, which then express other factors such as
Neuronal cell adhesion molecules (NCAMs) that may play a role
in the final stages of synapse formation (Calof et al., 2002). As
a single olfactory sensory neuron matures, it will express a sin-
gle olfactory receptor type, which detects a specific chemical cue
(Malnic et al., 1999). During fetal development, olfactory recep-
tor genes are turned on synchronously in a spatially restricted
manner, establishing zones (Strotmann et al., 1995; Sullivan et al.,
1995). The MOE is broken into four zones (I–IV), each of which
connect to respective domains in the (MOB) and have distinct
transcriptional expression. For example, the transcription factor
Osp94 is expressed solely in zone 1 and 2, while PAPS-S2 is only
expressed in zones 3 and 4 of the dorsal olfactory epithelium
(Tietjen et al., 2005). Similarly, the VNO is segregated into two
zones or domains, apical and basal, which correlate with recep-
tor type. Receptor neurons residing in the apical layer of the VNO
express V1 receptors that primarily detect physiological state of
conspecifics and predators (e.g., pregnant, stressed), while sen-
sory neurons in the basal layer express V2R that detect sex and
species signatures (male, female, fox, cat) (Dulac and Torello,
2003; Papes et al., 2010).

Axons of olfactory receptor neurons project a long distance
into the brain to reach their target, the olfactory bulbs. In con-
trast to the peripherial olfactory epithelium, the olfactory bulbs
are considered a forebrain structure and represent the most ros-
tral aspect of the telencephalon. The olfactory bulbs arise from
the rostral pallium (cortical region) of the telecephalon and can
be distinguished as early as E13.5 in the mouse. The zonal spec-
ification in the MOE may act as a guide map for axons to their
target glomeruli. Glomerulization or glomerulogenesis is esti-
mated to occur over several days (E12–P7) (Royal and Key, 1999)
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through a hierarchical process (Miller et al., 2010), establishing
a discrete topography (Luo and Flanagan, 2007). That is, olfac-
tory sensory epithelial neurons expressing the same receptor type
innervate common glomeruli in the olfactory bulb. The mech-
anisms by which these axons find their glomerular targets in
the olfactory bulb has been suggested to be broken into two
stages: general and specific targeting. General or pre-targeting
from zone in MOE to appropriate domain in MOB has been
shown to be influenced by zonal expression of the olfactory cell
adhesion molecules (OCAMs) (Yoshihara et al., 1997; Reviewed
in Yoshihara and Mori, 1997; Alenius and Bohm, 2003). The spe-
cific targeting mechanism of axons into a glomerulus has been
suggested to be driven by the olfactory receptor itself where a
mechanism downstream of the actual olfactory receptors enables
fasciculation of axons that express similar receptors (Reviewed
in Mombaerts, 2001, 2006; Imai et al., 2009; see also Yoshihara
et al., 1997; Imai and Sakano, 2007, 2009). Specifically, olfac-
tory receptors provide the means for axon-axon interaction by
acting through G-coupled receptors to generate a unique level
of cAMP, which subsequently regulates the expression of guid-
ance factors: Nrp1 and Sema3A (Reviewed in Imai and Sakano,
2009; see also Imai et al., 2009). More recently the Slit and
Roundabout (Robo) families of axon guidance molecules, have
been demonstrated to control pathfinding and targeting of olfac-
tory axons to glomeruli in olfactory bulb. Indeed, refined tar-
geting of olfactory receptor axons to appropriate glomeruli is
pertubed in Slit1/2- or Robo1/2-null mice (Nguyen-Ba-Charvet
et al., 2008). However, how this system interacts with the fine-
tuning of connectivity via the olfactory receptors themselves
remains unclear (Cho et al., 2007; Nguyen-Ba-Charvet et al.,
2008).

DEVELOPMENT OF THE MOB AND AOB
The main output neurons of the MOB and AOB are the mitral
cell. These neurons project to deeper brain structures through
the lateral olfactory tract (LOT). Growth of axonal projections
from the olfactory bulb to deeper brain regions occurs at embry-
onic stages: between E13 and birth. This process is concurrent
with olfactory epithelial targeting of the bulb, suggesting that
these guidance events are independent of each other and sen-
sory inputs (López-Mascaraque et al., 1996). Axonal pathfind-
ing of mitral axons to the olfactory cortex along the LOT is
influenced by the function of cell adhesion molecules such as
cartilage acidic protein-1B, later renamed lateral olfactory tract
ushering substance (LOTUS). This occurs through the ability
of LOTUS to suppress the natural repulsive activities of Nogo.
LOTUS antagonistically binds Nogo receptor a1 (NRa1), thus
blocking Nogo binding and allowing the LOT to fasiculate and
find its target in the olfactory cortex. Deletion of LOTUS causes
the defasiculation of LOT axons, an effect that is rescued by
co-deletion of NRa1 (Sato et al., 2011). Many other factors
including Pax6 and ephrins also cooperate to form the olfac-
tory circuit to the cortex (Nomura et al., 2006). In contrast,
less is known about the development of olfactory projections
that directly synapse in the amygdala, primarily due to insuffi-
cient markers of functionally distinct olfactory-limbic pathways.
Effectors of axonal guidance from the MOB and AOB to other

regions of the limbic system provide a challenging area of active
research.

DEVELOPMENT OF THE AMYGDALA
The development of the downstream targets of the olfactory
system (amygdala and hypothalamus) has been the subject of
recent intense investigation. Initial concepts into the devel-
opment of these structures came primarily from comparative
embryonic and post-natal anatomical studies. Although much
of the amygdala and hypothalamus has been anatomically cat-
alogued (Risold et al., 1994; Swanson and Petrovich, 1998;
Swanson, 2000; Petrovich et al., 2001; LeDoux, 2007), relation-
ships between embryonic primordia based on morphology only
goes so far when attempting to correlate embryonic develop-
ment to post-natal structures. This is due to the fact that many
neuronal cell types within the brain are in fact generated far
from the mature structures that they will eventually populate.
Thus, initial hypotheses regarding simplified models of amygdala
and hypothalamic development (Puelles and Rubenstein, 1993;
Swanson and Petrovich, 1998) have recently been superseded by
a more complex picture in which distinct embryonic progenitor
zones (or niches) are dedicated for the generation of individual
neuronal subtypes that subsequently migrate to these emerging
structures (Marín and Rubenstein, 2003; Corbin and Butt, 2011).

With regard to the amygdala, extensive work has revealed that
neuronal cell diversity is generated from two sets of progenitor
pools: those that contribute neurons to multiple telencephalic
structures (e.g., cerebral cortex, hippocampus) and those that are
unique to the amygdala. The shared sources include aspects of
the cerebral cortex, the ventrally located telencephalic ganglionic
eminences [medial (MGE), lateral (LGE) and caudal (CGE)], as
well as diencephalic sources (Nery et al., 2002; Remedios et al.,
2007; García-Moreno et al., 2010; Bupesh et al., 2011; Cocas
et al., 2011) (see Figure 4). Progenitor pools located within each
of these domains express combinations of the homedomain and
bHLH containing genes, Lhx6, Nkx2.1, Gsx2, Mash1, and Ngn2,
just to name a few. As mentioned previously, differential expres-
sion of the LIM-homeodomain containing gene family marks
anatomically segregated amygdalar efferent projections that sep-
arately regulate reproductive and defensive behaviors (Zirlinger
et al., 2001; Choi et al., 2005). Interestingly, each amygdaloid
nucleus expresses distinct patterns of LIM-homeodomain con-
taining genes transiently during development. For example, the
posterior dorsal medial amygdala (MeApd, associated primar-
ily with reproductive behaviors) expresses Lhx6 and Lmo3, the
posterior ventral medial amygdala (MeApv, associated primarily
with defensive behaviors) expresses Lhx9, and the dorsal anterior
amygdala expresses Lhx6, Lhx7, and Lmo3 (Remedios et al., 2004;
Choi et al., 2005). Thus, the combinatorial expression patterns of
LIM genes may provide a comprehensive mechanism for pattern-
ing the amygdala, reflecting a similarity with the LIM-code in the
spinal cord.

In addition to these shared progenitor pools, there also exist
embryonic progenitor pools that appear to be dedicated primarily
for the amygdala. These include populations present at the pallial-
subpallial border (PSB), the junction of apposition between
the dorsal (pallial) and ventral (subpallial) telencephalon. These

Frontiers in Molecular Neuroscience www.frontiersin.org April 2012 | Volume 5 | Article 55 | 8

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Sokolowski and Corbin Limbic system development and behavior

FIGURE 4 | Limbic system progenitor pools in the rodent embryonic

brain. Schematic of a coronal view of an embryonic brain at
midneurogenesis (∼E14) reveals expression patterns of select transcription
factors along the ventricular zones of the telencephalon and diencephalon.
Combinatorial codes of transcription factor expression during
embryogenesis determine the identity of neurons destined for various brain
regions. A large portion of amygdala neuronal populations arise from two
regions of the developing brain: the pallial-subpallial boundary (blue) and
preoptic area (yellow) each of which express unique combinations of
transcription factors. Areas of the hypothalamus also express regionally
specific transcription factors: for example Sim1 (orange) is expressed more
dorsally to specify cells in the paraventricular nucleus (PVN), while Nra51
(red) is expressed ventrally and specifies neurons in the ventral medial
hypothalamus (VMH).

populations express combinations of the homeodomain genes
Pax6, Emx1, Gsx2, and Dbx1, which collectively supply the entire
population of excitatory neurons to the amygdala as well as the
specialized intercalated interneuronal populations which gate fear
conditioning and extinction. (Puelles et al., 2000; García-López
et al., 2008; Xu et al., 2008; Hirata et al., 2009; Soma et al., 2009;
Carney et al., 2010; Kaoru et al., 2010; Cocas et al., 2011).

Of the above-mentioned genes, the function of Pax6 in amyg-
dalar development has been the most explored. Pax6 is required
for Gsx2+ cells to form correct excitatory and inhibitory neu-
ron populations in the amygdala and olfactory bulb (populations
also likely derived from the PSB) (Cocas et al., 2011). Moreover,
Pax6 cooperates with the nuclear receptor Tailess (Tlx) to form
the PSB (Stenman et al., 2003). Tlx mutants display reductions
in region-specific gene expression in the ventral-most pallial
regions and corresponding malformations in lateral and basolat-
eral amygdala. Interestingly, Tlx mutants also display aggressive
behavior, a phenotype that is consistent with amygdala dysfunc-
tion (Monaghan et al., 1997). Moreover, haplosufficient Pax6
mutants that express only one functional copy display autistic-
like social deficits (Umeda et al., 2010), supporting an important

role of these genes in amygdalar development. In addition to
the PSB, the Dbx1+ progenitor pool located in the embryonic
preoptic area (POA), a ventral telencephalic domain just below
the MGE, is a major source of projection neurons destined
specifically for the MeA (Hirata et al., 2009). Interestingly, these
neurons are homogeneous by electrophysiological and molecu-
lar criteria, and electrophysiologically and molecularly distinct
from FoxP2+ neighboring MeA neurons (Hirata et al., 2009;
Carney et al., 2010). This genetic parcellation of MeA neuronal
cell types suggest that, consistent with the amygdala LIM-code
(Choi et al., 2005), other genetically tagged populations may
have separable functions in the processing of different innate
behaviors.

DEVELOPMENT OF THE HYPOTHALAMUS
A major termination area of projections from the MeA is the
hypothalamus. Similar to the amygdala, the hypothalamus is
a nuclear structure comprised of separate nuclei with varying
connections, neuronal compositions and separable functions in
processing innate information. The hypothalamus is located in
and arises from the ventral diencephalon, is visible as early as
E9 and is clearly distinguished from the telencephalon at E12.5
both anatomically and molecularly. Similar to other regions
of the central nervous system, a number of genes encoding
transcription factors and secreted protein morphogens help to
pattern and determine the regional specificity of the hypotha-
lamus (Blackshaw et al., 2010). This molecular scaffolding that
delineates progenitor domains of the hypothalamus can be cat-
egorized into two alar (paraventricular and subparaventricular
areas) and three basal domains (tuberal hypothalamus, premam-
millary area and mamillary area). These domains lie along the
longitudinal axis and are influenced by secreted factors such as
Shh, Wnts, BMPs, and Fgf. In response to these secreted fac-
tors, cells in different developmental zones express a temporal
and spatial fingerprint of transcription factors that pattern devel-
opment of the subnuclei of the hypothalamus (Shimogori et al.,
2010). For example, the bHLH-containing transcription factors
Sim1 and Neurog2 and homeodomain-containing transcription
factor Otp, delineate the embryonic paraventriclular area, which
is the primordial of the supraopto-paraventricular nuclear com-
plex in the dorsal hypothalamus (Fan et al., 1996; Puelles and
Rubenstein, 2003; Shimogori et al., 2010). Loss-of-function stud-
ies have revealed that Sim1 is required for the correct positioning
of paraventricular neurons (Caqueret et al., 2006), while Otp-
null mice fail to produce somatostatin, vasopressin, oxytocin,
corticotropin-releasing hormone, thyrotropin-releasing hormone
in the primordial periventricular, paraventricular, and supraoptic
nuclei. These mice are not only devoid of these three hypotha-
lamic nuclei but are non-viable after birth (Wang and Lufkin,
2000).

PROPOSED MODEL FOR CIRCUIT PATTERNING
Despite the above-described circuitry and the growing under-
standing of developmental mechanisms governing specification
and migration of neurons, the link between developmental mech-
anisms, circuit formation and ultimately behavior remains to be
clarified. There appears to be a common strategy to generate
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neuronal diversity across the central nervous system, wherein the
combinatorial expression of different transcription factors speci-
fies regional- and subtype-specific neuronal identity. However, an
open question is whether this process also encodes the molecular
identity responsible for connectivity. Indeed, although experi-
mental evidence is scarce, such a link has already been proposed
in the spinal cord, in which a transcriptional matching code acts
to instruct connections between specific sensory and motor neu-
rons (Lin et al., 1998). Although the evidence for this within
the brain is also highly circumstantial, it presents an attractive
and simplified mechanism whereby developmental gene expres-
sion is utilized not only to direct cell fate, but also to pre-pattern
circuit connectivity. In this model, in addition to patterning neu-
ronal identity, key transcription factors encode subsets of genes,
most likely cell adhesion molecules that would be required for
limbic circuit specific connectivity (Figure 5). In support of this
model in the innate limbic circuit are two provocative sets of
observations. First, fate mapping and gene expression analy-
ses have revealed that progenitor pools that generate neurons
within known connected structures of the innate limbic sys-
tem (e.g., olfactory system, amygdala, hypothalamus) express
common sets of transcription factors whose general function
in other parts of the brain and nervous system is to control
neuronal identity. These genes include, for example, FoxP2 and
Dbx1 (Hirata et al., 2009; Carney et al., 2010; Allen Brain atlas).

FIGURE 5 | Proposed model of innate limbic circuit development. In
this model, combinations of select subsets of transcription factors (e.g., A,
B, C) that endow neuronal identity also encode genes required for
formation of connections (e.g., cadherins) with neurons located in other
parts of the brain. Neurons destined to connect are derived from
progenitors that express the same sets of transcription factors. Thus,
developmentally regulated transcription factors are the driving force behind
setting up complex circuits. This pre-patterned circuitry is then extensively
shaped and modified by the actions of select hormones (e.g., testosterone
and estrogen) and neuropeptides (e.g., oxytocin and vasopressin).

Second, there are multiple classes of cell adhesion molecules
that specifically mark the interconnected limbic system. These
include Limbic system associated membrane protein (Lsamp)
as well as sets of cadherins (Redies and Takeichi, 1993; Mann
et al., 1998; Pimenta and Levitt, 2004). A cadherin matching code
for limbic connectivity is especially attractive as it has recently
been shown that expression of the same subclasses of cadherin
cell adhesion molecules are required for establishment of axon-
target matching in other systems such as retinal to midbrain
projections and intra-hippocampal connections (Hirano et al.,
2002; Osterhout et al., 2011; Williams et al., 2011). In con-
junction, other studies have found cadherin expression patterns
to be regulated by Pax6 (Stoykova et al., 1997). Thus, per-
haps cadherin (or other cell adhesion molecules) codes, initially
established by restricted expression of key “selector” transcrip-
tion factors in the embryonic brain, produce a layout for limbic
system connectivity.

LIMBIC CIRCUITS AND NEURODEVELOPMENTAL DISORDERS
In humans, the limbic system is intimately tied to emotion and
social behaviors, and disruption of the genetic programming of
limbic circuitry may be a prime mechanism underlying a variety
of social disorders, such as autism spectrum disorders (Rodrigues
et al., 2004; Amaral et al., 2008; Herry et al., 2008; Markram
et al., 2008; Monk, 2008) including Fragile X and Rett syndrome
(Hessl et al., 2007; Adachi et al., 2009). Therefore, using the mouse
olfactory-limbic system to understand how an intricate circuit
forms may greatly inform human disorders. Innate behaviors
such as reproduction, aggression and fear all require assimilation
of social cues to produce behaviors that ensure survival. Research
in rodents and primates indicate the amygdala and surrounding
anatomy play a critical role in innate behaviors and social cog-
nition. Defects in amygdala growth, cellularity and function are
consistently found in individuals on the autistic spectrum disor-
der (Baron-Cohen et al., 2000). Consistent with this, it will be
highly informative to study the potential role of the hypothalamus
in autism, a very understudied area of investigation.

In support of limbic-specific defects in autism, genes known
to be involved in specific aspects of development of the lim-
bic system have already been identified and validated as high-
ranking autism susceptibility genes (see https://gene.sfari.org/
autdb/Welcome.do. for autism linked gene annotation). One such
well-studied gene is the receptor tyrosine kinase Met (Campbell
et al., 2006, 2007). In vitro studies suggest that Met is required
for GnRH migration from the nasal placode to the hypotha-
lamus (Giacobini et al., 2007) and Met expression has been
detected in key limbic areas: cortex, amygdala, hypothalamus,
and septum. Expression temporally peaks at P14 in rodent, a
period of extensive outgrowth and synaptogenesis (Judson et al.,
2009). Curiously, Met can decrease arbor complexity (Gutierrez
et al., 2004), increase growth and excitatory synapse formation
(Tyndall and Walikonis, 2006), or increase motility of interneu-
rons (Powell et al., 2003; Martins et al., 2011) all depending on
the identity of the cultured cells (cortical, hippocampal or basal
forebrain). This suggests that Met may integrate intrinsic pro-
grams and external cues that cooperate to form functional neural
networks. Moreover, massive information obtained from human
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genome wide association studies (GWAS) also implicates a num-
ber of cell adhesion molecules in autism, including multiple
members of the cadherin family (Walsh et al., 2008). Although
some of these genes may broadly regulate synapse formation
and function across multiple domains of the nervous system
(e.g., Neuroligin), quite interestingly others such as cadherin-10
(CDH10) appear to be limbic system specific (Bekirov et al., 2002;
Wang et al., 2009). Therefore, unraveling the mechanisms of lim-
bic system development will likely provide significant insight into
the etiology of autism and related disorders of social cognition

and create avenues of therapy for individuals afflicted by these
disorders.
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