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Autism spectrum disorder (ASD) is a group of developmental disabilities characterized
by impairments in social interaction and communication and restricted and repetitive
interests/behaviors. Advances in human genomics have identified a large number of
genetic variations associated with ASD. These associations are being rapidly verified by a
growing number of studies using a variety of approaches, including mouse genetics. These
studies have also identified key mechanisms underlying the pathogenesis of ASD, many
of which involve synaptic dysfunctions, and have investigated novel, mechanism-based
therapeutic strategies. This review will try to integrate these three key aspects of ASD
research: human genetics, animal models, and potential treatments. Continued efforts in
this direction should ultimately reveal core mechanisms that account for a larger fraction
of ASD cases and identify neural mechanisms associated with specific ASD symptoms,
providing important clues to efficient ASD treatment.
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INTRODUCTION TO AUTISM SPECTRUM DISORDER
Autism spectrum disorder (ASD) is a group of developmen-
tal disabilities characterized by abnormal social interaction and
communication, and stereotyped behaviors with restricted inter-
est. Autism was first reported by Kanner (1943) with a clinical
description of 11 children showing “extreme aloneness from the
very beginning of life, not responding to anything that comes
to them from the outside world.” He proposed the behavioral
combination of autism, obsessiveness, stereotypy, and echolalia
as childhood schizophrenia. However, until the 1980s, ASD was
not accepted as an individual developmental disorder with a bio-
logical origin. In the early 1980s, studies demonstrated the high
heritability of ASD and its association with other genetic syn-
dromes (Gillberg and Wahlstrom, 1985; Wahlstrom et al., 1986),
providing compelling evidence for a genetic etiology of ASD
and fueling the conceptualization of autism as a distinct neu-
rodevelopmental disorder. From the definition of “childhood or
early-onset schizophrenia” put forward by Kanner, autism was
renamed “infantile autism” in 1980, “autism disorder” in 1987
and, more recently, “autism” or the umbrella term “ASD”.

DIAGNOSIS
Currently, ASD is included in the diagnostic category of a
neurodevelopmental disorders in the Diagnostic and Statistical
Manual of Mental Disorders V (Grzadzinski et al., 2013). The
diagnosis of autism is mainly based on the presence of two major
aforementioned symptoms: social-communication deficits, and
restricted and repetitive interests/behaviors (Grzadzinski et al.,
2013). These symptoms must be shown from early childhood
of individuals with ASD. But autism is also associated with
various comorbidities, including sensory and motor abnormal-
ities, sleep disturbance, epilepsy, attention deficit/hyperactivity

disorder (ADHD)-like hyperactivity, intellectual disability, and
mood disorders such as anxiety and aggression (Goldstein and
Schwebach, 2004; Simonoff et al., 2008; Geschwind, 2009). Some
monogenic syndromes including fragile X syndrome and Rett
syndrome also have autistic features, while we should be cau-
tious to directly interpret the disorders as autism since the major
symptoms for these syndromes are intellectual disabilities.

PREVALENCE
An early study conducted in the UK in 1966 reported a preva-
lence rate of autism of 4.5 in 10,000 children (Lotter, 1966). The
estimated prevalence increased to 19 in 10,000 American chil-
dren in 1992 and rose steeply to 1 in 150 in 2002 (Autism et al.,
2007) and 1 in 110 in 2006 (Autism et al., 2009) (see also data
from the US Centers for Disease Control and Prevention [CDC]).
The currently accepted prevalence of ASD, based on consistent
reports of ASD prevalence by multiple sources in different pop-
ulations, is ∼1% worldwide, placing this disorder as one of the
most common pervasive developmental disorders and elevating
public concerns.

GENETICS
On the basis of numerous studies that have been undertaken
to elucidate the pathogenic mechanisms underlying ASD, it is
widely accepted that ASD is a disorder with strong genetic com-
ponents. In support of this notion, the concordance rates for
autism reach up to 90% in monozygotic twins and 10% in dizy-
gotic twins (Rutter, 2000; Folstein and Rosen-Sheidley, 2001;
Veenstra-Vanderweele et al., 2003).

However, autism is an etiologically heterogeneous disorder
in that no single genetic mutation accounts for more than
1–2% of ASD cases (Abrahams and Geschwind, 2008). Thus
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far, linkage and candidate-gene analyses, genome-wide associa-
tion studies (GWAS), and assessments of chromosomal variations
have uncovered a wide range of genes with predisposing muta-
tions and polymorphisms associated with ASD (International
Molecular Genetic Study of Autism, 1998, 2001; Abrahams and
Geschwind, 2008; Glessner et al., 2009; Ma et al., 2009; Wang
et al., 2009; Weiss et al., 2009; Anney et al., 2010; Pinto et al.,
2010; Devlin and Scherer, 2012; Moreno-De-Luca et al., 2013)
(see Tables 1, 2 for examples). Moreover, recent advancements in
exome sequencing and next-generation sequencing have enabled
the discovery of an overwhelming number of de novo muta-
tions that confer a risk for ASD (Iossifov et al., 2012; Neale
et al., 2012; O’Roak et al., 2012a,b; Sanders et al., 2012). These
mutations include rare mutations or copy number variations
in synaptic proteins such as Shanks/ProSAPs (Durand et al.,
2007; Berkel et al., 2010; Sato et al., 2012) and neuroligins
(Jamain et al., 2003).

However, how these mutations lead to ASD phenotypes is
poorly understood. In addition, many ASD-related genes are also
associated with other neuropsychiatric disorders. For example,
IL1RAPL1 and OPHN1 are associated with X chromosome-linked
intellectual disability (Billuart et al., 1998a; Carrie et al., 1999).
Additional examples include schizophrenia for RELN, GluR6,
GRIN2A, GRIN2B, and CNTNAP2 (Bah et al., 2004; Friedman
et al., 2008; Shifman et al., 2008; Demontis et al., 2011), child-
hood absence epilepsy for GABRB3 (Feucht et al., 1999), ADHD
and depression for 5-HTT (Manor et al., 2001; Caspi et al., 2003),
and major depression for TPH2 (Zill et al., 2004). Dissecting
the neural mechanisms underlying diverse symptoms/disorders
caused by single genetic defects is one of the key directions for
neuropsychiatric research.

ANIMAL MODELS FOR ASD
Animal models of human diseases need to satisfy three major
criteria; face validity, construct validity, and predictive validity.
Animal models for ASD should display behavioral abnormalities,
including impaired sociability, impaired social communication,
and repetitive and restricted behaviors (face validity). These mod-
els should share analogous genetic or anatomical impairments
with humans (construct validity), and show similar responses
to the medications used to treat ASD in humans (predictive
validity).

Dedicated efforts of many behavioral neuroscientists including
Jacqueline Crawley led to the establishment of several well-known
assays for rat/mouse models of ASD (Silverman et al., 2010b).
Examples include 3-chambered test to assess sociability and social
novelty recognition of rodents, ultrasonic vocalization (USV) test
to measure the communication patterns of rodents, T-maze test
for restricted interests, and home cage behavior or marble bury-
ing assay for repetitive behaviors. Through these assays, many
genetic and non-genetic animal models of ASD have been char-
acterized and used to identify the etiology of ASD and develop
novel treatments (see Tables 3–6 for four different groups of ASD
models).

Although animal models are useful for exploring ASD mech-
anisms and testing novel interventions, we should be cautious
in interpreting the results from animal models of ASD because
what we are observing in animals are behavioral features that look
similar to some of the ASD symptoms in humans. This notion
partly stems from the fact that the brains of humans and rodents
are fundamentally different. For instance, there are small but sig-
nificant differences in gene expression patterns in the cerebral
cortex in different species (Zeng et al., 2012), suggesting that the

Table 1 | Examples of ASD-associated chromosomal loci and candidate genes from GWAS.

Chromosomal loci Candidate genes Sample size Design Population References

4p, 7q, 16p GPR37, PTPRZ1,
EPHB6, PTN, CASP2,
GRM8, EAG in 7q region

87 affected sib pairs
and 12 non-sib
affected relative pairs

Family 99 Caucasian families
(66 from the UK, 11 from
Germany, 10 from the
Netherlands, 5 from USA, 5 from
France, 2 from Denmark)

International
Molecular Genetic
Study of Autism,
1998

2q, 4q, 5p, 6q, 7q,
10q, 15q11-q15,
16p, 18q, 19p, Xp

GABRB3 in 15q11-q15
region, MACS GRIK6,
GPR6 in 6q region

51 families including at
least two siblings or
half-siblings affected
by autism

Family 51 Caucasian families
(18 from Sweden, 15 from France,
6 from Norway, 5 from the USA, 3
from Italy, 2 from Austria and 2
from Belgium)

Philippe et al., 1999

5p14.1 CDH9, CDH10 in 5p14.1
region

943 families Family Autism Genetic Resource
Exchange (AGRE)

Wang et al., 2009

5p14.1 CDH9 and CDH10 in
5p14.1 region

487 families Family 487 Caucasian families (80
multiplex families, 407 singleton
familes)

Ma et al., 2009

5p15, 6q27, 20p13 TAS2R1 and SEMA5A in
5p15 region

1031 multiplex families Family AGRE and US National Institute
for Mental Health (NIMH)

Weiss et al., 2009

20p12.1 MACROD2 in 20p12.1 1558 families Family Autism Genome Project (AGP) Anney et al., 2010
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Table 2 | Examples of ASD-associated human genetic variations.

Genes CNV/SNV Sample size Design Population References

MET rs1858830 743 autism families,
702 unrelated autism
patients/189 unrelated
controls

Case/control, family Italian and American
population

Campbell et al.,
2007

WNT2 linkage disequilibrium in
Wnt 3′UTR, R299W, L5R

75 autism-affected sibling
pair families (ASP)

Trio Families recruited from three
regions of the United States
(Midwest, New England, and
mid-Atlantic states)

Wassink et al., 2001

rs3779547, rs4727847,
rs3729629

170 autism patients/214
normal controls

Case/control Japanese population Marui et al., 2010

RELN 5′ UTR polymorphic GGC
repeats

371 families Family Caucasian Skaar et al., 2005

172 autism trios, 95
unrelated autism
patients/186 unrelated
controls

Case/control, trio Italian and American
population

Persico et al., 2001

EN2/
ENGRAILED-2

rs1861972, rs1861973 518 families Family AGRE and National Institutes
of Mental Health (NIMH)

Benayed et al.,
2005; Gharani et al.,
2004

HOXA1 A218G 57 probands, 166 relatives Probands/relatives Not identified Ingram et al., 2000b

CHD8 de novo frameshift,
nonsense mutations

209 trios Trio Simons Simplex Collection
(SSC)

O’Roak et al., 2012a

GRIK2 (GluR6) M867I 59 ASP, 107 trios Family Families recruited from 7
countries (Austria, Belgium,
France, Italy, Norway,
Sweden, US)

Jamain et al., 2002

GRM8 R859C, R1085Q, R1100Q,
intrachromosomal
segmental duplication

196 multiplex families Family AGRE Serajee et al., 2003

GRIN2A
(GluN2A)

rs1014531 219 sibling pairs, 32
families with extended
relative pairs

Family International Molecular
Genetics Study of Autism
Consortium (IMGSAC)

Barnby et al., 2005

GRIN2B
(GluN2B)

de novo protein truncating
and splicing mutations

209 trios Trio Simons Simplex Collection
(SSC)

O’Roak et al., 2012a

GABRB3 Linkage disequilibrium 138 families, mainly trio Family 104 Caucasian, 6 African
American, 13 Asian
American, 5 Hispanic

Cook et al., 1998

Transmission disequilibrium 70 families Trio AGRE, Seaver Autism
Research Center (SARC)

Buxbaum et al.,
2002

5-HTT Transmission disequilibrium 86 trios Trio 68 Caucasian, 5 African
American, 3 Hispanic
American, 10 Asian American

Cook et al., 1997

TPH2 rs4341581, rs11179000 88 autistic subjects, 95
unrelated controls

Case/control people from Utah Coon et al., 2005

(Continued)
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Table 2 | Continued

Genes CNV/SNV Sample size Design Population References

NRXN1 rs1363036, rs930752,
hemizygous CNV deletion
of coding exons of NRXN1

1491 families Family Autism Genome Project
(AGP) Consortium

Autism Genome
Project et al., 2007

L18Q, L748I, rs1045874 57 ASD subjects, 27 OCD
subjects, 30 Tourette
syndrome subjects

Case/control Developmental Genome
Anatomy Project (DGAP)

Kim et al., 2008

NLGN3 R451C 36 sibling pairs, 122 trios Trio not identified Jamain et al., 2003

NLGN4 Frameshift mutation by 1bp
insertion (1186InsT)

SHANK1 de novo deletion 1614 ASD subjects, 15000
controls

Case/control 1158 Canadian, 456 European Sato et al., 2012

SHANK2 CNV deletion for premature
stop, R26W, P208S, R462X,
T1127M, A1350T,
L1008_P1009dup

396 ASD cases, 184 MR
cases, 659 controls

Case/control Canadian for ASD, German
for MR

Berkel et al., 2010

R443C, R598L, V717F,
A729T, E1162K, G1170R,
V1376I, D1535N, L1722P

851 ASD cases, 1090
controls

Case/control Paris Autism Research
International Sibpair (PARIS)

Leblond et al., 2012

SHANK3 R12C, A198G, R300C,
G1011V, R1066L, R1231H,
de novo frameshift
mutation, de novo
truncating mutation

227 families Family PARIS Durand et al., 2007

CNTNAP2 rs2710102 476 trios Trio AGRE Alarcon et al., 2008

rs779475 72 families Family NIMH Arking et al., 2008

Nonsynonymous variants,
I869T

635 patients, 942 controls Case/control 587 white, 24 white-Hispanic,
7 unknown, 6 Asian, 6 more
than one race, 3
African-American, 1 Native
Hawaiian, 1 more than one
race-Hispanic

Bakkaloglu et al.,
2008

rs17236239 184 families Family Specific Language
Impairment Consortium
(SLIC)

Vernes et al., 2008

ILRAPL1 Frameshift 142 ASD case, 189
controls

Case/control 85 French Canadians, 47
European Caucasians, 10
non-Caucasians

Piton et al., 2008

OPHN1 Frameshift Piton et al., 2011

SYNGAP1 CNV deletion 996 ASD cases, 1287
controls

Case/control European Pinto et al., 2010

TM4SF2 Nonsynonymous variants,
P172H

142 ASD case, 189
controls

Case/control 85 French Canadians, 47
European Caucasians, 10
non-Caucasians

Piton et al., 2011

same cell types in different species may have different functions.
Moreover, the size, structural complexity, and neural connectivity
of the human brain are much greater than those in rodent brains.
These functional and anatomical differences between species may

create difficulties in translating the ASD-related mechanisms
identified in model organisms into human applications. However,
some fundamental aspects of the neural mechanisms identified
in animal models such as alterations in synaptic transmission,
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Table 3 | ASD models with chromosomal abnormality.

Mouse Molecular function Phenotype Suggested

mechanism

References

Social

interaction

Social

communication

Repetitive

behavior

Other

phenotypes

15q11-13
duplication

Ube3a, Gabr Impaired Reduced calls Behavioral
inflexibility

NA Altered serotonergic
signaling

Nakatani et al., 2009

16p11.2 CNV Kif22, Mapk3 NA NA Climbing
deficits

Altered diurnal
rhythm

Hypothalamic
Deficits

Horev et al., 2011

22q11.2
microdeletion

Dgcr2, Comt, Dgcr8 NA NA NA Hyperactivity,
Sensorygating
deficits

Altered microRNA
biogenesis

Stark et al., 2008

excitation-inhibition balance, and neuronal excitability might be
conserved across species and translatable. In addition, given that
stem cell technologies are rapidly improving, it is becoming eas-
ier for the changes observed in rodent neurons to be compared
with those in human neurons derived from individuals with
neuropsychiatric disorders (Brennand et al., 2011).

POTENTIAL MECHANISMS UNDERLYING ASD
Mechanisms underlying autism have been extensively studied
using various approaches. Neuroanatomical studies have reported
macrocephaly and abnormal neuronal connectivity in autistic
individuals, while genetics studies using mouse models have
implicated a variety of neuronal proteins in the development of
ASD. More recently, defects in a number of synaptic proteins have
been suggested to cause ASD via alterations in synaptic struc-
ture/function and neural circuits, suggesting that “synaptopathy”
is an important component of ASD.

NEUROANATOMICAL ABNORMALITIES
A change frequently observed in the brains of individuals with
ASD is the overgrowth of the brain termed macrocephaly, which
is observed in ∼20% of autistic children (Bolton et al., 2001;
Courchesne, 2002; Courchesne et al., 2003, 2007; Fombonne
et al., 1999; Hazlett et al., 2005). Aberrations in cytoarchitec-
tural organization in autistic brains are observed during early
brain development in regions including the frontal lobe, parieto-
temporal lobe, cerebellum, and subcortical limbic structures
(Fombonne et al., 1999; Bolton et al., 2001; Courchesne, 2002;
Courchesne et al., 2003, 2007; Hazlett et al., 2005).

The cerebellum is a strong candidate for anatomic abnormal-
ities in autism (Courchesne, 1997, 2002). Magnetic resonance
imaging (MRI) studies have found hypoplasia of the cerebellar
vermis and hemispheres, and autopsy studies have reported a
reduction in the number of cerebellar Purkinje cells. In line with
these anatomical changes, cerebellar activation is significantly
reduced during selective attention tasks (Allen and Courchesne,
2003), whereas it is enhanced during a simple motor task (Allen
et al., 2004). Although the putative role of the cerebellum in
ASD has been restricted to sensory and motor dysfunctions, it is
becoming increasingly clear that the cerebellum is associated with
the core symptoms of autism.

In support of this notion, selective deletion of Tsc1 (tuberous
sclerosis 1) in cerebellar Purkinje cells is sufficient to cause all
core autism-like behaviors in mice in association with reduced
excitability in Purkinje cells (see also Table 4 for summary of
syndromic ASD models) (Tsai et al., 2012). In addition, mice
lacking the neuroligin-3 gene (Nlgn3−/− mice), another autism
model with an Nlgn3 deletion identified in autistic patients,
show occluded metabotropic glutamatergic receptor (mGluR)-
dependent long-term depression (LTD) at synapses between par-
allel fibers and Purkinje cells in association with motor coordina-
tion deficits (see also Table 5 for summary of synaptopathy ASD
models) (Baudouin et al., 2012). Both synaptic and behavioral
perturbations are rescued by Purkinje cell-specific re-expression
of Nlgn-3 in juvenile mice, suggesting the interesting possibility
that altered neural circuits can be corrected after completion of
development.

The cerebral cortex is another brain region frequently affected
in ASD. Abnormal enlargement or hyperplasia of the cerebral cor-
tex has been reported in MRI studies on young children with
ASD (Sparks et al., 2002; Herbert et al., 2003). Because frontal
and temporal lobes are important for higher brain functions
including social functioning and language development, these
anatomical anomalies are likely to underlie the pathophysiology
of autism.

The amygdala and hippocampus are subcortical brain regions
associated with ASD (Aylward et al., 1999; Schumann et al., 2004;
Schumann and Amaral, 2006). Some studies have reported that
the autistic amygdala exhibits early enlargement, whereas others
have reported a reduction in neuron numbers and amygdala vol-
ume. Increases and decreases in the volume of hippocampus are
also associated with ASD.

Aberrant connectivity is an emerging theory to account for
anatomical abnormalities in autism. Neuroimaging techniques,
such as diffusion tensor imaging (DTI) and functional MRI
(fMRI), have suggested that ASD involves abrogation of white
matter tracts in brain regions associated with social cognition,
such as the prefrontal cortex, anterior cingulate cortex, and supe-
rior temporal regions (Barnea-Goraly et al., 2004; Minshew and
Williams, 2007). Alterations in connectivity across diverse brain
regions associated with language, working memory, and social
cognition have also been linked to autism. In general, it appears
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that autism subjects display local over-connectivity and long-
range or inter-regional under-connectivity (Herbert et al., 2003,
2004; Baron-Cohen and Belmonte, 2005; Herbert, 2005; Just et al.,
2007).

Potential ASD-related neural circuitries have also been pro-
posed based on animal studies. Shank3b−/− mice, which exhibit
autistic-like behaviors, have striatal dysfunctions (Table 5) (Peca
et al., 2011). In addition, a shift in the balance between excita-
tion and inhibition (E-I balance) toward excitation in the mouse
medial prefrontal cortex (mPFC) induced by optogenetic stimu-
lation causes sociability impairments (Yizhar et al., 2011). These
results suggest that the striatum and mPFC are components of
ASD-related neural circuits.

Although various neuroanatomical defects are observed in
autistic brains, a direct linkage between neuroanatomical anoma-
lies and behavioral symptoms of ASD remains to be elucidated.
Uncovering the detailed circuitries underlying autistic behaviors
would help us understand higher cognitive functions, such as
language and sociability.

EXTRACELLULAR FACTORS
It has been found that growth factors and neurotrophic fac-
tors are associated with ASD. Genetic and protein expression
studies have shown that MET, a transmembrane receptor for
hepatocyte growth factor (HGF) with tyrosine kinase activity,
is associated with ASD. Genetic variations including rs1858830
in the promoter region that abrogate MET transcription are
associated with ASD in Italian and American families and
case/control studies, and the levels of MET mRNA and protein
are reduced in the cortex of autistic patients (Campbell et al.,
2007, 2006). However, this association between rs1858830 and
ASD failed to replicate in another study (Sousa et al., 2009). By
binding to MET, HGF acts as a neurotrophic factor for neu-
rons to influence neurite outgrowth and dendritic morphology
(Figure 1) (Powell et al., 2001, 2003; Sun et al., 2002; Gutierrez
et al., 2004), implicating abnormal neuronal structures in ASD
pathology.

WNT2 is a secreted growth factor that has been linked to
ASD. Acting through the canonical Wnt pathway, WNT2 triggers
a signal transduction cascade mediated by Dishevelled (Dvl1).
WNT2 is a critical regulator of multiple biological functions,
including embryonic development, cellular differentiation, and
cell-polarity generation. It also regulates neuronal migration,
axon guidance, and dendrite branching (Figure 1) (Logan and
Nusse, 2004). Multiple lines of evidence have implicated the
WNT2 locus in ASD: the WNT2 gene is located at the autism-
susceptibility chromosomal locus 7q31 (Vincent et al., 2000;
Warburton et al., 2000), and single nucleotide polymorphisms
(SNP; rs3779547, rs4727847, and rs3729629, in a case/control
study in a Japanese population) and several WNT2 locus vari-
ants (R299W and L5R, in autism-affected sibling pair [ASP] and
trio families) are associated with autism (Wassink et al., 2001;
Marui et al., 2010), although a subsequent study in Han Chinese
trios failed to replicate the SNP association with ASD (Chien
et al., 2011). While the majority of Wnt2−/− mice are lethal
(Goss et al., 2009), null mutants of Dvl1 show deficits in nest
building and home-cage huddling (see also Table 6 for summary
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FIGURE 1 | Signaling pathways and possible treatments associated with

ASD. Molecules whose mutations or polymorphisms are associated with
ASD are indicated in red. Stimulations and inhibitions are indicated by red and

blue arrows, respectively. Possible treatments and their target molecules are
indicated by red texts in orange boxes. SynGAP1, which directly interacts
with PSD-95, could not be placed next to PSD-95 for simplicity.

of non-synaptopathy ASD models) (Lijam et al., 1997; Long
et al., 2004). Moreover, the Wnt signaling pathway is associated
with and is regulated by chromodomain-helicase-DNA-binding
protein 8 (CHD8; Figure 1), de novo mutations of which are
repeatedly detected in autistic patients (Neale et al., 2012; O’Roak
et al., 2012b; Sanders et al., 2012).

Brain-derived neurotrophic factor (BDNF) is associated with
ASD. BDNF is a member of the neurotrophin family of growth
factors that supports neurogenesis, axodendritic growth, neu-
ronal/synaptic differentiation, and brain dysfunctions (Figure 1)
(Huang and Reichardt, 2001; Martinowich et al., 2007). Elevated
levels of BDNF were reproducibly found in the sera of Japanese
and American autistic individuals (Connolly et al., 2006; Miyazaki
et al., 2004). Another clue comes from calcium-dependent secre-
tion activator 2 (CADPS2), a calcium binding protein in the
presynaptic nerve terminal that interacts with and regulates
exocytosis of BDNF-containing dense-core vesicles (Figure 1)
(Cisternas et al., 2003). CADPS2, located at the autism-
susceptibility locus on chromosome 7q31, is abnormally spliced
in autism patients, and Cadps2−/− mice exhibit social interac-
tion deficits, including maternal neglect (Table 5) (Sadakata et al.,
2007). Hence, although it is unclear how BDNF contributes to

autism pathogenesis, evidence for its role in ASD is becoming
clear.

Reelin is also involved in autism. Reelin is a large secreted
extracellular matrix glycoprotein that acts as a serine protease for
the extracellular matrix, a function that is essential for neuronal
migration, cortical patterning, and brain development (Figure 1)
(Forster et al., 2006). The RELN gene is located in an autism sus-
ceptibility locus on chromosome 7q22, and triplet GGC repeats
in 5′ untranslated regions (5′UTR) in the RELN gene have been
associated with autism in a Caucasian population (Persico et al.,
2001; Skaar et al., 2005) (Table 2). Expression levels of Reelin
are decreased in postmortem autism brains (Fatemi et al., 2005).
Reelin has also been implicated in pathogenesis of various neu-
ropsychiatric disorders, including schizophrenia, bipolar disor-
der, lissencephaly, and epilepsy (Fatemi, 2001). Reeler mice, with
a 150-kb deletion of the Reln gene, exhibit deficits in motor coor-
dination, increased social dominance, and learning and memory
impairments (Table 6) (Salinger et al., 2003; Lalonde et al., 2004).

TRANSCRIPTION FACTORS
Syndromic forms of ASD frequently involve transcription fac-
tors. This is likely because defective transcription factors have
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significant influences on many genes and their downstream
molecules, affecting diverse neuronal functions.

MeCP2 (X-linked gene methyl CpG binding protein 2) is one
of the best examples. It is a member of a large family of methyl-
CpG binding domain (MBD) proteins that selectively binds to
methylated DNA and represses gene transcription (Figure 1)
(Bienvenu and Chelly, 2006). Its downstream targets encom-
pass ASD-related genes such as BDNF and CDKL5. Mutations
in MeCP2 are the major cause of Rett syndrome, a progres-
sive neurodevelopmental disorder with autistic features (Amir
et al., 1999; Bienvenu and Chelly, 2006; Chahrour and Zoghbi,
2007). Mecp2-null mice, an animal model for Rett syndrome,
recapitulate most symptomatic traits of Rett syndrome such as
respiratory dysfunction, forelimb and hindlimb clasping stereo-
typy, motor dysfunction, tremor, hypoactivity, anxiety, cognitive
impairments, and altered sociability (Table 4) (Shahbazian et al.,
2002; Moretti et al., 2005).

Engrailed-2 is a homeodomain transcription factor associated
with ASD. Engrailed-2 is involved in a diverse range of biological
processes from embryological development and segmental polar-
ity to brain development and axon guidance (Figure 1) (Brunet
et al., 2005; Joyner, 1996). The Engrailed-2 gene on human
chromosome 7q36 is in the autism susceptibility locus, and an
association between two intronic SNPs rs1861972 and rs1861973
at Engrailed-2 locus and ASD has been repeatedly identified in
518 ASD families (Gharani et al., 2004; Benayed et al., 2005)
(Table 2). However, these SNPs were not found to be associ-
ated with ASD in Han Chinese trios (Wang et al., 2008). This
association between Engrailed-2 and ASD was further confirmed
by animal model studies, which showed Engrailed-2 null mice
display social dysfunction and cognitive impairments (Table 6)
(Brielmaier et al., 2012). Because Engrailed-2 is expressed upon
activation of WNT2-Dvl1 signaling, it appears that the WNT2-
Dvl1-Engrailed-2 pathway, which regulates neuronal migration
and axonal guidance, may significantly contribute to ASD patho-
genesis via neuroanatomical abnormalities. In addition, a base
substitution (A218G) mutant of HOXA1, another homeobox
gene, was reported in autistic individuals (Ingram et al., 2000b),
indicating the importance of homeobox genes in normal brain
function and ASD.

EXCITATORY AND INHIBITORY IMBALANCE
Mutations identified in important synaptic molecules includ-
ing neuroligins (Jamain et al., 2003), neurexin (Autism Genome
Project et al., 2007; Kim et al., 2008) and Shank (Durand et al.,
2007; Berkel et al., 2010; Sato et al., 2012) in autistic subjects
have prompted investigations into exploring the roles of synaptic
dysfunctions in ASD pathogenesis. This “synaptopathy” model of
autism has provided much insight into the field (Table 5).

Defects in synaptic proteins would lead to defective transmis-
sions at excitatory and inhibitory synapses, disrupting the E-I
balance in postsynaptic neurons, a key mechanism implicated in
ASD. In line with this, ASD has been genetically associated with
diverse glutamate receptors, including the kainite receptor sub-
unit GluR6 (M867I in the intracytoplasmic C-terminal region of
GluR6) (Jamain et al., 2002), the metabotropic glutamate recep-
tor 8 (GRM8) (R859C, R1085Q, R1100Q, and intrachromosomal

segmental duplication) (Serajee et al., 2003), and the N-methyl-
D-aspartic acid receptor (NMDAR) subunit GluN2A (rs1014531)
(Barnby et al., 2005), and GluN2B (de novo protein truncat-
ing and splice mutations) (O’Roak et al., 2012a,b) (Table 2).
Decreased levels of glutamine and abnormal levels of glutamate
were observed in the plasma of autistic children (Rolf et al.,
1993; Moreno-Fuenmayor et al., 1996). In addition, neuropatho-
logical studies of postmortem autism brains show perturba-
tions in the glutamate neurotransmitter system (Purcell et al.,
2001).

Abnormal GABAergic system is also proposed as a poten-
tial mechanism for ASD. Reduced expression levels in a rate-
limiting enzyme for GABA synthesis, glutamic acid decarboxylase
(GAD), and GABA receptors with altered subunit composition
were observed in autistic brains (Fatemi et al., 2002, 2010).
Furthermore, linkage disequilibrium and transmission disequi-
librium between GABRB3, a gene encoding the β3 subunit of
GABAα receptors, with Angelman syndrome and autism has been
reported (Cook et al., 1998; Bass et al., 2000; Buxbaum et al.,
2002) (Table 2).

The serotonergic system would also play a role in ASD
pathogenesis by modulating the E-I balance. Serotonin levels in
blood or urine are increased in subjects with autism (Cook and
Leventhal, 1996; Burgess et al., 2006), and various genes in the
serotonin system are linked to autism. Among them are genes
encoding the serotonin transporter 5-HTT (transmission dise-
quilibrium at the 5-HTT locus in 86 autism trios) (Cook et al.,
1997), and a rate-limiting enzyme for serotonin synthesis TPH2
(two intronic SNPs rs4341581 and rs11179000 at introns 1 and 4,
respectively, have been associated with autism) (Coon et al., 2005)
(Table 2).

Neurexins and neuroligins are synaptic cell adhesion
molecules enriched at pre- and post-synaptic membranes,
respectively (Figure 1) (Craig and Kang, 2007; Sudhof, 2008).
Specific interactions between neurexins and neuroligins regulate
various aspects of both excitatory and inhibitory synaptic devel-
opment and function, affecting the E-I balance in postsynaptic
neurons. Many mutations in genes encoding neurexins (includ-
ing hemizygous CNV deletions and missense mutations) and
neuroligins (e.g., R451C for NLGN3 and a frameshift insertion
mutation for NLGN4) have been associated with ASD, intellectual
disability, and schizophrenia (Jamain et al., 2003; Laumonnier
et al., 2004; Autism Genome Project et al., 2007; Kim et al.,
2008; Walsh et al., 2008) (Table 2). Neuroligin3 knockin mice
with the R451C mutation found in autistic patients recapitulate
autistic features including moderately impaired sociability
(Table 5) (Tabuchi et al., 2007). Notably, inhibitory transmission
was enhanced in the cortical regions of the mutant brains of
these mutant mice, suggesting that disrupted E-I balance may
contribute to ASD.

SHANK family genes encode scaffolding proteins enriched
in the postsynaptic density (PSD), a postsynaptic membrane
specialization composed of multi-synaptic protein complexes
(Figure 1) (Sheng and Kim, 2000). The Shank family contains
three known members, Shank1, Shank2 and Shank3, also known
as ProSAP3, ProSAP1, and ProSAP2, respectively. The idea that
Shanks are involved in the etiology of ASD firstly emerged
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from Phelan-McDermid syndrome (PMS) or 22q13 deletion syn-
drome, a neurodevelopmental disorder caused by a microdeletion
on chromosome 22 (Boeckers et al., 2002; Wilson et al., 2003;
Phelan and McDermid, 2012). The association between SHANK
and ASD became evident by identifying numerous mutations
including de novo frameshift, truncating, and missense muta-
tions on SHANK3 locus in autistic individuals (Durand et al.,
2007) (Table 2). Mutations in SHANK2 and SHANK1 including
de novo CNV deletions and missense mutations in Canadian and
European populations were also identified in individuals with
ASD and intellectual disability (Berkel et al., 2010; Leblond et al.,
2012; Sato et al., 2012).

Multiple lines of transgenic mice with Shank mutations found
in human patients have been reported. Shank3 heterozygous
mice show sociability deficits and reductions in miniature excita-
tory postsynaptic currents (mEPSC) amplitude and basal synap-
tic transmission (Bozdagi et al., 2010); mice with deletion of
exon 4–9 of Shank3 are socially impaired and exhibit alterations
in dendritic spine morphology and activity-dependent surface
expression of AMPARs (Wang et al., 2011); Shank1−/− mice
display reduced basal synaptic transmission in the hippocam-
pal CA1 region and reduced motor function and anxiety-like
behavior, although they show normal sociability (Hung et al.,
2008; Silverman et al., 2011); mice expressing Shank2-R462X in
hippocampal CA1 neurons exhibit cognitive dysfunction accom-
panied by reduced mEPSC amplitude and changes in neuronal
morphologies (Table 5) (Berkel et al., 2012).

CNTNAP2, a neuronal transmembrane protein, is a member
of the neurexin family localized at juxtaparanodes of myeli-
nated axons. Here, CNTNAP2 regulates neuron-glia interactions
and potassium channel clustering in myelinated axons (Figure 1)
(Poliak et al., 1999). Several SNPs (e.g., rs2710102, rs7794745,
rs17236239) and nonsynonymous variants (e.g., I867T) in
CNTNAP2 locus were found to be associated with ASD, lan-
guage impairment, and cortical dysplasia-focal epilepsy syndrome
in humans (Alarcon et al., 2008; Arking et al., 2008; Bakkaloglu
et al., 2008; Vernes et al., 2008) (Table 2). In a case-control asso-
ciation study in Spanish autistic patients and controls, however,
CNTNAP2 SNPs rs2710102 and rs7794745 did not associate with
ASD (Toma et al., 2013). Cntnap2−/− mice recapitulate all three
core symptoms of autism, and display abnormal neuronal migra-
tion, reduced number of GABAergic interneurons, and abnormal
neuronal synchronization (Table 4) (Penagarikano et al., 2011).
Excessive grooming and hyperactivity in these mice were restored
by the treatment of the antipsychotic risperidone (Table 4), sug-
gesting the possibility of therapeutic intervention for certain
symptoms of autism.

SynGAP is a GTPase-activating protein for the Ras small
GTPase. SynGAP directly interacts with PSD-95, and nega-
tively regulates the Ras-MAPK signaling pathway, excitatory
synapse development, and synaptic transmission and plasticity
(Figure 1) (Chen et al., 1998; Kim et al., 1998). In humans,
de novo mutations of SYNGAP1 have been associated with
intellectual disability and autism (Hamdan et al., 2011). In
addition, a genetic case/control study in European popula-
tions associates a rare de novo copy number variation in
SYNGAP1 with ASD (Pinto et al., 2010). Syngap1 heterozygous

mice show schizophrenia-like phenotypes including hyperactiv-
ity, impaired sensory-motor gating, impaired social memory
and fear conditioning, and preference to social isolation (Guo
et al., 2009) (Table 5). In a more recent study, Syngap1 het-
erozygous mice showed premature dendritic spine development
together with enhanced hippocampal excitability and abnormal
behaviors, suggesting that over-paced excitatory synaptic devel-
opment during a critical time window of postnatal brain devel-
opment causes intellectual disability and ASD (Clement et al.,
2012).

Several genes associated with X chromosome-linked intel-
lectual disability (XLID) and synaptic regulations have been
associated with ASD. One of them is interleukin 1 receptor acces-
sory protein-like 1 (IL1RAPL1) that encodes a synaptic trans-
membrane protein (Carrie et al., 1999). Recently, a systematic
sequencing screen of X chromosomes of ASD-affected individ-
uals has identified a de novo frameshift mutation in IL1RAPL1
(Piton et al., 2008). IL1RAPL1 plays an important role in the
formation and stabilization of excitatory synapses by recruit-
ing the scaffolding protein PSD-95 to excitatory postsynaptic
sites through the JNK signaling pathway (Figure 1) (Pavlowsky
et al., 2010). In addition, IL1RAPL1 induces the presynaptic dif-
ferentiation through its trans-synaptic interaction with protein
tyrosine phosphatase δ (PTPδ) (Figure 1) (Valnegri et al., 2011b;
Yoshida et al., 2011). This interaction between IL1RAPL1 and
PTPδ recruits RhoGAP2 to the excitatory synapses and induces
dendritic spine formation (Valnegri et al., 2011b). Interestingly,
IL1RAPL1 regulates the development of inhibitory circuits in the
cerebellum, an ASD-related brain region, and disrupts the exci-
tatory and inhibitory balance, as determined by a study using
Il1rapl1−/− mice (Gambino et al., 2009). These results suggest
that IL1RAPL1 is involved in the regulation of excitatory synaptic
development and the balance between excitatory and inhibitory
synaptic inputs.

Another XLID gene related with ASD is OLIGOPHRENIN-
1 (OPHN1), which encodes a GTPase-activating protein that
inhibits Rac, Cdc42, and RhoA small GTPases. Since the initial
report of the association of a truncation mutation of OPHN1
with XLID (Billuart et al., 1998a,b), additional studies have
associated nonsynonymous rare missense variants in OPHN1
with ASD (e.g., H705R) and schizophrenia (e.g., M461V) (Piton
et al., 2011). OPHN1 regulates dendritic spine morphogene-
sis through the RhoA signaling pathway (Govek et al., 2004)
and activity-dependent synaptic stabilization of AMPA recep-
tors (Nadif Kasri et al., 2009). OPHN1 also interacts with the
transcription repressor Rev-erba to regulate expression of circa-
dian oscillators (Valnegri et al., 2011a). Importantly, Ophn1−/−
mice show immature spine morphology, impaired spatial mem-
ory and social behavior, and hyperactivity (Khelfaoui et al., 2007).
These results suggest that OPHN1 regulates excitatory synaptic
development and function.

TM4SF2 or tetraspanin 7 (TSPAN7), another X-linked gene
which encodes a membrane protein which belongs to trans-
membrane 4 superfamily (TM4SF), plays important roles in the
cell proliferation, activation, growth, adhesion, and migration
(Maecker et al., 1997). TM4SF proteins form a complex with inte-
grin, which regulates cell motility and migration by modulating
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the actin cytoskeleton (Berditchevski and Odintsova, 1999). A
balanced translocation and mutations (a nonsense mutation and
a P172H missense mutation) of TM4SF2 was firstly discovered
in the individuals with XLID (Zemni et al., 2000). In subsequent
studies, the P172H missense mutation was found in individu-
als with XLID (Maranduba et al., 2004) and ASD (Piton et al.,
2011). A microduplication in the locus of TM4SF2 was revealed,
but this duplication was also present in unaffected controls, sug-
gesting that it may be a neutral polymorphism (Cai et al., 2008).
In neurons, TM4SF2 regulates excitatory synaptic development
and AMPA receptor trafficking by binding to the synaptic PDZ
protein PICK1 (Figure 1) (Bassani et al., 2012).

SYNAPTIC SIGNALING
Disrupted synaptic signaling may be a key determinant of ASD.
Components in mGluR- or NMDAR-dependent signaling cas-
cades have recently been implicated in ASD.

Neurofibromin 1 (NF1), tuberous sclerosis complex
(TSC1/TSC2), and phosphatase and tensin homolog (PTEN)
are genes associated with neurological diseases with common
autistic symptoms including neurofibromatosis (Rasmussen and
Friedman, 2000), tuberous sclerosis (van Slegtenhorst et al.,
1997), and Cowden/Lhermitte-Duclos syndrome (Pilarski and
Eng, 2004). They are tumor suppressors sharing a common
function; they negatively regulate the mammalian target of
rapamycin (mTOR) signaling pathway. Although Tsc1 null mice
are embryonically lethal (Wilson et al., 2005), mutant mice
with loss of Tsc1 in cerebellar Purkinje cells display autistic-like
behaviors (Tsai et al., 2012), and Tsc2 heterozygote mice exhibit
abnormal social communication (Young et al., 2010); Nf1 mutant
mice show aberrant social transmission of food preference and
deficits in hippocampus-dependent learning (Costa et al., 2001,
2002); Pten deficient mice show altered social interaction and
macrocephaly with hyperactivation of mTOR pathway (Table 4)
(Kwon et al., 2006).

Signaling molecules in the downstream of mTOR in the mTOR
pathway play crucial roles in ASD pathogenesis. Upon phospho-
rylation by mTORC1, 4E-BP proteins are detached from eIF4E to
promote eIF4E-dependent protein translation (Figure 1) (Richter
and Sonenberg, 2005). A SNP at eIF4E promoter region which
increases its promotor activity was found in autism patients
(Neves-Pereira et al., 2009). Implications of mTOR downstream
signaling in ASD were demonstrated as 4E-BP2 knockout mice
and eIF4E overexpression mice display autistic-like behaviors.
4E-BP2 knockout mice show enhanced translational control of
neuroligins and increased excitatory transmission in the hip-
pocampus (Table 6) (Gkogkas et al., 2013), while eIF4E over-
expressing transgenic mice show impaired excitatory/inhibitory
balance in the mPFC and increased LTD in the hippocampus and
striatum (Table 6) (Santini et al., 2013). Autistic features of these
mutant mice were ameliorated by 4EGI-1 infusion, which inhibits
the eIF4E–eIF4G interaction.

Fragile X syndrome is the most common cause of intellec-
tual disability and autism. It is mostly caused by the expansion
of CGG trinucleotide repeats in the promoter region of the
FMR1 gene, which enhances the methylation of the promoter
and represses generation of FMR1-encoded protein (FMRP),

which binds to target mRNAs and regulates their translation
and transport of mRNA into dendrites and synapses (Figure 1)
(Bassell and Warren, 2008). In the absence of FMRP, target mRNA
translation becomes excessive and uncontrolled, leading to an
aberrant activity-dependent protein synthesis. Fmr1 mutant mice
show enhanced protein synthesis-dependent mGluR-mediated
LTD and dendritic spine elongation, together with cognitive
deficits, social anxiety and impaired social interaction (Table 4)
(Bernardet and Crusio, 2006). Interestingly, target molecules of
FMRP include Shank3, GluN2A, mTOR, TSC2, NF1, neuroligin2,
and neurexin1 (Darnell et al., 2011), which are associated with
ASD pathogenesis.

It should be noted that the ASD-related signaling molecules
mentioned above are also associated with NMDAR and mGluR
signaling pathways. NMDARs and mGluRs play critical roles in
the regulation of synaptic function and plasticity at excitatory
synapses. NF1 interacts with the NMDAR complex and regulates
GluN2A phosphorylation (Figure 1) (Husi et al., 2000). FMRP
and TSC have profound effects on mGluR-dependent LTD and
protein synthesis, which are upregulated in Fmr1−/y mice, while
downregulated in Tsc2+/− mice (Auerbach et al., 2011). FMRP
is also in the downstream of mGluR signaling (Figure 1) (Bassell
and Warren, 2008).

Defects in NMDAR function and associated signaling are also
observed in nonsyndromic ASD models with Shank mutations.
Shank proteins are physically connected to both NMDARs and
mGluRs, suggesting that Shank may regulate signaling pathways
downstream of NMDAR or mGluR activation, and the functional
interaction between the two receptors (Figure 1). Shank2−/−
mice with the deletion of exons 6 and 7 display autistic-like
behaviors and reductions in NMDAR function and associated
signaling, without affecting mGluR-dependent LTD (Won et al.,
2012), while Shank2−/− mice with exon 7 deletion show similar
behavioral abnormalities with NMDAR hyperfunction (Table 5)
(Schmeisser et al., 2012). Although how similar exon deletions in
Shank2 lead to comparable behavioral abnormalities but differ-
ent changes in NMDAR function remains to be determined, these
results point to that Shank2 is an important regulator of NMDAR
function, and that NMDAR function and NMDAR-associated
signaling are associated with ASD.

NEUROIMMUNE RESPONSE
The implication of the immune system on autism was initially
proposed in 1976 based on that some autistic children do not
have detectable Rubella titers in spite of previous vaccination
(Stubbs, 1976). Levels of serum IgG and autoantibodies to neu-
ronal and glial molecules were elevated in autistic patients (Singh
et al., 1997; Croonenberghs et al., 2002), proposing involvement
of autoimmune responses in autism. In addition, plasma or cere-
brospinal fluid (CSF) levels of pro-inflammatory cytokines and
chemokines including MCP-1, IL-6, IL-12, IFN-γ and TGFβ1
were increased in autistic individuals (Ashwood and Van de
Water, 2004; Ashwood et al., 2006).

Astrocytes and microglia are two glial cell types important for
immune responses in the brain as well as regulation of neuronal
functions and homeostasis (Fields and Stevens-Graham, 2002).
Postmortem analyses demonstrated abnormal glial activation and
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neuroinflammatory responses in autistic brains (Vargas et al.,
2005). Transcriptome analysis of autistic postmortem brain tis-
sues has also revealed upregulation in the expression of genes
belonging to immune and inflammatory networks (Voineagu
et al., 2011). Reactive astrocytes were also detected in Cntnap2−/−
brains, a well-established autism model (Penagarikano et al.,
2011). These results clearly suggest the association between neu-
roimmune defects with ASD, although further details remain to
be determined.

NON-GENETIC MODELS OF ASD
Although we have thus far described genetic factors underlying
ASD, environmental factors also have strong influences on ASD.
Epidemiologic studies suggest that maternal exposure to stress,
viral or bacterial infection, thalidomide, and valproic acid can
increase the risk for ASD in offspring (Grabrucker, 2012).

Maternal immune activation (MIA) induced by poly(I:C), the
synthetic doublestrand RNA polyriboinosinic-polyribocytidilic
acid, in pregnant mice leads to the development of core ASD-
like phenotypes in the offspring, including impaired sociability,
decreased USV, and increased repetitive behaviors (Malkova et al.,
2012). MIA by lipopolysaccharide (LPS) treatment during preg-
nancy can also induces ASD-like phenotypes in rodent offspring,
including impaired social interaction (Hava et al., 2006; Kirsten
et al., 2010) and reduced USV (Baharnoori et al., 2012). IL-6
is thought to play a critical role in this process, as IL-6 knock-
out mice do not show poly(I:C) induced social deficits (Smith
et al., 2007), and IL-6 levels are significantly elevated in the cere-
bellum of autistic subjects (Wei et al., 2011). Although further
details remain to be determined, the underlying mechanisms may
include IL6-dependent regulation of excitatory and inhibitory
synaptic transmission and neuroprotection (Sallmann et al., 2000;
Biber et al., 2008; Dugan et al., 2009).

Prenatal exposure to teratogens can increase the risk for ASD
in animals, as in humans. Thalidomide (THAL) and valproic
acid (VPA) cause rat offspring to display brain morphological
abnormalities observed in ASD, including altered cerebellar struc-
tures and reduced number of cranial motor neurons (Rodier
et al., 1997; Ingram et al., 2000a). Behaviorally, VPA-exposed
rats show decreases in prepulse inhibition, stereotypy, and social
behaviors (Schneider and Przewlocki, 2005). VPA-exposed rats
display elevated serotonin levels and abnormal serotonergic neu-
rons (Anderson et al., 1990; Narita et al., 2002; Miyazaki et al.,
2005), decreased parvalbumin-positive interneurons in the neo-
cortex (Gogolla et al., 2009), and elevated NMDA receptor levels
and enhanced LTP (Rinaldi et al., 2007), suggesting that these
mechanisms may contribute to the development of ASD-like
phenotypes.

POTENTIAL TREATMENTS FOR ASD
Currently, only two medicines have been approved for ASD by
US FDA; risperidone (Risperdal®) and aripiprazole (Abilify®),
which act as dopamine/5-HT receptor antagonists (McPheeters
et al., 2011). These drugs are useful for correcting irritability and
stereotypy, but not sociability defects. Recently, a number of can-
didate ASD medications for treating social abnormalities have
been suggested (Figure 1).

mGLuR POSITIVE ALLOSTERIC MODULATORS
mGluR1 and mGluR5 are group I mGluRs that are postsynap-
tically expressed in broad brain regions, including the cerebral
cortex, striatum, hippocampus, nucleus accumbens, and inferior
colliculus (Testa et al., 1995). Upon activation, group I mGluRs
enhance calcium release from intracellular stores resulting in neu-
ronal depolarization, augmentation of neuronal excitability, and
activation of intracellular signaling cascades such as PKA, PKC,
MAPK, ERK, and CREB (Niswender and Conn, 2010). mGluR5
is physically linked to NMDARs via Homer-Shank/ProSAP-
GKAP/SAPAP-PSD-95 interactions (Naisbitt et al., 1999; Tu et al.,
1999), and is functionally coupled to NMDARs via aforemen-
tioned signaling molecules including PKC (Niswender and Conn,
2010). Through these structural and biochemical interactions,
mGluR5 activation is thought to potentiate NMDAR function
(Awad et al., 2000; Attucci et al., 2001; Mannaioni et al., 2001;
Pisani et al., 2001; Alagarsamy et al., 2002; Rosenbrock et al.,
2010).

Positive allosteric modulators of mGluR5 receptors were first
developed to alleviate symptoms of schizophrenia (Gregory
et al., 2011). Although antipsychotics are available for pos-
itive symptoms of schizophrenia, such as hallucinations, no
medications are currently available for negative symptoms or
cognitive impairments. Two main hypotheses have been pro-
posed for schizophrenia: dopaminergic hyperactivity and NMDA
hypofunction. Dopaminergic hyperactivity can be treated by
dopamine receptor-antagonistic antipsychotics such as risperi-
done, but NMDA hypofunction is difficult to modulate given the
expected side effects of enhancing NMDAR functions.

Therefore, the concept of augmenting NMDAR signal-
ing via mGluR potentiation was proposed to improve nega-
tive symptoms of schizophrenia (Uslaner et al., 2009; Stefani
and Moghaddam, 2010). mGluR positive allosteric modulators
increase the function of NMDAR only when they are occupied
by the endogenous ligand glutamate (Figure 1). mGluR posi-
tive allosteric modulators have significant advantages over the
conventional mGluR agonist, (RS)-3,5-dihydroxyphenylglycine
(DHPG). While DHPG has poor specificity toward particular
mGluR subtypes, mGluR positive allosteric modulators offer
high subtype specificity. Some positive allosteric modulators have
high brain blood barrier penetrance, which enables the sys-
temic administration of the drugs. Furthermore, whereas direct
mGluR agonists cause rapid receptor desensitization, mGluR
positive allosteric modulators potentiate mGluR function with
minimal desensitization, because they bind to an allosteric site
on the receptor distinct from the orthosteric glutamate bind-
ing site. These properties of positive allosteric modulators are
predicted to minimize their excitotoxicity and enable high-dose
administrations.

A large number of mGluR5 allosteric modulators have been
developed (Williams and Lindsley, 2005; Gregory et al., 2011).
Of these, CDPPB, ADX47273, MPPA, and VU0092273 read-
ily cross the blood-brain barrier, and CDPPB, particular, has
been examined in various behavioral assays and model ani-
mals. In CHO (Chinese hamster ovary) cells expressing human
mGluR5, CDPPB treatment was shown to enhance mGluR5
activity in a concentration-dependent manner (Kinney et al.,
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2005). Behaviorally, CDPPB alleviates prepulse inhibition and
hyperactivity produced by amphetamine, suggesting that CDPPB
could be a potential antipsychotic agent.

Because NMDARs play an essential role in learning and
memory, indirect potentiation of NMDARs by mGluR5 posi-
tive allosteric modulators may facilitate synaptic plasticity and
learning and memory. Indeed, CDPPB and ADX47273 enhance
the performance of wild-type mice in the Morris water maze
test, a hippocampus-dependent learning and memory paradigm
(Ayala et al., 2009). In addition, VU-29 and ADX47273 poten-
tiate two forms of NMDAR-dependent synaptic plasticity—LTP
and LTD—in the CA1 region of the hippocampus (Ayala et al.,
2009). DFB-treated rats make fewer errors in the Y-maze spa-
tial alternation task (Balschun et al., 2006), and CDPPB and
ADX47273 enhance performance in novel object recognition
and five-choice serial reaction time tasks (Liu et al., 2008;
Uslaner et al., 2009). CDPPB not only improves learning and
memory performance of wild-type mice, but also reverses cog-
nitive dysfunction and behavioral inflexibility induced by the
NMDAR antagonist MK-801 (Uslaner et al., 2009; Stefani and
Moghaddam, 2010). These results suggest that mGluR5 posi-
tive allosteric modulators have the potential to improve cog-
nitive impairments associated with brain disorders including
schizophrenia and autism.

Indeed, CDPPB has recently shown promise as a potential
treatment for ASD. In a study using Tsc2+/− mice, a mouse model
of tuberous sclerosis characterized by intellectual disability and
autism, Mark Bear and colleagues showed that cognitive impair-
ments observed in these mice could be alleviated by CDPPB
administration (Table 4) (Auerbach et al., 2011). In addition,
social deficits of Shank2−/− mice are rescued by CDPPB treat-
ment (Won et al., 2012), implicating hypofunction of mGluRs
and NMDARs in social impairment, and suggesting mGluR posi-
tive allosteric modulators as novel therapeutics for the treatment
of social deficits (Table 5). More recently, CDPPB was shown to
reverse defects in social novelty recognition induced by neonatal
phencyclidine treatment (Clifton et al., 2012).

D-CYCLOSERINE
Although it is well established that NMDARs critically regulate
normal brain functions, the excitotoxicity and poor bioavail-
ability of direct NMDAR agonists have hampered attempts to
control brain activity by modulating NMDARs (Quartermain
et al., 1994). D-cycloserine is a high-affinity partial ago-
nist of NMDA-coupled, strychnine-insensitive glycine receptors
(Figure 1) (Hood et al., 1989). Similar to glycine, D-cycloserine
also binds to the glycine site of NMDARs as a partial agonist,
potentiating NMDARs by increasing the frequency of channel
opening. In addition, because NMDARs are not maximally poten-
tiated by endogenous glycine, there is room for D-cycloserine
to further potentiate NMDARs. These properties enable D-
cycloserine to act as a positive modulator of NMDARs.

D-cycloserine is a viable drug candidate because it is a par-
tial agonist, displaying efficacy of 40-50% relative to glycine, and
has low toxicity and decent bioavailability (Hood et al., 1989).
Although the brain penetrance of D-cycloserine is not high, it
can nonetheless infiltrate the blood-brain barrier, exerting a peak

effect 1 h after intraperitoneal administration (Peterson, 1992).
D-cycloserine shows dose-dependent elimination (higher elimi-
nation rates with lower doses) and a half-life of 7–15 h in humans
and 23 min in mice (lwainsky, 1988; Wlaz et al., 1994).

When glycine levels are low, D-cycloserine amplifies the
activity of the NMDAR complex and enhances synaptic plastic-
ity and cognitive function. D-cycloserine alleviates senescence-
associated behavioral defects (Flood et al., 1992) and facilitates
memory acquisition, consolidation, and retrieval (Quartermain
et al., 1994). While low doses (10–20 mg kg−1) of D-cycloserine
have cognition-enhancing effects (Monahan et al., 1989; Flood
et al., 1992; Schuster and Schmidt, 1992; Sirvio et al., 1992;
Quartermain et al., 1994), higher doses (>100 mg kg−1) exert
anticonvulsant effects in tonic convulsion models (Peterson,
1992; Peterson and Schwade, 1993).

Putative effects of D-cycloserine on ASD have been suggested
by previous studies. Mice with a neuroligin1 (Nlgn1) deficiency
exhibit abnormally increased grooming behavior, and this behav-
ioral anomaly is reversed by D-cycloserine treatment (Table 5)
(Blundell et al., 2010). Low-dose D-cycloserine alleviates nega-
tive symptoms of schizophrenia-affected individuals (Goff et al.,
1999), and reduces social withdrawal and increases social respon-
siveness in autistic patients (Posey et al., 2004). Moreover, D-
cycloserine partially rescues social deficits of Shank2−/− mice,
supporting the role of NMDAR functionality in autism (Table 5)
(Won et al., 2012).

BENZODIAZEPINES
Recently, benzodiazepines were suggested as putative therapeutic
agents for Dravet’s syndrome, which is a developmental dis-
order with myoclonic infantile seizure, ADHD-like inattention
and hyperactivity, motor impairment, sleep disorder, anxiety-like
behaviors, cognitive defects, autism-like social dysfunction, and
restricted interests. Mice heterozygous for a deletion of the α-
subunit of the type 1 voltage-gated sodium channel (Scn1α+/−
mice), an animal model for Dravet’s syndrome, recapitulate most
features of the disorder, including epilepsy, ataxia, sleep dis-
order, anxiety-like behaviors, hippocampus-dependent learning
impairments, sociability deficits, and excessive repetitive groom-
ing behaviors (Table 4) (Yu et al., 2006; Kalume et al., 2007; Han
et al., 2012). In Scn1α+/− mouse brains, expression of the voltage-
gated sodium channel type-1 (Nav1.1) is decreased in GABAergic
interneurons, and GABAergic transmission onto postsynaptic
neurons was reduced. This would cause a shift in the balance
between excitation and inhibition in postsynaptic neurons toward
excitation, which may be corrected by stimulating GABA recep-
tors in these neurons. Indeed, it was shown that both behavioral
abnormalities and aberrant GABAergic transmission are rescued
by low-dose administration of clonazepam (Table 4) (Han et al.,
2012).

Clonazepam, a type of benzodiazepine, is a positive allosteric
modulator of GABAA receptors that exerts sedative, hypnotic,
anxiolytic, anticonvulsant, and muscle relaxing effects (Figure 1)
(Rudolph and Knoflach, 2011). Similar to the action of mGluR
positive allosteric modulators, clonazepam potentiates GABA
signaling only when GABAA receptors are bound by their
endogenous ligand, GABA. Therefore, these results indicate that
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normalization of disrupted E-I balance may be a novel and
promising strategy for treating symptoms of ASD.

mGLuR NEGATIVE ALLOSTERIC MODULATORS
The potential of mGluR of negative allosteric modulation as a
therapeutic strategy in ASD was first proposed based on studies in
Fmr1−/y mice, an animal model for fragile X syndrome (Bakker
et al., 1994). The enhanced mGluR5-dependent LTD and pro-
tein synthesis observed in Fmr1−/y mice provided a conceptual
framework for the mGluR theory of fragile X pathogenesis (Bear
et al., 2004; Bassell and Warren, 2008). Synaptic protein synthesis
is stimulated by local mRNA translation, a process that depends
on group I mGluR activation. FMRP, encoded by the Fmr1
gene, is a repressor of mRNA translation; thus, mGluR-mediated
protein synthesis could be enhanced in the absence of FMRP.
Therefore, attempts have been made to correct fragile X syn-
drome by suppressing abnormally enhanced mGluR5-dependent
synaptic plasticity and protein synthesis.

Two approaches have been used to normalize behavioral
and neuronal deficits of Fmr1−/y mice: genetic crossbreeding
with Tsc2+/− mice, which exhibit suppressed mGluR activity,
and acute administration of an mGluR antagonist (Auerbach
et al., 2011). Administering the mGluR5 antagonist 2-methyl-6-
(phenylethynyl) pyridine hydrochloride (MPEP) to Fmr1−/y mice
normalizes defective phenotypes, including cognitive deficits,
perturbed mGluR-dependent LTD and protein synthesis, and
excessive filopodia-like long and thin spines (Figure 1, Table 4)
(Yan et al., 2005; de Vrij et al., 2008). In line with this, mGluR
negative allosteric modulators are now in clinical trials for fragile
X syndrome patients (Krueger and Bear, 2011).

The therapeutic potential of mGluR antagonists in ASD has
also been suggested. Repetitive grooming behaviors in BTBR and
valproic acid (VPA) mouse models of autism are significantly alle-
viated by MPEP treatment (Silverman et al., 2010a; Mehta et al.,
2011). Impairments in social interaction of BTBR mice are also
ameliorated by MPEP administration (Silverman et al., 2010a).
GRN-529, a selective negative allosteric modulator of mGluR5
developed by Pfizer, was shown to fully rescue excessive repet-
itive grooming behavior and social dysfunction in BTBR mice
and jumping stereotypy in C58/J mice (Silverman et al., 2012).
These findings suggest that mGluR negative allosteric modulators
have novel therapeutic potential in autism, in addition to fragile
X syndrome.

NMDAR ANTAGONISTS
NMDAR antagonists including amantadine and its close ana-
logue memantine are now in clinical trials for autistic patients
(Nightingale, 2012; Spooren et al., 2012). Amantadine and
memantine are non-competitive antagonists for NMDARs with
multiple clinical uses (Chen et al., 1992; Blanpied et al., 2005).
Memantine is currently being used for Alzheimer’s disease, while
it is also useful for viral infection and Parkinson’s disease. Because
both drugs are weak NMDAR antagonists with moderate affinity,
prolonged receptor blockade during treatment is unlikely to cause
significant side effects.

In a double-blind, placebo controlled study, amantadine-
treated group show significant improvements in hyperactivity

and inappropriate speech (King et al., 2001). Memantine is also
effective in improving language and social behavior and clinical
global impressions (CGI) scale in autistic patients (Chez et al.,
2007; Erickson et al., 2007; Niederhofer, 2007).

With regard to mechanisms of memantine and amantadine
underlying the treatment of ASD remains, both medications
are highly likely to exert their therapeutic effects by suppress-
ing NMDAR function and modulating excitotoxicity in autistic
subjects. However, care should be taken because other possibili-
ties exist. For instance, memantine treatment promotes excitatory
synapse formation and maturation and cell adhesion proper-
ties of cerebellar granule cells (CGCs) of Fmr1 knockout mice
(Wei et al., 2012). In addition, memantine exerts neuroprotective
activities by promoting glia-derived neurotrophic factor (GDNF)
release and preventing migroglial inflammatory responses (Wu
et al., 2009). Memantine can also act as a non-competitive antag-
onist for 5-HT receptors (Rammes et al., 2001) and nicotinic
acetylcholine receptors (Aracava et al., 2005), while it functions
as an agonist for D2 dopamine receptors (Seeman et al., 2008).

IGF-1
A new approach for alleviating phenotypic traits of ASD in ani-
mal models has come from research on Rett syndrome. Rett
syndrome is an X-linked neurological disorder caused by muta-
tions in the MeCP2 gene. MeCP2 is a transcriptional repres-
sor and activator, which binds widely across the genome and
influence a large number of genes (Chahrour et al., 2008).
One of the best characterized targets of MeCP2 is BDNF, a
neurotrophic factor that regulates neuronal development and
synaptic plasticity (Figure 1) (Greenberg et al., 2009). Bdnf
conditional knockout mice show features analogous to Rett
syndrome, including smaller brain size and hindlimb-clasping
behavior (Chang et al., 2006). Mice with double knockout of
Bdnf and MeCP2 show earlier onset of Rett-like symptoms,
whereas overexpression of Bdnf in MeCP2 knockout mice delays
the onset and relieves the electrophysiological defects of MeCP2
mutants. Moreover, restoring Bdnf expression through ampakine
administration alleviates respiratory problems of MeCP2 mutant
mice (Ogier et al., 2007). Although BDNF appears to have
significant effects in Rett syndrome model animals, it poorly
penetrates the blood-brain barrier, limiting its therapeutic
application.

Another growth factor associated with Rett syndrome is
insulin-like growth factor 1 (IGF-1) (Figure 1). IGF-1 is a
polypeptide hormone with structural similarity to insulin. While
it has a profound effect on overall cell growth, it also plays
an important role in regulating neuronal functions by promot-
ing axonal outgrowth (Ozdinler and Macklis, 2006), neuro- and
synaptogenesis (O’Kusky et al., 2000), and activity-dependent
cortical plasticity (Tropea et al., 2006). IGF-1 binds to IGF-
binding proteins (IGFBP1–6), resulting in extension of the half-
life of IGF-1 (Hwa et al., 1999). Upon binding to its cognate
receptor, IGF-1 activates Ras-MAPK and PI3K-Akt pathways
(Fernandez and Torres-Aleman, 2012), signaling cascades that are
also activated by BDNF.

Because IGF-1 crosses the blood-brain barrier, it may be
a viable alternative to BDNF as a therapeutic agent for Rett
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syndrome. Indeed, IGF-1 and IGFBP have been implicated in
Rett syndrome and autism: IGFBP3 levels are abnormally ele-
vated in MeCP2 mutant mice and Rett syndrome patients (Itoh
et al., 2007), and the concentration of IGF-1 in CSF is reduced
in autistic individuals (Riikonen et al., 2006). The therapeutic
utility of IGF-1 in Rett syndrome was originally suggested by
Mriganka Sur and coworkers, who reported that lethality, hypoac-
tivity, and respiratory problems of MeCP2-null mice are partially
rescued by IGF-1 treatment in association with normalization
of impaired spine density, synaptic transmission, and cortical
plasticity (Table 4) (Tropea et al., 2009). IGF-1 also reverses the
reduction in excitatory synapse number and density of neurons
derived from Rett patients (Marchetto et al., 2010).

RAPAMYCIN
Rapamycin is an immunosuppressant originally identified as
an antifungal agent in isolates from Streptomyces hygroscopicus
(Sehgal et al., 1975; Vezina et al., 1975; Baker et al., 1978; Singh
et al., 1979). Rapamycin strongly binds to FK506-binding pro-
tein (FKBP); this complex then binds and inhibits mTOR, a
serine/threonine kinase implicated in transcription, cytoskeleton
dynamics, ubiquitin-dependent protein degradation, autophagy,
and membrane trafficking (Figure 1) (Dennis et al., 1999). mTOR
signaling has profound effects on neuronal cells in addition to
cancer cells (Busaidy et al., 2012), immune cells (Araki et al.,
2011), and cells that regulate lifespan (Powers et al., 2006;
Harrison et al., 2009). In the nervous system, mTOR regu-
lates axon guidance, dendrite arborization, synaptogenesis, and
synaptic plasticity (Troca-Marin et al., 2012).

Perturbations in mTOR signaling have significant impacts on
normal brain functions. Patients with Alzheimer’s disease and
Drosophila tauopathy models show enhanced mTOR signaling in
the brain (Li et al., 2005; Khurana et al., 2006). Hyperactivation
of the Akt-mTOR pathway is observed in hippocampal neurons
of Ts1Cje mice, which models Down syndrome (Troca-Marin
et al., 2011). Animal models and patients of Parkinson’s disease
exhibit enhanced levels of REDD1, which inhibits mTOR activity
(Malagelada et al., 2006). mTOR is observed in inclusion bod-
ies from Huntington’s disease patients and corresponding mouse
models (Ravikumar et al., 2004). Importantly, rapamycin treat-
ment alleviates several pathogenic traits observed in in vivo and
in vitro models of Alzheimer’s disease (Khurana et al., 2006;
Harrison et al., 2009), Parkinson’s disease (Pan et al., 2009; Tain
et al., 2009), and polyglutamine diseases (Ravikumar et al., 2004;
Berger et al., 2006; Pandey et al., 2007).

The therapeutic utility of rapamycin in ASD was suggested
in 2008 based on studies in Tsc2+/− mice (Ehninger et al.,
2008). The mTOR pathway is associated with TSC because TSC1
and TSC2 are upstream inhibitory regulators of mTOR activity
(Han and Sahin, 2011). In this study, the learning and memory
deficits, lethality, aberrant brain overgrowth, and altered synaptic
plasticity of Tsc2+/− mice were ameliorated by acute treatment
with rapamycin (Table 4). The social dysfunction and behav-
ioral inflexibility of Purkinje cell-specific Tsc1 mutant mice were
also improved by rapamycin (Tsai et al., 2012), further suggest-
ing that rapamycin may be useful in reversing core symptoms
of autism.

OXYTOCIN
Oxytocin is a nine amino acid neuropeptide hormone synthesized
by magnocellular neurons in paraventricular and supraoptic
nuclei of the hypothalamus and secreted from the posterior pitu-
itary gland into the circulation (Figure 1). Oxytocin acts through
oxytocin receptors (OXTRs), which are abundantly expressed
in the amygdala, hippocampus, and hypothalamus (Gould and
Zingg, 2003). Oxytocin is associated with various social behav-
iors including affiliation, maternity, aggression, and pair bonding
(Lee et al., 2009; Caldwell, 2012; Feldman, 2012). Given the
prominence of oxytocin in the regulation of social behavior,
the association of oxytocin with autism pathogenesis has been
extensively examined.

Several SNPs of OXTRs are associated with ASD (Wu et al.,
2005; Jacob et al., 2007; Yrigollen et al., 2008; Liu et al., 2010).
Oxtr knockout mice display autistic-like behaviors; they emit
fewer USVs upon social isolation, show defects in social recog-
nition and discrimination, and are less aggressive (Table 6)
(Takayanagi et al., 2005; Crawley et al., 2007). Supporting the
pharmacotherapeutic potential of oxytocin, nasal administration
of oxytocin improves social interactions and communications
(Andari et al., 2010; Kosaka et al., 2012), reduces repetitive
behaviors (Hollander et al., 2003), and enhances social cognition
(Hollander et al., 2007) in autism-affected individuals.

PERSPECTIVES
HOMEOSTATIC MECHANISMS UNDERLYING ASD
Tuberous sclerosis and fragile X syndrome are disorders with
common symptoms including intellectual disabilities, seizures,
and autism. While their genetic determinants are different
(TSC1/TSC2 for tuberous sclerosis and FMR1 for fragile X syn-
drome), their gene products both regulate protein synthesis
in neurons (Bassell and Warren, 2008; Ehninger et al., 2009).
Interestingly, animal models of tuberous sclerosis (Tsc2+/− mice)
and fragile X syndrome (Fmr1−/y mice) display abnormal protein
synthesis in opposite directions (Auerbach et al., 2011).

Tsc2+/− mice exhibit diminished mGluR-dependent LTD and
protein synthesis in the hippocampus, whereas Fmr1−/y mice
show excessive mGluR-dependent LTD and protein synthesis.
Consistent with this, cognitive impairments of the two animal
models are corrected by drugs that modulate mGluR5 in the oppo-
site manner (CDPPB for Tsc2+/− mice and MPEP for Fmr1−/y

mice). In addition, crossbreeding of these two mouse lines res-
cues behavioral impairments and synaptic dysfunctions. These
results strongly suggest that mGluR5-mediated synaptic plasticity
and protein synthesis in the normal range is important and that
deviation in either direction from a normal range can cause brain
dysfunctions that yield similar behavioral manifestations.

Another such example comes from two mouse models with
different mutations in the same gene. Shank2−/− mouse lines
lacking exons 6 and 7 (Won et al., 2012) or exon 7 only
(Schmeisser et al., 2012), both of which mimic mutations found
in humans (Berkel et al., 2010), display similar autistic-like
behaviors, but NMDAR function in their brains shows oppo-
site changes: NMDAR hypofunction with exons 6 and 7 deletion
and NMDAR hyperfunction with exon 7 deletion. Although
further details remain to be explored, this is another example
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suggesting that NMDAR function in a normal range is important,
and that deviations in either directions can lead to similar behav-
ioral abnormalities. Therefore, individuals with mutations in the
same gene may have to be carefully diagnosed, for example by
high-through sequencing, in order to receive proper treatment.

CORE MECHANISMS UNDERLYING ASD
Given the diverse genetic variations underlying the development
of ASD, one obvious challenge in understanding how ASD devel-
ops is the wide range of mechanisms associated with it. This
diversity poses a serious additional problem in treating ASD:
a single medication is likely to cover only a small fraction of
individuals with ASD, or a limited spectrum of ASD symptoms.

A related well-known example is the selective effect of risperi-
done. Risperidone, a dopamine antagonist, is an antipsychotic
mainly used to treat schizophrenia and bipolar disorder, and
it is currently one of the few FDA-approved medications for
autism. The drug mainly ameliorates irritability, hyperactivity,
and repetitive and restricted behaviors, but is largely ineffective
against social withdrawal and language deficits of autistic indi-
viduals (McPheeters et al., 2011). Similarly, risperidone rescues
repetitive grooming and hyperactivity, but not social deficits, in
Cntnap2−/− mice (Penagarikano et al., 2011). Another example is
the demonstration that CDPPB rescues only social interaction in
Shank2-deficient mice but fails to rescue impaired pup retrieval,
repetitive jumping, hyperactivity, and anxiety-like behavior (Won
et al., 2012). The fact that some medications reverse only selec-
tive symptoms/phenotypes of ASD, however, may provide an
opportunity to further explore detailed mechanisms underly-
ing particular aspects of ASD etiology. This would, in principle,
allow us to dissect and study synaptic or circuit mechanisms
that are specifically associated with certain aspects of ASD, such
as impaired social interaction, impaired social communication,
repetitive behavior, restricted interests, intellectual disability, anx-
iety, and hyperactivity.

A possible solution to the apparent diversity of ASD-related
mechanisms is to identify “core” mechanisms that cover a
large fraction of genetic variations, or a broader spectrum of
ASD symptoms. The concept of core mechanisms is based on
the assumption that a fraction of ASD-related proteins may
act together and converge on a common pathway. A possi-
ble core mechanism could be excitatory synaptic transmission.
Excitatory synaptic development can be regulated by a num-
ber of factors including synaptic adhesion molecules, synaptic
scaffolding proteins, and actin-regulatory proteins. In addition,

excitatory synaptic transmission, which is mainly mediated by
AMPAR receptors, can be determined by the regulators of the
synaptic trafficking and stabilization of AMPA receptors, and reg-
ulated by the signaling pathways in the downstream of NMDA
receptors, mGluRs, and monoamine receptors. Another core
mechanism could be the E-I balance, which is determined by
the relative amounts of excitatory and inhibitory synaptic trans-
missions, and, together with the excitability of postsynaptic neu-
rons, determines firing patterns of postsynaptic neurons and,
subsequently, network activities across the brain. Establishing
these core mechanisms, if any, would require rigorous and time-
consuming verifications using a range of approaches, including
mouse genetics, electrophysiology, and behavior.

INTEGRATING THREE ASPECTS OF ASD RESEARCH: HUMAN
GENETICS, MOUSE MODELS, AND POTENTIAL TREATMENTS
An important starting point for ASD research using mouse mod-
els would be to select best possible genetic variations that can
provide us decent insights into the underlying mechanisms and
potential treatments. Luckily, a large number of ASD-related
papers are being published each year (i.e., ∼2500 papers in 2012
when “autism” was used as a search key word in PubMed). These
publications, which use diverse genetic and genomic approaches
and often large size samples, have identified overlapping genes
and mutations, which are likely to have greater influences on
the development of ASD. Characterization of transgenic mouse
lines that carry these frequent genetic variations would help us
efficiently obtain ASD mechanisms with a greater impact.

The synaptic and circuit mechanisms derived from ASD
mouse model researches would provide clues to the ways to res-
cue synaptic/circuit phenotypes and ASD-like behaviors in mice.
Given that there is no FDA-approved treatment for social deficits
in ASD as of now, these rescue results will only be useful in
supporting that the candidate mechanisms are indeed causing
the ASD-like phenotypes in mice. Importantly, however, some of
these mechanism-based rescues may serve as the basis for clinical
trials. Eventually, some of the clinically verified medications may
return to basic ASD research and be used to identify additional
ASD mouse models with similar or novel underlying mecha-
nisms, which will help us understand a bigger picture, where
many synaptic and circuit mechanisms act together and converge
into more comprehensive mechanisms.
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