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INTRODUCTION

Neuro-immune alterations in the peripheral and central nervous system play a role in
the pathophysiology of chronic pain, and non-coding RNAs — and microRNAs (miRNAs)
in particular — regulate both immune and neuronal processes. Specifically, mMmiRNAs
control macromolecular complexes in neurons, glia and immune cells and regulate signals
used for neuro-immune communication in the pain pathway. Therefore, miRNAs may be
hypothesized as critically important master switches modulating chronic pain. In particular,
understanding the concerted function of miRNA in the regulation of nociception and
endogenous analgesia and defining the importance of miRNAs in the circuitries and
cognitive, emotional and behavioral components involved in pain is expected to shed new
light on the enigmatic pathophysiology of neuropathic pain, migraine and complex regional
pain syndrome. Specific miRNAs may evolve as new druggable molecular targets for pain
prevention and relief. Furthermore, predisposing miRNA expression patterns and inter-
individual variations and polymorphisms in miRNAs and/or their binding sites may serve
as biomarkers for pain and help to predict individual risks for certain types of pain and
responsiveness to analgesic drugs. miRNA-based diagnostics are expected to develop
into hands-on tools that allow better patient stratification, improved mechanism-based
treatment, and targeted prevention strategies for high risk individuals.

Keywords: chronic pain, biomarker, polymorphism, miRNA-based diagnostics, miRNA expression patterns, miRNA
polymorphisms, antagomir, miRNA-based analgesic

diabetic polyneuropathy (PDPN) for which only symptomatic

Human chronic pain disorders are bio-psycho-social diseases,
which are difficult to treat due to their diversity. Chronic pain
syndromes that develop after nerve damage, trauma or surgery are
characterized by persistent and severe pain; they induce anxiety
and depression and greatly impair patients’ quality of life. One
out of five Europeans suffers from chronic pain with most report-
ing that they endure it for more than two years (Breivik etal.,
2006; Baker etal., 2010). Due to direct and follow-up costs they
constitute a heavy burden for the health system (Phillips, 2006).
Of the painful neuropathies, the most frequent, painful
diabetic polyneuropathy is a common complication of dia-
betes mellitus occurring in up to 20% of patients (Som-
mer, 2003; Sadosky etal., 2008). Good glycemic control can
reduce the incidence of diabetic polyneuropathy but not painful

therapy of low to moderate efficacy is available to date
(Vincent etal., 2011). Cellular mechanisms are emerging that
include the classical changes of the diabetic milieu (Bierhaus and
Nawroth, 2012; Bierhaus et al., 2012) however various studies have
also identified signatures of neuroinflammation as critical com-
ponents of painful diabetic polyneuropathy (Pabreja etal., 2011;
Vincent etal., 2011). Pathological neuro-immune communication
has also been associated with painful neuropathy that occurs in up
to 50% of patients with traumatic peripheral nerve injury as a
consequence of accidents, warfare or surgical procedures (Myers
etal., 2006; Ciaramitaro etal., 2010; Birch etal., 2012). Also the
neurogenic complex regional pain syndrome (CRPS) occurring as
a complication of bone fracture, tissue injury or surgical interven-
tions has a neuro-inflammatory component (Parkitny etal., 2013).
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In the majority of cases symptoms grossly resolve, however in 30%
of patients pain symptoms persist or even intensify (Marinus et al.,
2011). The beneficial effect of therapy with glucocorticosteroids
in the acute phase of CRPS supports pathophysiological mecha-
nisms associated with neuro-immune dysfunction (Uceyler etal.,
2007a; Fischer etal., 2010; Marinus et al., 2011). Thus, converging
evidence suggests that neuro-immune alterations in the periph-
eral and central nervous system play a major role in the general
pathophysiology of neurogenic and neuropathic pain (McMahon
and Malcangio, 2009; Kuner, 2010). Non-coding RNAs (ncRNAs),
including microRNAs (miRNAs) and Piwi-binding piRNAs, are
intimately associated with normal cellular as well as pathological
processes (Mattick, 2004; Hiittenhofer etal., 2005; Hiittenhofer
and Schattner, 2006). In this review we will focus on miRNAs
since they are most extensively studied so far.

Various diseases, including neuropathic pain disorders, reveal
unique miRNA expression signatures that can be exploited as
diagnostic and prognostic markers. Recent reports on miRNA
modulation of both neuronal and immune processes further
predict therapeutic potential for manipulating disease-modified
miRNAs in diseases affecting both the immune system and brain
function, such as neuropathic pain disorders, Alzheimer’s dis-
ease, Parkinson’s disease, multiple sclerosis, and anxiety-related
disorders (Soreq and Wolf, 2011; O’Connor etal., 2012).

miRNAs that function within both the nervous and the immune
systems possibly act as “negotiators” between these two interacting
compartments (Figure 1). These “neurimmiRs” primarily target
transcription factor genes or other regulatory genes, which enables
simultaneous modulation of both immune and neuronal pro-
cesses including cognition through direct or indirect alterations of
neuron-glia or brain-to-body signaling (Soreq and Wolf, 2011).
Thus, a given miRNA controls multiple cellular pathways, and
miRNAs can act as “master switches” of the transcriptome or
proteome, regulating multiple gene products and orchestrating
multiple pathways including genes that encode cellular enzymes,
trophic factors, receptor proteins, and ion channels many of which
are individually pursued as drug targets.

Pain conditions have been suggested to deregulate the expres-
sion of miRNAs in pain pathways from primary afferent noci-
ceptors to brain areas associated with emotional components of
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FIGURE 1 | Targets of miRNA regulation networks.

pain perception (Bai et al., 2007; Aldrich et al., 2009; Kusuda et al.,
2011; Imai etal., 2011; Poh etal., 2011; von Schack etal., 2011).
miRNAs are frequently deregulated and expressed at aberrant lev-
els in diseased tissue, and first evidence suggests that this applies
to neurogenic pain in CRPS (Orlova etal., 2011). Altered miRNA
expression is frequently a consequence of genetic mutations, which
may also cause loss or gain of function (Mishra and Bertino, 2009).
This may account for inter-individual variation of pain sensitiv-
ity. However, the functional consequences of polymorphisms in
miRNA genes and/or their binding sites, the downstream targets
of miRNAs and the mechanisms by which miRNAs regulate cir-
cuitries and processes modulating nociception and endogenous
analgesia are as yet unresolved.

Therapeutic miRNA regulation has been thoroughly studied
and widely established in cancer research but its impact and the
therapeutic prospects of miRNAs in the pain field are largely unex-
plored. Manipulation of miRNAs offers the possibility to control
multiple targets including neuro-immune interactions, nocicep-
tive processing and cognitive pathways. Both miRNAs and their
isomiRNA versions are likely to each interact with many different
targets, which may lead to downstream changes either due to the
direct suppression of these targets or because of regulatory effects
of those targets. Such downstream effects may be rather elaborate
and are defined by some researchers “off-target” effects. However,
we find that this definition may be misleading as it assumes that the
physiological role of each miRNA is limited to the suppression of
its direct targets. It is expected that miRNAs and miRNA deriva-
tives will have few, if any, sequence-specific “off-target” effects.
Thus, miRNA based diagnostics and therapeutics may have supe-
rior advantages by targeting multiple pain-associated genes and
miRNA-based drugs may be the most appropriate therapy for the
prevention or treatment of neuropathic pain.

BIOMARKERS FOR NEUROPATHIC AND NEUROGENIC PAIN
SYNDROMES

Painful diabetic polyneuropathy is the most frequent painful neu-
ropathy occurring in up to 20% of diabetic patients (Sommer,
2003; Sadosky etal., 2008). CRPS is an extremely painful con-
dition that occurs in some patients after bone or tissue injury
and peripheral nerve injury (traumatic neuropathy) and results
in chronic neuropathic pain in many of these patients. These
well-characterized albeit aetiologically diverse (metabolic, inflam-
matory, traumatic) neuropathic/neurogenic pain syndromes cover
a spectrum of mechanisms underlying chronic pain. Nevertheless,
the medical need for these syndromes is prevalent, and each of
them is prototypic for an entire group of pain disorders.

It is unclear why diabetic neuropathy or traumatic neuropathy
are painful in some instances and painless in others or why some
patients develop CRPS after bone fracture, and why some recover
from CRPS and others do not (Marinus etal., 2011). Thus, as
yet unknown factors determine whether a given disorder entails
chronic neuropathic pain. A first approach to be able to predict the
individual risk of pain chronification was to use sensory pheno-
types as surrogate markers for possible underlying mechanisms.
Quantitative sensory testing (QST) is now well established but is
still insufficient to disentangle specific pathophysiological mech-
anisms of chronic pain (Baron etal., 2012). One of the major
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hindrances in translating such findings into better therapy of
neuropathic and neurogenic pain syndromes is the complexity
of their pathophysiology. It is well known that alterations in many
processes including ion channels, inflammatory mediators, neu-
rotrophic factors, synaptic plasticity, and de- and regeneration, are
involved, and that they even change during the course of the dis-
ease (Hehn etal., 2012). Therefore, a search for better and more
specific diagnostic trait and state markers is one of the prerequi-
sites for successful treatment in the future. Circulating miRNAs
are detectable in body fluids including blood and cerebrospinal
fluid and may be useful as novel biomarkers amenable to clini-
cal diagnostic applications for various types of disease (Cogswell
etal., 2008; Orlova etal., 2011; Ajit, 2012; Weiland etal., 2012;
Machida etal., 2013). Therefore, it should be likewise promising
to carefully assess which circulating miRNAs and novel ncRNAs
are associated with neurogenic and neuropathic pain syndromes
and may emerge as reliable diagnostic biomarkers for painful dia-
betic polyneuropathy, nerve injury pain, CRPS, headache and
migraine.

NEW DRUGGABLE MOLECULAR TARGETS FOR PAIN
TREATMENT

Treatment of painful diabetic polyneuropathy is far from satisfac-
tory in many patients although this is the most intensely stud-
ied painful neuropathy in randomized controlled trials (RCTs).
National and international guidelines differ in their recommen-
dations about first and second line treatment choices. While
pregabalin is favored by some (Bril etal., 2013), duloxetine or even
tricyclic antidepressants are first choice in others (NICE-guideline;
Attal etal., 2010; Dworkin etal., 2007). All of these drugs have
adverse effects on diabetes. Furthermore, mean treatment effects
comprise only two points of pain reduction on a 11-point Likert
scale. In other types of neuropathy, like traumatic neuropathy or
the frequent inflammatory types, there is little or no data at all from
RCTs on pain treatment. Even worse, treatment of CRPS is nei-
ther standardized, nor satisfactory, nor based on multicentre RCTs.
From single center studies with very limited patient numbers some
evidence exists for anti-inflammatory treatment by corticosteroids
or bisphosphonates in acute but not chronic stages, and for behav-
ioral therapy for selected patients in chronic stages (de Tran etal.,
2010). For the most frequently used invasive treatment modali-
ties such as sympathetic blockers no RCT evidence of efficacy is
available (Straube et al., 2010). Thus, more efficacious and specific
medications are needed for both neurogenic and neuropathic pain
syndromes.

Both, the novel and specific mode of action and the ability
to function as master switches of entire signaling networks has
triggered enthusiasm for miRNAs as promising therapeutic tar-
gets although relatively little is known about the mechanisms of
cellular uptake, storage and mode of action of miRNA modula-
tors (van Rooji and Olson, 2012). In several rodent pain models,
deregulated expression of miRNAs was found in pain pathways
from primary afferent nociceptors to brain areas associated with
emotional components of pain perception (Figure 2; Bai etal,
2007; Aldrich etal., 2009; Kusuda etal., 2011; Imai etal., 2011;
Poh etal, 2011; von Schack etal., 2011). First evidence sup-
porting a future for analgesic miRNA treatment comes from
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FIGURE 2 | miRNA that may be causally associated with maintained
neuropathic pain in immune cells (Shaked et al., 2009; Soreq and Wolf,
2011; Ponomarev etal., 2013), nociceptors/DRG (Zhao etal., 2010, 2013;
Tam Tam et al., 2011; Ni et al., 2012; Sakai and Suzuki, 2013), spinal cord
(Brandenburger etal., 2012; Favereaux etal., 2011; Im et al., 2012; Ni
etal., 2012; Willemen et al., 2012), insular cortex (Sanchez-Simon etal.,
2010), amygdala (Meerson et al., 2010; Haramati etal., 2011; Griggs
etal., 2013), prefrontal cortex (Poh etal., 2011), hippocampus (Edbauer
etal., 2010).

mice intrathecally receiving miR-124, miR-103 or miR-23b which
are reported to prevent and treat persistent inflammatory and
neuropathic pain (Favereaux etal., 2011; Imai etal., 2011; Wille-
men etal., 2012). Despite the fact that these miRNA treatments
reduced signatures of synaptic modification, neuroinflammation
and microglial response, the full extent and the mechanisms of the
analgesic effect are not understood to date (Favereaux etal., 2011;
Willemen etal., 2012).

CIRCUITRIES AND PROCESSES MODULATING NOCICEPTION
AND ENDOGENOUS ANALGESIA

Various studies have identified signatures of neuroinflammation
as critical components of diabetic polyneuropathy (Pabreja etal.,
2011; Vincent etal., 2011) in addition to the cellular mecha-
nisms that include the classical changes of the diabetic milieu
(Bierhaus etal., 2012; Bierhaus and Nawroth, 2012). Patholog-
ical neuro-immune communication has been associated with
painful neuropathy following traumatic peripheral nerve injury
(Myers etal., 2006; Ciaramitaro etal., 2010; Birch etal., 2012).
Moreover, CRPS occurring as a complication of bone fracture
or tissue injury results from neurogenic inflammatory processes
(Goebel, 2011). In humans, a systemic pro-inflammatory pro-
file distinguishes painful from painless neuropathy, and a local
pro-inflammatory profile is part of the pathophysiology of small
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fiber neuropathy (Uceyler etal., 2007b, 2010). Specialized periph-
eral neurons, the nociceptors sense inflammatory or neuropathic
conditions and respond with increased excitability and sensitivity
leading to persisting pain and hyperalgesia (Costigan and Woolf,
2000; Sommer and Kress, 2004; Berta etal., 2008; Uceyler etal.,
2009). However, mice lacking receptors for pro-inflammatory
mediators in their nociceptor neurons are frequently protected
from certain signatures of pathological pain (Andratsch etal,
2009; Schweizerhof etal., 2009; Mair etal., 2011; Quarta etal.,
2011). The deficiency in anti-inflammatory cytokines in patients
with CRPS (Uceyler etal., 2007a) together with beneficial effect
of therapy with glucocorticosteroids support pathophysiolog-
ical mechanisms associated with neuro-immune dysfunction
(Fischer etal., 2010).

Inflammatory processes are also activated in the spinal cord
upon peripheral nerve injury and involve microglia activation
and leakage at the blood nerve barrier along the entire neu-
raxis (McMahon and Malcangio, 2009; Beggs etal., 2010, 2012).
Microglia activation occurs in diabetic neuropathy in rodents
(Wodarski etal., 2009; Beggs etal., 2012; Talbot and Couture,
2012) and has been recognized to be critical for the maintenance
of neuropathic pain via the release of pro-nociceptive mediators
(Clarketal.,2007). Leakage of the blood nerve barrier or the blood
spinal barrier is just emerging in the pathophysiology of neuro-
pathic pain accompanied by changes in tight junction proteins
(Echeverryetal.,2011). Tight junction proteins which are critically
involved in maintaining the blood—brain barrier like claudin-1 are
also new targets, e.g., of miR-155 (Qin etal., 2013).

Deregulated miRNAs can be a consequence or cause of local
inflammatory processes such as regulation of nociceptor sensi-
tisation by controlling phospholipase A2 activation (Sun etal.,
2012). Analyses of expression profiles of dorsal root ganglia (DRG)
containing nociceptor cell bodies reveal that particular miRNAs
are deregulated in rodent pain models giving rise to deregu-
lation of miRNA-targeted ion channel expression patterns and
metabotropic receptor transcripts in peripheral neurons which
presumably cause nociceptor dysfunction (Zhao etal., 2010; von
Schack etal., 2011). miRNAs are universal regulators of differen-
tiation, activation and polarization of microglia in normal and
inflammatory conditions (Ponomarev etal., 2013). Microglia and
macrophage activity is suppressed by specific miRNAs, e.g., miR-
124, and it is therefore anticipated that miRNA regulation is
critically involved in endogenous inhibition and resolution of
inflammation by e.g., resolvins (Ponomarev etal., 2011; Rec-
chiuti etal,, 2011). Certain miRNAs are substantially suppressed
in glucocorticoid-treated thymocytes by reduced expression of the
key miRNA processing enzymes Dicer, Drosha, and DGCR8/Pasha
(Smith etal., 2010). This observation is of great relevance since
CRPS for example is regarded a prototype disorder of failed termi-
nation of inflammation (Birklein and Kingery, 2009). The spinal
release of immune modulators affects both spinal synaptic pro-
cesses and local inhibitory circuits, possibly by classical cytokine-
prostaglandin signaling and dys-inhibition of e.g., glycinergic
spinal control (Samad etal., 2001; Harvey etal., 2004). Plastic
changes at synapses in the spinal dorsal horn promote neuro-
pathic and neurogenic pain via mechanisms involving enhanced
nociceptive transmission but also inhibition of spinal endogenous

analgesic circuits (Hartmann et al., 2004; Harvey et al., 2004; Fossat
etal., 2007; Sandkiihler, 2007, 2009; Pernia-Andrade etal., 2009;
Zeilhofer etal., 2009; Fossat et al., 2010; Laffray etal., 2012).

For a few miRNAs and long ncRNAs, downstream target
proteins have been reported. For example, a conserved long
ncRNA seems to modulate sensory neuron excitability by activa-
tion of a transcription factor MZF and downregulation of Kcna2
potassium channel expression and this has been causally associ-
ated with neuropathic pain (Zhao etal., 2013). In addition, the
functional consequences of miR-103 regulation of voltage-gated
Cavl.2 calcium channels and intrinsic excitability of spinal pro-
jection neurons have been demonstrated (Favereaux etal., 2011).
It is well accepted that certain hereditary forms of migraine are
associated with polymorphisms of voltage-gated calcium chan-
nels Cav2.1 and Cav2.2 (Pietrobon and Striessnig, 2003). Novel
evidence suggests that in particular endogenous pain control sys-
tems including GABAergic and opioidergic synaptic signals are
down-regulated by miRNAs such as miR-134 or miR-181a (Ni
etal., 2012; Sengupta etal., 2013). Some of them link miRNAs like
let-7 or miR-339 to opioid tolerance (He et al., 2010; He and Wang,
2012; Wuetal., 2013). In analogy, miRNA neuronal dys-regulation
should not only apply to neurogenic or neuropathic pain but very
likely the same principles and pathways should apply to other pain
syndromes like headaches and in particular hereditary and other
forms of migraine.

COGNITIVE, EMOTIONAL AND BEHAVIORAL COMPONENTS
OF PAIN

Neuropsychological alterations are present in 65 % of CRPS
patients and in particular cognitive impairment and deficits
of emotional decision-making may impact their quality of life
especially in risky, emotional situations (Apkarian etal., 2004).
Emotional deficits and functional alterations in corresponding
brain regions are reported in chronic CRPS patients and pain-
related fear is one of the strongest predictors of disability in chronic
pain disorders (Geha etal., 2008; de Jong etal., 2011).

Specific areas in the brain are actively involved in pain per-
ception and behavior in humans and rodents and structural
brain changes are associated with sensory and emotional function
in rodent long-term neuropathic pain. In particular, decreased
volumes of primary somatosensory and frontal cortex, retrosple-
nial and entorhinal cortex, anterior cingulate cortex and insula
are maintained for months (Seminowicz etal., 2009). Specif-
ically, abnormalities in hippocampus volume are observed in
human CRPS and the mouse spared nerve injury (SNI) model.
Similar to CRPS patients, SNI mice show increased anxiety
like behavior and abnormal contextual fear extinction and this
is associated with reduced extracellular signal-regulated kinase
(ERK) expression, decreased neurogenesis and altered synaptic
plasticity (Kodama etal., 2007; Mutso etal., 2012). Mice with
experimental neuropathic pain also show cognitive deficits in
novel object recognition and this is associated with deregulation
of glycinergic neurotransmission in the hippocampus (Kodama
etal, 2011), and may relate to reported enhanced quantal neu-
rotransmitter release in the anterior cingulate cortex of mice
with neuropathic pain (Toyoda etal., 2009). Dopaminergic and
glutamatergic inputs from amygdala, hippocampus and prefrontal
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cortex to the nucleus accumbens participate in the putative emo-
tional control circuits and recent human brain activity studies
have examined the nucleus accumbens in the emotional aspects
of pain processing (Baliki etal., 2010). These reports further
link chronic pain with emotional dysfunction, and maladaptive
responses of the nucleus accumbens in neuropathic pain have
recently been associated with deregulated miRNAs in this region
(Imai etal., 2011).

Brain-specific miRNAs are emerging as regulators of cogni-
tion, neuronal plasticity and memory by manipulating synapse
structure and function, and specific miRNAs not only control
cognition and emotional processes but also neuro-immune com-
munication in the brain (Bredy et al., 2011; Soreq and Wolf, 2011).
Mental retardation has been associated with miR-125b, miR-132
and other miRNAs and this arises from effects on dendritic spine
morphology and synaptic physiology at hippocampal neurons.
AMPA-mediated miniature mEPSC amplitude and frequency are
reduced by neuronal over-expression of miR-125b and increased
by miR-132 and this is due to differential regulation of gluta-
mate NR2A and NR2B receptor mRNA levels (Edbauer etal,
2010). Other glutamate receptor subunits in the brain are reg-
ulated by dopamine through miR-181a which has recently been
associated with the pain system (Saba etal., 2012). miR-132 is a
highly interesting brain specific miRNA since it is up-regulated
by brain derived neurotrophic factor (BDNF) and other growth
factors in cortical neurons and this results in an increased expres-
sion of synaptic proteins including glutamate receptors (NR2A,
NR2B and GluAl), an effect that is attenuated by glucocorticoids
(Kawashima etal., 2010; Numakawa etal., 2011). Hippocam-
pal miR-132 mediates stress-inducible cognitive deficits through
acetylcholinesterase as a downstream target and specifically in
the amygdala miR-34 is associated with the repression of stress-
induced anxiety (Haramati etal., 2011; Shaltiel etal., 2013). More
generally, happiness, anxiety and depression seem to depend on
miRNA expression levels. Specific miRNAs are deregulated in
patients suffering from depression and anxiety, and in pre-clinical
models of psychological stress (Meerson etal., 2010). Moreover,
psychoactive agents, including antidepressants and mood stabi-
lizers, utilize miRNAs as downstream effectors (O’Connor etal.,
2012). This further links neuropathic pain to emotional disorders
and to the clinical benefit of antidepressants for pain treatment
(Dworkin etal., 2007).

PAIN PREDISPOSING GENETIC POLYMORPHISMS

There is evidence that chronic pain, pain sensitivity and respon-
siveness to analgesic opioids show a sufficient heritability to make
these phenotypes highly interesting sources for genetic variabil-
ity which has an influence on pain (Angst etal., 2012; Hocking
etal., 2012; Nielsen etal., 2012). Altered miRNA expression is fre-
quently a consequence of genetic mutations, which may also cause
loss or gain of function (Mishra and Bertino, 2009). This may
account for significant inter-individual variation in the response
to painful stimuli and analgesic drugs. Polymorphisms of specific
molecular targets may be associated with certain pain phenotypes
and this has emerged for example for a specific calcium chan-
nel subunit in a Drosophila screen that is conserved in mice and
humans (Mogil, 2012; Neely etal., 2010). Several meta-analyses

are available of the genetics of pain and associated specific loss-
or gain of function polymorphisms with altered pain perception
(LaCroix-Fralish etal., 2011; Mogil, 2012). A recent genome-wide
association (GWA) study revealed three susceptibility loci for com-
mon migraine in the general population, however, systematic
association studies are unavailable for DPN and CRPS to date
(Chasman etal., 2011). In general, genetic studies have helped to
understand the role and downstream mechanisms of individual
proteins in pain processing, but specific single nucleotide poly-
morphism (SNP) related pain disorders apply to small numbers
of individuals only and so far do not explain the large vari-
ability regarding susceptibility to distinct pain disorders or the
responsiveness to different pain therapies in the general population
(Dworkin etal., 2007; Attal et al., 2010).

The functional consequences of polymorphisms in miRNA
genes and/or their binding sites, the downstream targets of miR-
NAs and the mechanisms by which miRNAs regulate circuitries
and processes modulating nociception and endogenous analgesia
are entirely unaddressed. SNPs in miRNAs or their target sites
are not only bioinformatically predicted to be associated with the
pathogenesis of diseases but are also experimentally validated (Wu
etal., 2008; Coassin etal., 2010). It is known that SNPs are less
common in miRNAs or their target sites than in other parts of the
genome which points to the importance of miRNAs for cellular
processes. However, on the other hand SNPs in these sites can affect
the expression of a large number of genes when the production of
the miRNA is influenced by that particular SNP. Moreover, SNPs in
target sites of miRNAs can either modulate/disrupt existing bind-
ing sites or create new binding sites for the miRNAs that may then
influence gene expression. SNPs in these regions have become a
major focus of research and some of them are expected to explain
pathogenetic mechanisms in disease development (Glinsky, 2008;
Haas etal.,, 2012). For example, miRNA expression is markedly
different between normal tissues and tumor tissues although oth-
erwise miRNA expression is strictly controlled. This might be
explained by somatic mutations that are introduced during car-
cinogenesis. The investigation of genetic variants at miRNAs or
their target sites and their association with various diseases is only
inits infancy. Initial studies show that these RNA chains might also
be involved in neurological diseases such as Parkinson’s disease
(Martins etal., 2011), Alzheimer’s disease (Serpente etal., 2011)
or frontotemporal lobar degeneration (Villa etal.,, 2011). The
identification of SNPs in miRNA related regions of the genome
might be advantageous over classical GWA study since individual
ncRNAs may control and regulate whole networks and pathways
involving a multitude of functional proteins. This may open a
new avenue that may potentially improve our understanding of
extensive inter-individual differences in patients.

TRANSLATION OF PRE-CLINICAL AND CLINICAL RESULTS
INTO SOLUTIONS FOR THE BENEFIT OF PATIENTS

As stated above, one of the major hindrances in the way of
translating such findings into better therapy of neuropathic and
neurogenic pain syndromes is the complexity of their patho-
physiology, which even changes during the course of disease.
Based on and in analogy to recent developments in the oncology
field, an improved understanding of the role of miRNAs in
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neuropathic pain might be highly useful for diagnostic and prog-
nostic assessments. For example, aberrant expression or functional
deregulation of miRNAs has been associated with the risk for
and progression of malignancies and this knowledge is expected
to advance the management of certain cancer types through the
development of novel personalized miRNA-based diagnostics and
therapies (Dreussi etal., 2012; Rossi and Calin, 2013). Increas-
ing evidence indicates that certain miRNAs may be aberrantly
expressed or deregulated in certain individuals after tissue injury
or with diabetes. This may be associated with increased risk of pain
chronification or even responsiveness to analgesic drugs (Ivanov
etal,, 2012). Therefore, miRNAs are expected to have potential
for personalized pain medicine as biomarkers for risk assessment,
drug selection and novel therapies.

Therapeutic miRNA regulation has been thoroughly studied
and begins to be established in different types of cancer, and
the first miRNA targeted drug has entered phase II clinical trials
(Lindow and Kauppinen, 2012). In contrast, the potential ther-
apeutic impact of miRNAs in the pain field is as yet largely
unexplored. To date, therapeutic approaches have been restricted
to rodent models and intrathecal administration and some incon-
sistencies have emerged; thus miRNA increases in a disease may be
either a cause or a feedback reaction to the observed symptoms. For
example, although miR-124 is up-regulated after chronic constric-
tive nerve injury (CCI), intrathecal administration of miR-124 can
prevent and treat persistent inflammatory and neuropathic pain
(Willemen etal., 2012). Likewise, miR-132 levels are increased
in colon biopsies from patients with intestinal bowel disease
which should predictably limit inflammation (Maharshak etal.,
2013). Importantly, manipulation of miRNAs offers the possibility
to control multiple targets including neuro-immune interac-
tions, nociceptive processing and cognitive and affective pathways.
Thus, miRNA based therapeutics may have superior advantages
by targeting multiple pain-associated genes and miRNA-based
drugs may be the most appropriate therapy for the prevention or
treatment of neuropathic and neurogenic pain. At least, recent
developments provide an optimistic perspective on the evolu-
tion of therapeutic ncRNAs despite the drawback of unresolved
obstacles for successful delivery and unknown, however unlikely,
off-target effects (Cho, 2012).

Manipulating miRNAs as a therapeutic tool presents signifi-
cant theoretical and practical challenges that must be overcome
before this approach becomes a reality. Specific examples involve
two of the more straightforward approaches for miRNA modula-
tion, miRNA mimics and antagomirs (Figure 3). miRNA mimics
consist of over-expressing specific miRNAs that are reduced in the
disease state. This mimic approach could be done by introduc-
ing synthetic oligonucleotides (natural or modified) or involve
over-expression of such miRNAs from an introduced viral vec-
tor. Antagomirs are synthetic oligonucleotide sequences that are
designed to be inversely oriented (antisense) to miRNAs that
are over-expressed in the disease state and which can form
Watson-Crick base pairing with the target miRNA. This can either
inactivate a miRNA or result in its degradation. Similar to the
miRNA mimics, these therapeutic and research tools can also
consist of synthetic or modified nucleic acid sequences or be
overexpressed from viral vectors.

Alternative methodologies used in experimental settings
include miRNA sponges, which are exogenous DNA repeats of
the target sequence and can serve to soak up excess copies of the
excess miRNA (Ebert etal., 2007). The miRNA sponges may be
produced under the regulation of RNA Polymerase III promot-
ers and can generate high amounts of specific target sequences.
Another novel yet promising approach involves target protection.
In this application, modified antisense oligonucleotides such as
LNA or morpholinos are prepared that will be complementary
to a specific sequence in the target gene messenger RNA. These
are added to the cells, where they bind to the target sequence,
block its down-regulation by the miRNA complex and ensure suffi-
cient expression of the target mRNA (Choi et al., 2007). Enhanced
and prolonged miRNA suppression and simultaneous targeting of
multiple miRNAs can be achieved by inhibitors carrying clustered
hairpins based on the “Tough decoy” (TuD) design which offer
the advantage of standardized suppression of families or clusters
of miRNAs and can be combined with recombinant adenovirus
vectors (Haraguchi etal., 2009; Xie etal., 2012; Bak etal., 2013;
Hollensen et al., 2013).

An important difficulty that may be predicted for developing
neuronal miRNA therapeutics is delivery, since targeting to the
brain involves the significant hurdle of crossing the blood—brain
barrier. Nevertheless, therapeutic efficacy of certain approaches
such as the use of LNA antagomirs has been demonstrated even
in primate models, and certain neuronal miRNA therapeutic
approaches are now in preclinical development. These studies
cover several creative approaches that have been developed to
overcome the delivery problem. Thus, ~20-mer miRNA-size
oligonucleotides are indeed unlikely to cross the blood-brain
barrier. However, peripheral administration of oligonucleotide
controllers of inflammation-regulating miRNAs would change the
levels of cytokines, and cytokines can penetrate and affect the
brain. Such effects have been demonstrated for miR-132 (Shaked
etal., 2009) and miR-212 (Hollander etal., 2010). Other means
include direct infection of cerebral neurons with viral vectors that
may be adapted for better tropism to neuronal cells (Barbash et al.,
2013). Direct introduction of antisense oligonucleotides can alter-
natively be performed by intracerebroventricular or local stereo-
tactic injection though these would be extremely problematic in
pain syndromes. Yet more recent work described the use of rabies
virus glycoprotein labeled nanoparticles to enable direct delivery
of a miRNA mimic to neuronal cells (Hwang do etal., 2011).

CONCLUSION

Recently, specific miRNAs have been associated with patho-
logical pain and the deregulation of ion channel expression
in sensory neurons in rodent pain models (Zhao etal., 2010;
Favereaux etal., 2011; Li etal.,, 2011). Pain conditions have
been suggested to deregulate the expression of miRNAs in
pain pathways from primary afferent nociceptors to brain
areas associated with emotional components of pain percep-
tion (Bai etal.,, 2007; Aldrich etal., 2009; Imai etal.,, 2011;
Kusuda etal., 2011; Poh etal., 2011; von Schack etal., 2011;
Arai etal., 2013; Genda etal., 2013; Sakai and Suzuki, 2013).
Unique signatures of miRNAs are associated with altered innate
immune signaling and secreted miRNAs are even considered

Frontiers in Molecular Neuroscience

www.frontiersin.org

October 2013 | Volume 6 | Article 33| 6


http://www.frontiersin.org/Molecular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_Neuroscience/archive

Kress etal.

ncRNA in pain

Voo
~. ’

A

Translational repression
and/or
target mRNA degradation

FIGURE 3 | Endogenous miRNAs are generated from primary (pri-)
miRNAs via cleavage by the RNAse Drosha into pre-miRNAs in the
nucleus. They are exported into the cytosol by Exportin 5 and there are
cleaved into active miRNAs by the RNAse Dicer. Depending on the
degree of homology, miRNAs trigger translational repression or
degradation of target mRNAs (for review see He and Hannon, 2004;
Bartel, 2009). Therapeutic manipulations of miRNAs may involve various
methods. Host tissue miRNAs (gray) bind to complementary sequences,
which are often located in the 3’-untranslated region (3’-UTR) of the
target genes. This leads to translational repression, often accompanied by
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degradation. Mimicking this process, miRNA mimics (green) with similar
sequences to those of miRNAs may be designed to target the same
mRNAs. Such mimics are synthetic oligonucleotides that are chemically
protected against nucleolytic degradation. Alternative routes include
molecular “sponges,” with several binding sites of a certain miRNA;
antagomiRs (red), complementary oligonucleotides to the host miRNA
which bind to it and limit its function, and target masks, which bind to
part of target miRNAs and compete with their function. Thus, tools exist
both for inducing gain of function (red arrows) or loss of function (dashed
blue arrows).

anew form of neuroimmune communication and control immune
cell activity as well as neuron function (Peng etal., 2010; Bredy
etal., 2011; Chen etal., 2012; Ponomarev etal., 2013). miRNAs
act at the neuro-immune interface which controls neuronal plas-
ticity and memory but also are linked to the etiology of anxiety
and mood disorders (Bredy etal., 2011; Soreq and Wolf, 2011;
O’Connor etal., 2012; Shaltiel etal., 2013). Such deficits in the
interaction of immune cells and neurons together with cognitive
and emotional alterations in patients with neuropathic or neu-
rogenic pain syndromes are hypothesized to converge on miRNA

deregulated mechanisms along the entire neuraxis, and alterations
in miRNA expression may account for the variation of suscep-
tibility to certain types of pain or even for the responsiveness to
analgesics and opioid tolerance (Parsons et al., 2008). Understand-
ing the role of miRNAs in pain mechanisms is suggested to provide
great benefit for clinical diagnostic and therapeutic applications.
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