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Calcium (Ca?t)/calmodulin  (CaM)-dependent kinase [l (CaMKIl) activity plays a
fundamental role in learning and memory. A key feature of CaMKIl in memory formation
is its ability to be regulated by autophosphorylation, which switches its activity on
and off during synaptic plasticity. The synaptic scaffolding protein CASK (calcium
(Ca?*)/calmodulin (CaM) associated serine kinase) is also important for learning and
memory, as mutations in CASK result in intellectual disability and neurological defects
in humans. We show that in Drosophila larvae, CASK interacts with CaMKIl to control
neuronal growth and calcium signaling. Furthermore, deletion of the CaMK-like and L27
domains of CASK (CASK B null) or expression of overactive CaMKIl (T287D) produced
similar effects on synaptic growth and Ca?* signaling. CASK overexpression rescues the
effects of CaMKIIl overactivity, consistent with the notion that CASK and CaMKIl act
in a common pathway that controls these neuronal processes. The reduction in Ca%t
signaling observed in the CASK B null mutant caused a decrease in vesicle trafficking at
synapses. In addition, the decrease in Ca?* signaling in CASK mutants was associated
with an increase in Ethera-go-go (EAG) potassium (KT) channel localization to synapses.
Reducing EAG restored the decrease in Ca?* signaling observed in CASK mutants to
the level of wildtype, suggesting that CASK regulates Ca?* signaling via EAG. CASK
knockdown reduced both appetitive associative learning and odor evoked Ca2* responses
in Drosophila mushroom bodies, which are the learning centers of Drosophila. Expression
of human CASK in Drosophila rescued the effect of CASK deletion on the activity state of

CaMKiIl, suggesting that human CASK may also regulate CaMKII autophosphorylation.
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INTRODUCTION

CaMKII has been proposed to act as a molecular switch dur-
ing increased neuronal activity, when increased Ca’" levels
stimulate CaMKII activity to induce the changes in synap-
tic strength that underlie learning. The ability of CaMKII
to induce long lasting changes in synaptic strength has been
shown to be dependent on CaMKII autophosphorylation at
T286 (T287 in Drosophila). T287 autophosphorylation occurs
in response to prolonged increases in Ca’*, which result in
constitutively active CaMKII that is independent of Ca?*t. This
constitutive CaMKII activity has been suggested to be impor-
tant for long-term potentiation (LTP) and memory in rodents
(Giese et al., 1998; Hardingham et al., 2003; Sanhueza et al,,
2011) and Drosophila (Park et al., 2002; Mehren and Griffith,
2004; Hodge et al., 2006; Malik et al., 2013). In Drosophila,
CaMKII autophosphorylation is regulated at synapses by CASK,
a membrane-associated guanylate kinase (MAGUK) that is
kinase dead in Drosophila (Lu et al, 2003; Hodge et al,
2006).

Interactions of CASK with CaMKII can lead to inhibition of
CaMKII activity through CaMKII autophosphorylation at a sec-
ond pair of sites, T305/T306. This process results in reduced
binding of CaMKII to CaM, which decreases kinase activation by

synaptic

function, Drosophila, appetitive learning, calcium imaging,

Ca’* and thereby prevents T287 autophosphorylation. CaMKII
autophosphorylation at this site is important for long-term
depression (LTD) and behavioral plasticity in mice (Elgersma
et al., 2002; Pi et al., 2010) and Drosophila (Lu et al., 2003; Malik
et al., 2013).

The function of CASK has also been studied in mice, and
while CASK knock-outs are lethal due to a cleft palate phenotype,
neurons cultured from these animals show abnormalities in gluta-
matergic synaptic release (Atasoy et al., 2007). However, the early
lethality of these mice prevents the modeling of CASK function in
behavior and disease.

CASK has two isoforms, a full-length CASK f isoform
that contains the CaMK-like and L27 domains and PDZ,
SH3, and guanylate kinase domains. The other isoform, CASK
o, is short and contains only the common PDZ, SH3 and
guanylate kinase domains and forms a molecule with struc-
tural homology to vertebrate MPP (Slawson et al., 2011).
Previous characterization of CASK has focused on a large
chromosomal deficiency that removes both forms of CASK
and genes on either side of CASK. These deficiency flies
exhibit reduced synaptic currents, defects in neuromuscular
junction (NM]J) growth, decreased neurotransmitter release,
decreased vesicle cycling and a loss of interaction with neurexin
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(Zordan et al., 2005; Sun et al., 2009; Chen and Featherstone,
2011).

To investigate the true role of CASK in Drosophila, a deletion of
the full length CASK B isoform that resulted in viable adults was
used. This CASK B null allele deletes only the CaMK-like and L27
domains that are unique to CASK P and leaves the short CASK
a isoform and all flanking genes intact (Slawson et al., 2011).
The CASK B null has specific deficits in larval locomotor behav-
ior (Slawson et al., 2011) and adult sleep and place preferences
(Donelson et al., 2012). Furthermore, CASK B is required for 3h
and long-term memory as measured in an adult aversive olfac-
tory conditioning assay; this assay revealed that CASK is required
in the o//p’ subset of mushroom body neurons during memory
formation (Malik et al., 2013).

In this study, we used CASK B null flies to more accu-
rately analyze CASK synaptic function, as flanking loci are
not deleted in this flies, which is the case for flies with the
large chromosomal deficiency of the CASK region, which has
been phenotypically characterized previously (Lu et al., 2003;
Zordan et al, 2005; Hodge et al., 2006; Sun et al., 2009;
Chen and Featherstone, 2011; Slawson et al., 2011). CASK B is
shown to regulate CaMKII autophosphorylation during synap-
tic bouton growth and Ca®" signaling. We also demonstrate
that CASK B controls vesicle trafficking and the localization
of EAG K channels to synapses. In Drosophila larvae, CASK
P is required for appetitive associative learning and olfactory
evoked Ca?* responses in the mushroom body. Finally, we pro-
vide evidence that the human form of CASK seems capable
of compensating for the loss of Drosophila CASK in regulat-
ing CaMKII autophosphorylation, suggesting a high level of
conservation.

MATERIALS AND METHODS

FLY STRAINS AND GENETICS

All flies were grown at similar densities in bottles on stan-
dard medium at 22 & 2°C. CASK B null, uas-CASK (10,20 MI),
uas-CaMKII, uas-CaMKII-T287D, uas-CaMKII-T287A and uas-
TrpAl (Lu et al.,, 2003; Pulver et al., 2009; Slawson et al., 2011)
were kind gifts from Dr. Leslie Griffith (Brandeis University,
US). uas-EAG-RNA:i (stock #9126) and wuas-CASK-RNA: flies
(stock #104793, Malik et al., 2013) were obtained from the Vienna
Drosophila Stock Center (VDRC). MEF2-Gal4, 201Y-Gal4, and
uas-cacophony-eGFP (Ranganayakulu et al., 1996; Kawasaki et al.,
2004; Thum et al., 2007) were from the Bloomington Stock
Center. Wildtype flies [Canton Sw-, (CSw-)] were a kind gift from
Dr. Scott Waddell (Oxford University, UK). GCaMP3.1 flies (Tian
et al., 2009) were a gift from Dr. Loren Looger (Janelia farm,
VA, US). We are grateful to Dr. Hermann Aberle (Dusseldorf
University, Germany) for OK371-Gal4 flies (Mahr and Aberle,
2006). The uas-human CASK line has been described previously
(Malik et al., 2013). uas-GCaMP3 was meiotically recombined
with 201Y-Gal4 flies on the 2nd chromosome and homozy-
gosed. Similarly, uas-GCaMP3, uas-TrpAl and OK371-Gal4, uas-
GCaMP3 flies were generated by standard recombination crosses.
All CASK mutants, Gal4, and UAS lines were outcrossed with
the CSw- line for at least six generations prior to behavioral
experiments.

IMMUNOHISTOCHEMISTRY

Third-instar larvae were dissected in HL3.1 [70 mM NaCl, 5 mM
KCl, 10mM NaHCOs3, 115mM sucrose, 4 mM MgCl,, 5mM
trehalose, 1.5mM CaCly, and 5mM HEPES (pH 7.3)] using
standard techniques that have been used previously for these
antibodies (Hodge et al., 2006; Cavaliere et al., 2012). The dis-
sected larvae were fixed in 4% paraformaldehyde in HL3.1, per-
meabilized in HL3.1 with 0.1% triton X (HL3.1-tx), and then
blocked in HL3.1-tx, 0.1% BSA, and 2% normal donkey serum
(HL3.1-tx-BSA-NGS). Primary antibody incubations were per-
formed as indicted with anti-pT287 CaMKII (Santa Cruz, rabbit,
1:150), anti-Drosophila CaMKII (Cosmo, mouse, 1:100), anti-
HRP-FITC (Jackson ImmunoResearch Laboratories, 1:200), anti-
Drosophila DLG-PDZ2 [rabbit, 1:1000 (Sherwood et al., 2004)]
anti-Drosophila EAG [rabbit, 1:50 (Sun et al., 2004)], at 4°C
in HL3.1-tx-BSA-NGS. After washing three times in HL3.1-tx,
incubations were performed with anti-rabbit 405 nm, anti-rabbit
488 nm, or anti-mouse 648 nm fluorescently conjugated sec-
ondary antibodies (Alexa, Invitrogen, 1:400) in HL3.1-tx-BSA for
2 h at room temperature, after which the larvae were washed and
mounted in glycerol and Vectorshield (Vector Laboratories).

IMAGING AND QUANTIFICATION

All preparations within each immunohistochemistry experiment
were processed in parallel, and images were acquired with iden-
tical settings using a Leica SP5 confocal microscope. Care was
taken to maintain all intensity readings within the linear range
below saturation. Measurements of mean intensity, bouton area,
and quantification were performed manually with Volocity soft-
ware (PerkinElmer) by drawing round type Ib and Is boutons on
muscle 12. Because bouton number increases with muscle area
(Schuster et al., 1996), bouton number was normalized to muscle
area. The muscle area was determined by measuring the length
and width of muscle 12.

For live GCaMP3 experiments, larvae were dissected in HL3.1
and imaged essentially according to previously published pro-
tocols (Cavaliere et al., 2012). To prevent muscle contractions
during NMJ imaging, HL3.1 was supplemented with 7 mM glu-
tamate (HL3.1-glu). This concentration of glutamate desensitises
the postsynaptic glutamate receptors without significantly affect-
ing presynaptic Ca®* signaling (Macleod et al., 2004). uas-TrpAl,
uas-GCaMP3/OK371-Gal4 larvae were stimulated by bath appli-
cation HL3.1-glutamate at 35°C. Images were captured through
a 63 x water immersion lens (NA = 0.9) on a Zeiss widefield
Axio Examiner microscope, and images were taken at 4 frames
per second. The average of the first 10 frames during periods
of neuronal inactivity was calculated after subtraction of back-
ground fluorescence. GCaMP3 intensity values were normalized
to this baseline intensity. Ventral ganglion imaging was performed
in similar manner using HL3.1 without glutamate on a Zeiss
widefield Axio Examiner microscope (10 x water immersion lens
NA = 0.3), and images were taken at 10 frames per second.

Similar to previous studies (Asahina et al., 2009), larval mush-
room body imaging was performed by first cutting off the heads
of the larvae in HL3.1. The salivary glands and digestive tract
were removed to allow visualization of the brain. A small hole
was made in a strip of PVDF membrane, which was then placed
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across a custom-made airflow chamber that allowed odor to
be puffed onto the larval head. The dissected head of the lar-
vae was placed into this hole so that the tip of the head was
on one side of the PVDF membrane and the brain was on
the other side. Low melt agarose (1%) in HL3.1 was applied
over the top of the brain to prevent the media from covering
the tip of the larvae’s head and was allowed to set at 4°C for
1 min. HL3.1 was then added to the top of this agarose to allow
for imaging of GCaMP3 in the mushroom body calyx through
a 63x water immersion lens (NA = 0.9) on a Zeiss widefield
Axio Examiner microscope. Images were acquired using iden-
tical exposure times at 10 frames per second. After recording
for approximately 1 min, during which time a constant air flow
was delivered via an aquarium pump, the air was the passed
through a chamber containing a piece of tissue soaked in hexyl
acetate (Sigma, 1:10 in mineral oil) for approximately 10s before
the odor-free air was applied. The part of the calyx specifically
activated by the application of odor was selected as the region
of interest, and the mean background-subtracted intensities for
each time point were calculated for this region. The ratios of the
mean intensity at each time point to the intensity at baseline were
calculated.

FM1-43 IMAGING

FM1-43 loading of motor neuron terminals at larval NMJs was
performed as described previously (Sun et al., 2009). Wandering
third-instar larvae were dissected in Ca?*-free HL3 as above.
The larvae were then incubated with 1 WM FM1-43 in 90 mM
KCI and HL3 with 1.5mM Ca?* for 10 min. FM1-43 loading
was terminated by washing the larvae five times for 10 min with
Ca’*-free HL3. A stack of images of the labeled vesicles was
acquired for quantification using the 63x objective (NA = 0.9)
of a Zeiss widefield Axio Examiner microscope, and all set-
tings remained constant between preparations. The mean labeling
intensities of approximately 10 boutons per NMJ on muscle 12
were determined using Volocity.

LARVAL APPETITIVE LEARNING

Larval learning experiments were performed as previously
described (Chen et al., 2011). Approximately 100 flies were
allowed to lay eggs for 12 h in bottles containing standard media
and maintained at 25°C. These eggs were then allowed to develop
for 5 days, and the wandering third-instar larvae were then sepa-
rated from the food by floating in a 15% sucrose solution prior to
being washed in running tap water. These larvae were then used
immediately in the larval learning experiments. Larval training
was performed using 9 cm petri dishes containing approximately
10 ml 1% agarose dissolved in ddH,O with or without 2M fruc-
tose. Odors were presented in an odor cup made from the top
of a 500 pl thin-walled micro-centrifuge tube. The bottom of the
tube (1cm from the top) was cut away and replaced with the
lid of another micro-centrifuge tube. Holes in the lid were then
made using a pair of sharp forceps heated with a Bunsen burner.
A small piece of blotting paper containing 20 pl of either hexyl
acetate or benzaldehyde (Sigma) diluted 1:10 with mineral oil
was placed in the odor cup. Odor cups containing the stimulus
that had been conditioned with reinforcement (CS+) were placed

1 cm from the edge on either side of the petri dish containing
fructose (unconditioned stimulus, US). The larvae were allowed
to crawl in this dish for 5min before being transferred to the
petri dish that contained pure agarose and the stimulus that
had been conditioned without reinforcement (CS—) for a fur-
ther 5min. This process was repeated three times. For testing,
the larvae were then placed in a 7mm wide stripe in the mid-
dle of a pure agarose plate with the CS4 and CS— odors on
opposite sides of the dish. After 3 min the larvae on either side of
dish and in the 7 mm wide middle strip were counted. A perfor-
mance index (PI) was then calculated according to the following
equation:

Performance index = (#cs+ — #cs—) /#Total

The odors representing the CS+ and CS— were then swapped,
and the test was repeated to produce a second PI that was averaged
with the first PI to yield an n of 1.

To measure fructose acuity, larvae were placed in the middle
of a petri dish that contained pure agarose gel in one half and
agarose gel containing 2 M fructose in the other half. Larvae were
placed in the middle of the fructose acuity test plate and allowed
to crawl for 5 min after which a PI was calculated according to the
following equation:

Performance index = (#pructose — #Pure) /#Total

Odor acuity control experiments were performed by placing
odors on one side of a pure agarose petri dish and allowing lar-
vae to crawl for 3 min after which the larvae on either side of dish
and in the 7 mm wide middle strip were counted to calculate a
preference index using the following equation:

Performance index = (#0dour — #Pure)/#Total

STATISTICAL ANALYSIS

All statistical analyzes was performed in Prism (GraphPad). All
data were analyzed with unpaired two-tailed Student’s ¢-tests or
One-Way ANOVAs with Bonferroni post-hoc testing where appro-
priate. We ensured that the variances did not differ significantly
between groups. For each experiment, the details of the statis-
tical analyzes and N’s can be found in the figure legends. In all
figures, error bars represent the SEM. No asterisk indicates p >
0.05, * indicates p < 0.05, ** indicates p < 0.01 and *** indicates
p < 0.001.

RESULTS

THE CaMK-LIKE AND L27 DOMAIN-CONTAINING ISOFORM OF CASK
REGULATES SYNAPTIC TERMINAL GROWTH

To determine the role of the long CASK isoform in control of
synaptic morphology and the regulation of CaMKII autophos-
phorylation, we characterized the NMJs of homozygous CASK
B wandering third-instar mutant larvae. Drosophila larval NMJs
have a stereotyped pattern in which identified motor neurons
form specific types of boutons (type Ib, Is, II and III boutons)
on particular muscles (Hoang and Chiba, 2001). On muscle 12,
motor neuron MN12-Ib forms type Ib boutons that are large
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(3-10 pm) and contain glutamatergic synapses. Motor neuron
MNISNb/d-Is (RP5) terminates on muscle 12 and forms type Is
boutons that are also glutamatergic, but these boutons are smaller
in size (2-4um) (Hoang and Chiba, 2001). Larvae were dis-
sected and co-stained with anti-HRP (green), which labels the
presynaptic neuronal membrane (Jan and Jan, 1982), and anti-
DLG-PDZ2 (magenta), a marker for the postsynaptic density
(PSD) and sub-synaptic reticulum (Sherwood et al., 2004). Using
pre- and post-synaptic markers, we quantified the effect of CASK
and CaMKII on synaptic bouton morphology. Compared to con-
trols (Figure 1A), CASK B null NM]Js appeared to contain more
boutons that were smaller in size (Figure 1B). Quantification of
the number of type 1s boutons revealed similar numbers between
control and CASK P null larvae (Figure 1C). However, the sizes
of the CASK B null boutons were smaller than those of con-
trols (Figure 1D). CASK f null NMJs contained more type 1b
boutons (Figure 1E) that were also smaller in size than those of
the controls (Figure 1F). To explore whether CASK was func-
tioning pre- or post-synaptically to bring about these changes
in synaptic terminal morphology, we used a transgene to over-
express CASK (Hodge et al., 2006) and an RNA: transgene spe-
cific for CASK (Malik et al., 2013) that were either expressed
in motor neurons [OK371-Gal4, (Mahr and Aberle, 2006)] or
muscle [MEF2-Gal4, (Ranganayakulu et al., 1996)]. The reduc-
tion in presynaptic CASK by RNAi knockdown was sufficient
to cause the increase in type 1b boutons (Figure 1G) that was
also observed in CASK B null larvae but had no effect of bou-
ton area (Figure 1I). The change in bouton area observed in
CASK B null larvae seemed to be mediated by a postsynaptic
function of CASK, as muscle expression of CASK-RNAi reduced
type Ib bouton area, and CASK overexpression increased type 1b
bouton area (Figure 1J), but had no effect on bouton number
(Figure 1H).

To address whether these CASK-dependent synaptic changes
were brought about via CASK’s regulation of CaMKII (Lu
et al., 2003; Hodge et al, 2006), we tested whether trans-
genic manipulation of CaMKII would recapitulate these synaptic
defects. Reducing CASK is known to result in increased CaMKII-
T287 autophosphorylation (Hodge et al, 2006). Consistent
with this, we found that expressing CaMKII-T287D presy-
naptically phenocopied the increase in type 1b boutons
observed after deletion of CaMK-like and L27 domain-containing
CASK or the presynaptic reduction of CASK. Conversely,
RNAi mediated reduction in presynaptic CaMKII activity
(Ashraf et al., 2006) caused a reduction in bouton number
(Figure 1K).

Phosphorylation at TT306/7 is known to occur after T287
autophosphorylation and reduce the kinase activity of CaMKII
by between 20 and 80% (Hanson and Schulman, 1992; Jama
et al., 2009; Coultrap et al., 2010). Overexpression of CASK
causes an increase in CaMKII-T306 T307 autophosphorylation
(Hodge et al., 2006) that reduces kinase activity. Therefore, we
co-expressed CASK concurrently with CaMKII-T287D presynap-
tically and found this rescued the increase in bouton number
observed after presynaptic T287D expression alone, confirming
that CASK and CaMKII act together in a common presynaptic
pathway that controls synaptic growth (Figure 1L).
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FIGURE 1 | CASK and CaMKIl regulate synaptic morphology.
Representative images of muscle 12 of Drosophila third-instar larval
neuromuscular junctions (NMJ) visualized with the presynaptic marker
anti-HRP (green) and the postsynaptic marker anti-DLG (PDZ1-2, magenta).
NMJs of larvae with precise (A) and imprecise (B) excisions of CASK
(CASK B null) that remove the CaMK-like and L27 domain-containing version
of CASK (Slawson et al., 2011). (C) Compared to controls, the total
number of small (type 1s) boutons normalized to muscle area did not change
(Continued)
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FIGURE 1 | Continued

(p > 0.05, n = 6). (D) However, the area of the 1s boutons was significantly
(n =6, p < 0.05) decreased in CASK B null larvae. Regarding, the larger
(Type 1b) boutons, CASK B deletion caused an increase (p < 0.05, n = 6) in
synapse number (E) and a decrease in size (F) (p < 0.05, n = 6).

(G) Pre-synaptic (OK371-Gal4) reduction in CASK was sufficient to cause an
increase (p < 0.05, n = 6) in 1b bouton number, but had no effect on
bouton area (). Postsynaptic (MEF2-Gal4) overexpression of CASK

(J) caused an increase (p < 0.05, n = 6) in 1b bouton area (H) without
affecting bouton number (p > 0.05, n = 6). Presynaptic overexpression of
the constitutively active CaMKIl phosphomimic (T287D) transgene (Park

et al.,, 2002) caused an increase (p < 0.05, n = 6) in synapse number (K).
Conversely, reducing presynaptic CaMKIl activity (CaMK/I-RNAI) reduced
(p < 0.05, n = 4) 1b bouton number. (L) Presynaptic (OK371-Gal4)
overexpression of T287D increased (p < 0.05, n = 6) type 1b bouton
number, while CASK overexpression alone had little effect compared to
controls. Co-expression of CaMKII-T287D with CASK

(OK371-Gal4> uas-CASK/uas-CaMKII-T287D) returned type 1b bouton
number to control levels (p < 0.05, n = 5). All data in (C-F) were analyzed
with unpaired t-tests. All data in (G-L) were analyzed with One-Way
ANOVA and Bonferroni post-hoc testing. In this and all subsequent figures,
error bars represent the SEM. No asterisk indicates p > 0.05, * indicates
p < 0.05, ** indicates p < 0.01 and *** indicates p < 0.001.

THE CaMK-LIKE AND L27 DOMAIN-CONTAINING ISOFORM OF CASK
REGULATES THE SWITCH OF SYNAPTIC CaMKII TO CALCIUM
INDEPENDENCE

While it has previously been shown that deletion of the CASK
gene results in dysregulation of CaMKII autophosphorylation
(Hodge et al., 2006), these mutant flies also have heterozygous
deletions of genes on either side of the CASK locus. Furthermore,
the shorter isoform of CASK (CASK a) was also deleted in these
studies (Slawson et al., 2011). Therefore, to determine the role
of the CaMK-like and L27 domain-containing isoform of CASK
in the regulation of synaptic CaMKII autophosphorylation, we
used a CaMKII-T287 phospho-specific antibody (Figures 2A,B,
green). We found that the mean bouton pT287 CaMKII stain-
ing intensity was greater in CASK B null larvae for the type 1s
(Figure 2C) and 1b boutons (Figure 2D) than in controls. While
this result may be due to CASK P regulating CaMKII autophos-
phorylation, CASK could also conceivably have a scaffolding role
that localizes CaMKII to synapses, or alternatively, CASK could
increase the density of CaMKII present in the boutons by reduc-
ing bouton size. To address these questions, we co-stained NMJs
with an antibody to total CaMKII (Figures 2A,B, magenta). The
total level and spatial distribution of CaMKII was unchanged
in CASK B null synapses compared to controls (Figures 2E,F),
confirming that the amount of T287 autophosphorylation per
synaptically localized CaMKII molecule had indeed increased
(Figures 2G,H) and that CASK was not required for localizing
CaMKII to synaptic bouton sites. To determine whether CASK
was regulating CaMKII autophosphorylation by a pre- or post-
synaptic mechanism, we knocked down CASK on either side of
the synapse. The effect of these genetic manipulations on CASK
levels were verified by immunohistochemistry, which showed that
CASK knockdown in motor neurons reduced CASK expression at
the NMJ by 52% compared to controls (Figures 2L,J). We found
that either motor neuron (Figure2K) or muscle (Figure2L)
expression of CASK-RNAi was sufficient to cause a switch

to the Ca?T-independent constitutively active (pT287) state
of CaMKII.

CASK AND CaMKII ACT IN A COMMON PATHWAY REGULATING
ACTIVITY-DEPENDENT CALCIUM SIGNALING

To further understand how CASK and CaMKII may be alter-
ing neuronal function in vivo, we expressed the genetically
encoded calcium reporter GCaMP3 (Tian et al., 2009; Cavaliere
et al.,, 2012) in these motor neurons to study activity-dependent
changes in Ca’* signaling (Figure 3). Transient increases in
motor neuron Ca?* are likely to control the movement of the
larvae. Larvae crawl by peristaltic contractions of muscles in the
tail segment that are followed by sequential posterior to ante-
rior contraction of each segment (Cattaert and Birman, 2001).
We reasoned that if there were endogenous peristaltic contrac-
tions of the larval preparation, then these contractions should be
accompanied by increases in Ca’" signaling at the NM]Js of the
contracting body wall segment (Figures 3A—C). As CASK B null
larvae have a number of deficits in locomotion (Slawson et al.,
2011), we sought to determine whether there were any changes
in NMJ Ca?" signaling that occurred during these peristaltic
contractions. Although there was a reduction in this Ca?* sig-
naling, it was not significant (Figures 3A—C); this finding is likely
due to the substantial movement artifacts, which increased the
standard deviation of the recorded responses in this preparation.
Therefore, we co-expressed the heat-activated ion channel TrpAl,
which, when exposed to 30°C, causes a large depolarization and
activation of these neurons (Pulver et al., 2009). Heat activation
of TrpAl robustly stimulated these motor neurons resulting in
a large increase in synaptic Ca>* signaling (Figures 3D-F), and
while process induced some movement, the movement could be
more easily controlled for than that during peristaltic contrac-
tion. The increase in peak Ca** induced by heat activation of
TrpAl was greatly reduced when the CaMK-like and L27 domain-
containing version of CASK was absent in the CASK f null larvae
(Figure 3F).

The cell bodies of the motor neuron NMJs that were imaged
in the previous set of experiments are located in the ventral gan-
glion, where they are arranged in a segmentally repeated pattern
such that motor neurons present posteriorly project to muscles
located in the most posterior segments. Imaging of the ventral
ganglion showed sequential activation of motor neurons char-
acterized by waves of activation that moved from posterior to
anterior segments and represented fictive crawling (Figure 3G).
This increase in motor neuron cell body Ca’* was quantified
(Figure 3H). Reduction of CASK in these motor neurons reduced
peak Ca’* signaling but resulted in no significant change at
baseline (Figure 31I). Similarly, increased CaMKII-T287D in these
neurons also produced a similar reduction in peak Ca’* level,
and this deficit was partially reversed by co-expression of CASK
(Figure 3H). This finding is again consistent with CASK and
CaMKII autophosphorylation acting in the same pathway that
regulates both activity-dependent Ca®* signaling and synaptic
bouton morphology.

We were interested in the functional consequences of the
reduction in synaptic Ca’* signaling observed in the CASK B
null background. Previous work has shown that CASK is involved
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FIGURE 2 | The CaMK-like and L27 domain-containing version of CASK
regulates CaMKIl autophosphorylation at synapses. Compared to
control (A) CASK B null larvae (B) exhibited increased levels of synaptic
CaMKII autophosphorylation at T287 [as visualized in green using a
phospho-specific antibody to CaMKII-T287 (Hodge et al., 2006)] relative to
total synaptic CaMKII [visualized in magenta using an antibody raised
against CaMKIl (Hodge et al., 2006)]. Overlapping expression is shown in
white. Removal of the CaM-Kinase and L27 domains of CASK caused an
increase (p < 0.05) in pT287 at 1s (C) and 1b (D) boutons. The total
amount of CaMKII localized at synapses was not affected (p > 0.05) by the
removal of CASK (E,F). The ratio of pT287 to total CaMKIl (G,H) also
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showed a significant (p < 0.05) increase in the CASK B null larvae.

(I) Representative images of CASK (green) and HRP (magenta) stained
NMJs from control larvae, larvae overexpressing CASK-RNA/ in their motor
neurons and larvae overexpressing CASK in their motor neurons.

(J) Quantification of the effect of CASK knockdown or overexpression on
anti-CASK staining showed that genetic manipulation of CASK significantly
changed the amount of CASK present at the NMJ (p < 0.05). Reductions
in CASK either pre- (K) or post-synaptically (L) caused increases (p < 0.05)
in CaMKIl (T287) autophosphorylation. All data in (C-H) were analyzed by
unpaired t-tests (n=6). All data in (J-L) were analyzed by One-Way
ANOVA with Bonferroni post-hoc tests (n = 6).
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FIGURE 3 | The CaMK-like and L27 domain-containing version of CASK
regulates calcium signaling and vesicle cycling. Compared to resting
synapses, there is an increase in Ca2* signaling during peristaltic crawling,
and this increase is reported by the genetically encoded Ca?t indicator
GCaMP3, which was expressed in motor neurons, as shown in
representative images of larval muscle 12 NMJs (A) This increase can be
observed as a Ca?t-dependent increase in GCaMP3 fluorescence intensity
compared to baseline (B) CASK B deletion non-significantly reduced this

signal (C) (p > 0.05,

null background (F).

HL3.1 saline to acutely heat-activate the synaptic terminals of motor neurons
expressing TrpA1 (OK371-Gald> uas-TrpA1/uas-GCaMP3) caused a robust
Ca?* influx at muscle 12 NMJs (D) that could also be observed on a time
trace showing maximum GCaMP3 intensity/baseline (E). This increase in
Ca?t signaling was reduced (p < 0.05, n = 3, unpaired t-test) in the CASK p
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n =3, unpaired t-test). Application of heated (30°C)

The increase in CaZ* signaling during peristaltic
(Continued)
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FIGURE 3 | Continued

crawling also occurred in the segmentally arranged motor neuron cell
bodies in the ventral ganglion (G,H). (H) Reduction in CASK
(OK371-Gald> uas-CASK-RNAi/uas-GCaMP3) caused a reduction (p < 0.05,
n =26, One-Way ANOVA with a Bonferroni post-hoc test) in peak GCaMP3
fluorescence relative to baseline compared to control. Similarly, increased
expression of T287D reduced peak Ca?t levels (p < 0.05, n=4). CASK
co-overexpression (OK371-Gald>uas-GCaMP3/uas-CASK;uas-CaMKII-T287D)
partially rescued the decrease in peak Ca?t level compared to larvae

with increased expression of T287D alone (p < 0.05, n=4), but this
peak level was still lower than observed in controls (p < 0.05, n=4).

(I) No significant differences were observed in baseline GCaMP3 levels
between genotypes (p > 0.05, n=4-6, One-Way ANOVA with a
Bonferroni post-hoc test). (J) To investigate the synaptic consequences of
the reduction in Ca?* in presynaptic terminals, we measured vesicle
recycling and found that there was a significant reduction (p < 0.05,
n=3, unpaired t-test) in loading of FM1-43 in CASK B null larvae
compared to controls.

in neurotransmitter release and vesicle cycling in Drosophila
synapses (Sun et al., 2009) because a chromosomal deficiency
of CASK reduces vesicle trafficking. To determine whether this
reduction was due to the CaMK-like and L27 domain-containing
version of CASK, we measured activity-dependent vesicle recy-
cling by loading FM1-43 dye into vesicles at the NMJ of control
and CASK B null larvae and stimulating the synapses with 90 mM
KCI for 10 min. We found that removal of CASK § was sufficient
to reduce vesicle trafficking (Figure 3]J).

DOWNSTREAM MECHANISMS OF CASK THAT REGULATE

CALCIUM SIGNALING

CASK knockdown has previously been shown to reduce the local-
ization of CaV2.2 Ca?t channels to the plasma membrane in
mouse hippocampal primary cell culture (Samuels et al., 2007).
We investigated whether CASK knockdown in Drosophila larvae
reduced the localization of a GFP-tagged CaV2 Ca?* channel
[uas-Cacophony-eGFP, (Kawasaki et al., 2004)] to the NMJ and
found no significant effect (Figure 4A). CaMKII-T287D expres-
sion has previously been shown to phosphorylate the scaffolding
protein DLG, which reduces the localization of this protein to
synapses (Koh et al., 1999). This loss of synaptic DLG reduces
FaslI localization and results in an increase in bouton number.
However, quantification of mean bouton DLG (Figure 4B) or
FaslI (Figure 4C) antibody-specific staining intensity at the NM]J
showed no effect of CASK B deletion.

CaMKII-T287D is known to increase Kt conductance in lar-
val Drosophila muscles and to cause an increase in action potential
failures in motor neurons (Park et al., 2002). These effects may be
mediated through CaMKII phosphorylation of the K™ channel
EAG at T787, which increases EAG K current in oocytes (Wang
et al., 2002). Mutation of this amino acid to a phospho-blocking
residue also reduces localization of the channel to the plasma
membrane (Marble et al., 2005). However, as CASK coexpression
with EAG in oocytes increases EAG localization to the plasma
membrane, this finding presents a divergence in the potential
effects of CASK on EAG function; CASK may reduce EAG func-
tion via CaMKII inhibition or increasing EAG function via a
direct interaction. To investigate whether CASK’s regulation of
EAG in Drosophila is involved with the decrease in Ca?* signal-
ing in motor neurons, NMJs were stained (Figure 5A) with an
EAG-specific antibody (Sun et al., 2004). Compared to controls,
there was an increase in EAG localization to the NM]J in CASK
B null larvae (Figures 5B,C). This finding is consistent with the
notion that CASK regulates Ca?T signaling via an interaction with
CaMKII to alter neuronal excitability via EAG. To explore whether
this interpretation is correct, EAG-RNAi was co-expressed with
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FIGURE 4 | CASK does not regulate the localization of Cav2, Fasll, or
DLG to synapses. (A) CASK knockdown had no effect on the intensity of
Cac-EGFP at the NMJ compared to control (p > 0.05, n = 6, unpaired
t-test). (B) CASK B deletion did not significantly affect the intensity of Fasl|
staining at the NMJ (p < 0.05, n = 6, unpaired t-test). (C) CASK B deletion
did not significantly affect the intensity of DLG staining at the NMJ

(p < 0.05, n= 6, unpaired t-test).

CASK-RNA:i to investigate whether EAG reduction would prevent
the CASK knockdown-induced impairment of Ca*" signaling.
Compared to control, knock down of EAG was sufficient to rescue
the effects of CASK knockdown (Figure 5D). This finding is
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FIGURE 5 | Signaling downstream of CASK in calcium signaling and
synaptic growth. (A,B) Representative images of EAG staining at the NMJ
in control and CASK B null larvae. (C) CASK B deletion significantly
increased the intensity of EAG staining at the NMJ (p < 0.05, n = 6,
unpaired t-test). (D) GCaMP3 imaging of the ventral ganglion during fictive
crawling shows that the decrease in peak CaZ* level induced by CASK
knockdown was rescued by EAG knockdown. EAG knockdown alone did
not significantly increase Ca2* signaling (p > 0.05, n = 5-6, One-Way

ANOVA with a Bonferroni post-hoc test).

consistent with the notion that CASK acts with EAG in a common
pathway to regulate Ca®* signaling.

CASK IN THE MUSHROOM BODY IS REQUIRED FOR ASSOCIATIVE
MEMORY FORMATION AND ODOR-EVOKED CALCIUM RESPONSES
These changes in activity-dependent neuronal Ca?* signaling and
synaptic morphology are consistent with a role of the CaMK-like
and L27 domain-containing isoform of CASK in synaptic plastic-
ity. To explore the functional consequence of CASK B-mediated

changes in neural function, we tested CASK B null larvae for
appetitive associative learning (Figure 6A) using adapted previ-
ously published protocols (Tully and Quinn, 1985; Chen et al.,
2011). CASK B null larvae were deficient in the ability to associate
an odor with a positive reward (fructose, Figure 6B). To deter-
mine which neurons mediated this deficit in memory caused by
the loss of CASK function, we specifically knocked down CASK in
the mushroom bodies using 201Y-Gal4 (Pauls et al., 2010). This
Gal4 line allows for the expression of transgenes under uas con-
trol in the y neurons of the larval mushroom body, the function of
which is essential for larval appetitive learning (Pauls et al., 2010).
Bidirectional changes in CASK expression in the y neurons led
to memory impairments (Figure 6C), indicating that the correct
level of CASK in the mushroom body is required for memory for-
mation. We expressed GCaMP3 under 201Y-Gal4 to investigate
the responses of these olfactory memory neurons to odor appli-
cation. CASK knockdown reduced odor-induced Ca>* signaling
(Figures 6D,E). The CASK mutant genotypes did not exhibit
changes in odor acuity or the ability to sense fructose reward
(Figure 7). This assay requires larvae to move toward these stim-
uli; thus, locomotor impairment does not prevent CASK mutant
larvae from participating in this task.

HUMAN CASK EXPRESSION RESCUES THE EFFECT OF CASK
DELETION ON CaMKIl AUTOPHOSPHORYLATION

As the amino acids of Drosophila CASK and CaMKII are highly
homologous with their human homologs [74 and 79%, respec-
tively, (Cho et al., 1991; Hsueh, 2006)], it is possible that human
CASK would also interact with CaMKII. To investigate if human
CASK can regulate Drosophila CaMKII autophosphorylation,
human CASK was expressed in Drosophila motor neurons in a
CASK B null background. Immunohistochemistry was performed
to examine changes in pT287 CaMKII at the NM]J and showed
that the expression of human CASK rescued the dysregulation
of CaMKII autophosphorylation induced by deletion of CASK f
(Figures 8A-F).

DISCUSSION

CaMKII autophosphorylation is a central mechanism in synap-
tic plasticity and associative memory formation in mammals
and Drosophila (Giese et al., 1998; Lisman et al., 2002; Park
et al., 2002; Hardingham et al., 2003; Mehren and Griffith,
2004; Hodge et al., 2006; Sanhueza et al.,, 2011; Malik et al.,
2013). Therefore, the finding that CASK can regulate CaMKII
autophosphorylation suggests that this mechanism may have
a role in the cognitive deficits induced by CASK mutation in
humans (Froyen et al., 2007; Najm et al., 2008; Piluso et al.,
2009; Tarpey et al., 2009). To explore this hypothesis, we inves-
tigated the physiological significance of the regulation of CaMKII
autophosphorylation by CASK. We show for the first time that
this interaction regulates synaptic growth, behaviorally induced
Ca’* signaling and appetitive learning. Furthermore, although
it has previously been shown in Drosophila that CASK increases
CaMKII TT306/7 phosphorylation to reduce T287 autophospho-
rylation (Lu et al., 2003; Hodge et al., 2006), we demonstrated that
human CASK expression in Drosophila also regulates CaMKII
autophosphorylation. These findings suggest that dysregulation
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FIGURE 6 | The CaMK-like and L27 domain-containing version of CASK
is required for appetitive learning. (A) The role of CASK in associative
memory was assessed by a larval olfactory-sugar reward conditioning
protocol (Chen et al., 2011) described by the cartoon. The large rounded
square on the left depicts the training phase of the protocol. Larvae were
sequentially placed on petri dishes, represented by the large black circles,
that contained either pure agarose (white filled circles) or 2 M fructose
agarose (blue filled circles, the unconditioned stimulus, US). At the same
time, the larvae were exposed to one of two neutral odors (the conditioned
stimulus, CS). In the example given (top row) the larvae received 5 min of
hexyl acetate on fructose-agarose (HA, small yellow filled circles, CS+) and
then 5 min of benzaldehyde on agarose alone (BZ, small red filled
(Continued)

FIGURE 6 | Continued

circles, CS—). This training cycle was repeated 3 times before the test
phase (depicted by the large rounded circle on the right) in which the larvae
were allowed to move toward one of the two odors on pure agarose. The
larvae showed learning by going toward HA (CS+). A performance index
was calculated as the number of larvae that went to the CS+ minus the
number of larvae that went to CS— divided by the total number of larvae.
Bottom row, the odors representing the CS+ and CS— were swapped to
produce a second performance index that was averaged with the reciprocal
of the performance index to give an n of 1. (B) CASK B deletion caused a
reduction (p < 0.05, n =4, unpaired t-test) in learning compared to
controls. (C) Compared to controls, learning was decreased (p < 0.05,

n = 6, One-Way ANOVA with a Bonferroni post-hoc test) by both CASK
knockdown and overexpression in the y—lobe neurons of the mushroom
body. (D) Representative images of GCaMP3 expressed in the y—-lobe
neurons of the mushroom bodies at rest and during odor application.

(E) Odor-evoked Ca?t responses were reduced (p < 0.05, n = 6, unpaired
t-test) by CASK knockdown in the mushroom body.

of CaMKII autophosphorylation is potentially a mechanism
that underlies neurological disorders resulting from CASK
mutations.

CASK REGULATES SYNAPTIC BOUTON MORPHOLOGY AND RESCUES
THE EFFECTS OF CaMKIl OVERACTIVITY

The role of CASK in regulating synaptic bouton growth at the
NM]J has been studied, but the results are inconsistent. One
study showed an increase in the total number of type 1 bou-
tons at the NM]J of Drosophila larvae containing a large chro-
mosomal deficiency that removed both CASK $ and CASK o
and produced heterozygous deletions of genes on either side
of CASK (Sun et al., 2009). However, a second study that also
used these CASK deficiency larvae showed that the total num-
ber of type 1 boutons did not change, although this study
reported a reduction in the number of active zones (Chen and
Featherstone, 2011). We have attempted to resolve these incon-
sistencies by studying larvae with a deletion that specifically
removed the CaMK-like and L27 domain-containing isoform
of CASK (Slawson et al., 2011). We show that deletion of the
CASK B isoform alone caused an increase in type I synaptic
bouton growth. Remodeling of presynaptic boutons is known to
occur in the rat mossy fiber system after spatial learning, which
suggests that control of presynaptic growth is likely to be impor-
tant for the formation of long-lasting memories (Holahan et al,,
2006). As we showed that CASK influences the control of synap-
tic growth by regulating CaMKII activity, this role of CASK may
be a mechanism by which CASK dysfunction impairs learning
and memory.

CASK RESCUES THE EFFECTS OF CaMKII OVERACTIVITY ON

CALCIUM SIGNALING

As Ca?" signaling induced by neuronal activity is important in
the control of synaptic strength (Unni et al., 2004), the reduc-
tion of Ca?" signaling and synaptic growth resulting from CASK
knockdown is consistent with the notion that CASK knock
down causes deficits in synaptic plasticity and, hence, learning.
These results suggest that CASK regulates Ca’* signaling through
CaMKII. At the Drosophila NMJ, CaMKII primarily decreases
synaptic activity, as neuronal expression of CaMKII-T287D is
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FIGURE 7 | CASK does not regulate odor or fructose acuity. (A-C) CASK
B deletion did not affect odor or fructose acuity compared to controls

(p > 0.05, n = 3, unpaired t-test). (D-F) CASK knockdown or
overexpression in the y-lobe neurons of the mushroom body had no
significant effects on odor or fructose acuity compared to controls

(p > 0.05, n= 3, One Way ANOVA with a Bonferroni post-hoc test).

known increase the probability of the failure of evoked responses
(Park et al., 2002). Consistently, we found that CaMKII-T287D
expression also reduced Ca’>* signaling. When both CASK and
CaMKII-T287D were co-expressed, Ca’t signaling was rescued
compared to T287D expression alone, again suggesting that these
molecules are interacting in a pathway that controls Ca’* signal-
ing. A similar reduction in GCaMP3 response has been observed
with CASK knockdown or CaMKII-T287D expression in the

Control;0K371-Gal4 Control;uas-hCASK

CASK B null;uas-hCASK

CASK B null;0K371-Gal4>
uas-hCASK,

pT287/Total CaMKII

FIGURE 8 | Human CASK expression rescues the effect of CASK B
deletion on CaMKIl autophosphorylation. Representation images of
pT287 CaMKll-stained NMJs from (A) OK371-Gal4/+ control larvae

(B) vas-human CASK/+ control larvae (C) CASK B null; OK371-Gal4 mutant
larvae (D) CASK B null; uas-human CASK mutant larvae (E) CASK B null;
OK371-Gal4> uas-human CASK rescue larvae. (F) CASK B null; uas-human
CASK and CASK B null; OK371-Gal4 mutant larvae had significantly elevated
pT287 CaMKIl levels compared to uas-human CASK or OK371-Gal4 larvae
(p < 0.05). Motor neuron expression of human CASK in a CASK 8 null
background significantly reduced pT287 CaMKII levels to levels that were
indistinguishable from wildtype (p > 0.05, n = 6, One Way ANOVA with a
Bonferroni post-hoc test).
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adult mushroom body (Malik et al., 2013). As both reductions in
CASK and CaMKII-T287D expression in motor neurons induce
locomotor defects in larvae, the reduction of Ca?" signaling
induced by CASK knockdown or CaMKII-T287D expression may
therefore, also be involved in this locomotor phenotype. We also
showed that the reduction in presynaptic Ca’t observed in the
CASK B null terminals results in a reduction in activity-dependent
vesicle trafficking. This finding is consistent with a role of CASK
in control of synaptic vesicle release as suggested by studies in
a range of other systems (Butz et al., 1998; Zordan et al., 2005;
Hsueh, 2006; Spangler et al., 2013).

CASK IS REQUIRED FOR LARVAL APPETITIVE LEARNING AND
ODOR-INDUCED CALCIUM SIGNALING IN THE MUSHROOM BODY
Using a larval appetitive olfactory learning assay, we demon-
strated that CASK is required for associative learning and this
function was localized to y neurons in the mushroom body. This
neuronal type is essential for larval appetitive learning (Pauls
et al., 2010). We also showed that the Ca®* signals induced by
odor application are reduced by CASK knockdown in these neu-
rons. As odor-induced Ca®* signaling is likely to be critical for
the induction of appetitive learning (Thum et al., 2007), this may
be a mechanism by which CASK mutation impairs learning and
memory.

One of the mechanisms through which CASK mutation may
affect Ca®* signaling is the regulation of EAG K* channels.
CaMKII and EAG act in a common pathway that is required
for Drosophila synaptic and behavioral plasticity (Griffith et al,,
1993, 1994). Overexpression of the EAG K* channel BEC1 in the
mouse forebrain impairs spatial working memory and tetanus-
induced LTP, and the BECI heterozygous knockout exhibited
significantly enhanced spatial working memory (Miyake et al.,
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2009). We provide evidence that CASK’s regulation of EAG K*
channels, via CaMKII, regulates Ca’>* signaling, suggesting that
this pathway may be important in learning and memory.

Expression of human CASK in the mushroom body has
recently been shown to be able to completely restore the 3 h aver-
sive memory deficit of CASK B null adults to wildtype levels
(Malik et al., 2013). As human CASK was shown in the present
study to regulate CaMKII autophosphorylation in Drosophila,
this study, along with previous work, validates the use of
Drosophila to study CASK and CaMKII in the healthy brain and in
disease.

Mutations in human CASK can lead to a number of neu-
rological diseases including FG syndrome 4, X-linked mental
retardation with or without nystagmus and intellectual disability
and microcephaly with pontine and cerebella hypoplasia (Froyen
et al., 2007; Najm et al., 2008; Piluso et al., 2009; Tarpey et al.,
2009). Therefore, investigating the mechanisms by which CaMKII
autophosphorylation is regulated by CASK may be important
for understanding the aetiologies of diseases involving these two
proteins.
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