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For many neurological diseases, the efficacy and outcome of treatment depend on early
detection. Diagnosis is currently based on the detection of symptoms and neuroimaging
abnormalities, which appear at relatively late stages in the pathogenesis. However,
the underlying molecular responses to genetic and environmental insults begin much
earlier and non-coding RNA networks are critically involved in these cellular regulatory
mechanisms. Profiling RNA expression patterns could thus facilitate presymptomatic
disease detection. Obtaining indirect readouts of pathological processes is particularly
important for brain disorders because of the lack of direct access to tissue for molecular
analyses. Living neurons and other CNS cells secrete microRNA and other small
non-coding RNA into the extracellular space packaged in exosomes, microvesicles,
or lipoprotein complexes. This discovery, together with the rapidly evolving massive
sequencing technologies that allow detection of virtually all RNA species from small
amounts of biological material, has allowed significant progress in the use of extracellular
RNA as a biomarker for CNS malignancies, neurological, and psychiatric diseases.
There is also recent evidence that the interactions between external stimuli and brain
pathological processes may be reflected in peripheral tissues, facilitating their use as
potential diagnostic markers. In this review, we explore the possibilities and challenges
of using microRNA and other small RNAs as a signature for neurodegenerative and other

neuropsychatric conditions.
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INTRODUCTION

Central nervous system disorders encompass a broad spectrum of
neurodegenerative, oncological, inflammatory, and developmen-
tal conditions. Several mechanisms exist that evolved in order
to isolate and protect the CNS from insult; interestingly, these
effectively also act as barriers to diagnosis. Surrogate markers
of disease are thus critical to facilitate disease detection, stratifi-
cation of patients into subpopulations, prediction of prognosis,
evaluation of response to treatment, and eventually allow better
understanding of etiopathology.

To be of maximum diagnostic benefit, biomarkers would pre-
dict disease early, before the onset of clinical symptoms. Finding
and testing such biomarkers would be best achieved by a longi-
tudinal study in a large patient population at risk of developing
the disease, a resource-intensive process that requires a long
commitment and careful planning. However, the more com-
mon cross-sectional association studies are equally valuable in
biomarker discovery. Brain imaging techniques and their mod-
ifications, as well as genotype studies to identify susceptibil-
ity alleles—the latter frequently employed in predicting tumor
prognosis—are being used successfully to understand complex
neurological conditions. In parallel, as techniques evolve rapidly
and new hypotheses emerge, we see novel methods being applied
to biomarker discovery. Thus, with the recent rapid acceleration
in the field of non-coding RNA research, the potential predic-
tive and diagnostic uses of these molecules have also attracted

significant attention. Among non-coding RNA, microRNAs have
been most intensely studied and their biology has repeatedly been
proven critical for diverse cellular functions. More importantly,
recent evidence indicates that miRNAs can be detected in periph-
eral tissues and can be used to “capture” changes in the cell of
origin, including neurons. This has generated substantial inter-
est in the use of small non-coding RNAs, in particular miRNAs,
as biomarkers for CNS pathology. One advantage of molecular
markers such as small RNAs over imaging technology is that sam-
ples can be frozen down for retrospective analysis, which enables
larger studies. This manuscript aims to provide an overview of
recent advances in the field of miRNA-based biomarker discovery
for CNS disease.

SOURCES OF RNA BIOMARKERS

As RNA is continually transcribed, translated, and turned over
in response to physiological and pathological stimuli, the RNA
profile of a cell, interpreted appropriately, could serve as a reflec-
tion of its current functional state. Current technologies enable
transcriptome analysis on an unprecedented scale. In the human
CNS we often need to rely on extracranial or peripheral sources
of RNA to obtain a live readout of the disease state. The choice
of potential sources for representative RNA is wide and includes
body fluids such as blood, plasma, or cerebrospinal fluid as well
as non-neuronal tissue or cells such as lymphocytes (Figure 1).
The question that arises when using non-neuronal tissue or body
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FIGURE 1| A model for miRNA-based biomarker development:
Disease-causing factors impact the brain both directly and
indirectly (via immune and other cells), eliciting changes in gene
and microRNA expression patterns. Many of these stimuli
concurrently exert their influence on non-neuronal cells, where they
also elicit a response. In CNS diseases, in the absence of direct
access to diseased tissue, microRNA expression patterns from

schizophrenia)

Intracellular response
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peripheral cells such as blood cells could be used a proxy for
genome-environment interaction in the CNS. Moreover, microRNAs
circulate stably in cerebrospinal fluid and plasma in extracellular
vesicles and in lipoprotein complexes, and can be isolated from these
body fluids and profiled. Information derived from peripheral sources
could thus be used to construct a picture of neuronal function both
in the healthy and the diseased state.

fluids as a source is: To what degree do they resemble biologi-
cal processes in the brain, arguably the most unique of organs
with a distinct composition and cellular milieu? Nevertheless, a
biomarker is formally defined as a proxy that allows remote and
early detection of a biological process (i.e., disease) regardless of
its mechanistic role in the condition being diagnosed. In the ideal
situation, it would also reflect the biology of the original tissue,
thus providing insight into disease mechanism, and even serve as
a potential therapeutic target. Two major sources of peripheral
RNA exist, namely extracellular RNA and RNA within periph-
eral mononuclear blood cells (PBMCs). While the former is still
beginning to be explored, for the latter evidence has accumulated
to indicate that a certain correlation exists between the molecular
events occurring in the brain and those that can be detected in
blood cells (Figure 1).

RNA FROM BLOOD CELLS

The use of genetic material from blood cells to screen for
biomarkers of neurological conditions has been used as early as
1975 (Issidorides et al., 1975). Peripheral blood mononuclear cells
(PBMCs), one of the major cellular components of blood, are
particularly interesting in the context of biomarkers due to their
ability not only to respond to internal and external stimuli, but

also to “store” the information at the epigenetic level (Tang et al.,
2001; Gavin and Sharma, 2009, 2010). Studies in monozygotic
twins have demonstrated that over time PBMCs accumulate dif-
ferences at the DNA methylation and histone acetylation level
(Fraga et al., 2005). Furthermore, PBMCs have been successfully
used to characterize the disease biosignature in neuropsychiatric
conditions such as schizophrenia and bipolar disorder (Tang et al.,
2001; Segman et al., 2005; Tsuang et al., 2005; Bowden et al., 2006;
Iga et al., 2006; Anderson et al., 2008). Several lines of evidence
suggest that both brain and blood cells can respond to environ-
mental stimuli and reflect this response at the epigenetic level in
their genome and that this response is indeed to some extent con-
cordant between both tissue types (Desjardins et al., 2008; van
Heerden et al., 2009; Li et al., 2011; Ursini et al., 2011; Yuferov
et al., 2011; Davies et al., 2012; Provencal et al., 2012). Firstly,
gene expression profiles in PBMCs have revealed common pat-
terns of transcriptional activity in blood and neurons (Sullivan
etal., 2006). Thus, for example, DNA methyltransferases DNMT1
and DNMT3a have been found to be upregulated in both post-
mortem brain tissue and PBMCs from schizophrenia patients
(Zhubi et al., 2009) and whole chromosome mRNA expression
profiles were found to be partially consistent between blood and
brain in Huntington’s disease patients (Anderson et al., 2008). In
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mice, a model of early life stress (i.e., maternal separation) was
shown to induce a concordant transcriptional response in PBMCs
and several brain regions (Desjardins et al., 2008).

Further, transcriptomic information obtained in peripheral
blood has been successfully applied to predict healthy/disease sta-
tus or to differentiate between disease stages (Tang et al., 2001;
Tsuang et al., 2005; Du et al., 2006; Desjardins et al., 2008). This
is possible due to the fact that PBMCs and neurons are actu-
ally exposed to very similar biochemical environments and can
thus mount a concordant cellular response to incoming stimuli.
Interestingly, in most of these cases, genes found to be differ-
entially expressed in blood were also directly associated with
neuropsychiatric disease and to be altered in postmortem brain
(Tang et al., 2001; Tsuang et al., 2005; Du et al., 2006; Desjardins
et al., 2008).

Secondly, the levels of certain epigenetic markers, such as DNA
methylation patterns or miRNA expression, have been shown
to directly correlate between PBMCs and neuronal tissue. A
recent study by Davies and colleagues demonstrated a globally
correlated inter-individual pattern of DNA methylation between
cortical brain areas and PBMCs in healthy human postmortem
tissue (Davies et al., 2012). In Rhesus monkeys, a model of early
life stress based on surrogate mother rearing induced significant
changes in DNA methylation in the prefrontal cortex, as well
as in PBMCs (Provencal et al., 2012). Although the response
in brain was more drastic, a positive and significant correla-
tion in epigenetic changes was found between both tissue types
(Provencal et al., 2012). At the individual gene level, the pro-
dynorphin promoter has also been recently shown to display
a consistent methylation pattern between blood cells and cau-
date/cingulate cortex in human post-mortem tissue (Ursini et al.,
2011) and changes in methylation observed in human blood sam-
ples within the COMT gene (Catechol-O-methyltransferase, a
critical enzyme for dopamine processing in the brain) were repli-
cated and significantly correlated between blood and prefrontal
cortex in the orthologous genomic location in rats (Li et al,
2011). Additionally, there is evidence to suggest that the level of
other epigenetic markers, such as miRNA levels, also show parallel
patterns of expression in blood and brain. Thus, levels of miR34a
were recently shown to increase during aging in blood PBMCs,
as well as in plasma and brain, and to correlate with a concomi-
tant decrease in SIRT1 expression, one of the main targets of this
miRNA (van Heerden et al., 2009).

Taken together, there is a solid base to suggest that PBMCs
and perhaps other blood cells have the potential to provide a
transcriptional and epigenetic biosignature that can be useful
for both biomarker development and drug discovery and that
these can be used as a proxy to study epigenetic mechanisms of
neuropathology and its progression.

EXTRACELLULAR RNA

After the discovery that cells export RNA packaged in 40-90 nm
sized vesicles called exosomes, and that this RNA could be taken
up and translated by recipient cells (Valadi et al., 2007), extracel-
lular vesicles rapidly attracted attention as a potential medium for
intercellular communication. Similar findings in exosomes from
primary glioblastoma cells, indicating that malignant vesicles may

play a role in modulating tumor microenvironment (Skog et al.,
2008), brought researchers to the idea of using the information
carried by these vesicles to study organs/tumors remotely. Cell-
derived RNA can also be found in a host of other membrane
enclosed vesicular bodies variously called nanovesicles (Kogure
et al., 2011), shedding vesicles, microvesicles (Ratajczak et al.,
2006), or microparticles (Patz et al., 2013).

Exosomal and other extracellular vesicles are known to play
a role in neuronal function, but the nature and degree of their
involvement is still being studied. Exosomal release is modu-
lated by glutamatergic synaptic activity, indicating that this may
be a part of normal synapse physiology, and that the contents
of these vesicles could be relevant for interneuronal commu-
nication (Lachenal et al., 2011). Exosomes also play a role in
signaling between the pre- and post-synapse. Exosomal transfer
of synaptotagmin 4 from the pre- to the post-synaptic compart-
ment enables the presynapse to influence postsynaptic retrograde
signaling (Korkut et al., 2013). These and several other lines of
evidence led to the hypothesis that intercellular communication
via exosomal content is a key underexplored physiological mech-
anism in the nervous system (Smalheiser, 2007). Thus, the RNA
content of brain-cell-derived vesicles is a promising source of
biomarkers for CNS disease. Extracellular RNA can also be found
outside vesicles (Wang et al., 2010), in complex with lipoproteins
such as HDL (Vickers et al., 2011) or with Argonaute2 (Arroyo
etal., 2011; Turchinovich et al., 2011). This population comprises
primarily miRNA, which appears to circulate stably in this form
(Mitchell et al., 2008).

Recently, evidence that extracellular RNA can be extracted
from various body fluids including saliva (Palanisamy et al,
2010), plasma (Hunter et al., 2008), urine (Alvarez et al., 2012),
and CSF (Patz et al., 2013) has accumulated (Figure 1). Next gen-
eration sequencing (NGS)-generated profiles of the RNA contents
of extracellular vesicles are beginning to be published (Burgos
et al.,, 2013; Ogawa et al., 2013). However, the cellular source
of this RNA is not always clear. RNA isolated from body fluids
is likely to originate from a heterogenous mixture of cell types.
The majority of RNA that circulates in the plasma is presum-
ably of hematologic or endothelial cell origin, and the degree to
which other tissues contribute is difficult to estimate. Studying
the degree of variation of circulating miRNA molecules from
the canonical sequence (the so-called isomiR profile) could allow
an estimation of relative contributions of its tissue of origin
(Williams et al., 2013). Although CSF is a relatively closed sys-
tem, the cellular subpopulation of origin of CSF vesicles is also
heterogenous, comprising vesicles derived from oligodendrocytes
(Scolding et al., 1989), microglia, and macrophages (Verderio
et al., 2012) as well as neurons (Saman et al., 2012).

Rapid progress is currently being made in the relatively new
field of extracellular RNA isolation and profiling. Body fluids such
as blood or CSF are thus likely to be a rich future source of small
RNA biomarkers for CNS disease (Figure 1).

CURRENT microRNA DETECTION AND ANALYSIS
TECHNOLOGIES

CNS biomarker studies have employed RNA from several differ-
ent sources, and the decision about choice of source RNA involves
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several factors. Using whole blood, serum, or plasma is clearly a
minimally invasive approach and for those trying to develop or
test a biomarker, these samples are probably easiest to access from
registries or biological material repositories. Moreover, for ulti-
mate clinical use, an accurate blood-based biomarker would be
highly valuable. On the other hand, the presence of the blood-
CSF barrier makes it likely that molecular entities isolated directly
from CSF are more accurate reflections of brain physiological and
pathological processes. Thus, RNA from CSF could be a more sen-
sitive marker of changes that are diluted when trying to detect
them in peripheral tissue. Using non-coding RNA as a molec-
ular marker for disease involves several steps: The RNA must
be isolated from the source and purified, enriched, or amplified
before it is quantified, analyzed, and connected back to biolog-
ical function. At each step of the process a formidable array of
alternatives exists, and technologies in this field continue to evolve
rapidly.

EXTRACELLULAR RNA ISOLATION METHODS

RNA can be extracted from extracellular vesicles with rel-
ative ease, using one of several methods. The most com-
monly used isolation methods employ commercial kits based
on a combination of a lysis step and column precipitation.
Guanidinium thiocyanate-phenol-chloroform extraction is also
effective, either by itself or in combination with a column.
Most methods result in high quality and pure RNA, equally
compatible with most downstream applications. However, each
method results in a different RNA yield, in terms of quantity
as well as RNA size profile (Eldh et al, 2012). One pos-
sible reason for that is that all the current vesicular isola-
tion methods yield a heterogenous mixture of vesicles that
vary in intracellular source (cell membrane vs. endosomal),
RNA content, and lipid membrane composition. The differ-
ence in membrane composition likely translates to a differ-
ence in susceptibility to lysis, as different buffers are likely to
target vesicle subpopulations with varying degrees of efficacy.
Moreover, some of the commercially available methods are specif-
ically designed to enrich small RNA species, while others are
non-selective. The outcome is that the RNA population used
for biomarker studies depends heavily on the RNA extraction
method employed.

These differences in isolated RNA species are even wider when
RNA is isolated directly from serum, plasma, CSE, or other bio-
logical fluids. The miRNA content is likely to include protein
and lipid-complex associated free RNA in addition to vesicular
RNA. A comparison of RNA extraction methods used directly on
plasma and CSF showed large differences in yield (Burgos et al.,
2013). The degree of variation in RNA size profile and content is
not clear.

RNA can also be isolated from whole blood using commer-
cially available tubes designed for the purpose. A comparison of
2 commercial kits using proprietary lysis reagents for direct RNA
isolation from peripheral blood found that the overlap between
the results obtained (in terms of gene expression changes) could
be as low as 46% (Menke et al., 2012); this effect is particularly
pronounced when the fold change in gene expression is small
(Asare et al., 2008).

miRNA DETECTION/QUANTIFICATION

One step in miRNA detection is the sensitivity and accuracy of
the technologies employed in their detection. In the case of small
RNAs, there is a number of methods, from classical Northern
Blotting to microarrays (Cissell and Deo, 2009; de Planell-Saguer
and Rodicio, 2011). But if there is one technology that has allowed
the leap in this field, it has been NGS. Although there has been
great development in the techniques for small RNA detection
and quantification, it was really the implementation of small
RNA sequencing (small RNASeq) that made the difference in our
knowledge of these molecules. In fact, the number of novel miR-
NAs has started growing exponentially since the implementation
of small RNASeq sequencing (http://www.dddmag.com/articles/
2012/12/starting-small). Techniques previously used to probe the
cellular small RNAome are diverse and each of them has unique
advantages and disadvantages to it, mainly associated with (1)
whether detection is done in solid state or in solution and (2)
whether or not previous knowledge of the target molecules is
required [reviewed in Cissell and Deo (2009), de Planell-Saguer
and Rodicio (2011)]. Briefly, solid-based technologies are more
amenable to high-throughput strategies but are generally more
time-consuming and have a difficult application in vivo, whereas
solution-based techniques give much faster output and can be
used in vivo but miss the global picture (Cissell and Deo, 2009;
de Planell-Saguer and Rodicio, 2011). But arguably the currently
hottest technique used for small RNA detection is small RNA
sequencing. In this approach, total RNA is extracted and a size
selection step ensures enrichment for small RNAs (18-22nt in
size). After adapter ligation, these are then subjected to sequenc-
ing, resulting in millions of reads that represent the abundance
of each small RNA/miRNA molecule in the sample [although
the degree of correlation between the actual abundance and read
count is not free of debate (Linsen et al., 2009)]. This approach
expands the dynamic range of signal for small RNA detection
massively and provides unbiased interrogation of all known and
unknown small RNA species without prior knowledge of the tar-
get, thereby virtually overcoming the limitations of all the other
available technologies. If anything, one of the major limitations
for the end-user of small RNASeq is the analysis (see following
section).

As sequencing technologies continue to evolve rapidly while
becoming more and more accessible to researchers, this method
has taken over by far as the golden standard for small RNA
expression analysis and novel discovery. It has been successfully
used to model brain development (Yao et al., 2012), to charac-
terize different mammalian tissues (Landgraf et al., 2007), and
to study and develop biomarkers for different kinds of cancer
(Moore et al., 2013), to name a few examples. Furthermore,
one of the earliest studies to apply genome-wide small RNA
profiling in neurons lead to the discovery of miR34c as a poten-
tial biomarker and a therapeutic target for Alzheimers’s disease
(Zovoilis et al., 2011). Additionally, because sequencing does
not depend on previous target knowledge, there are more and
more studies uncovering novel miRNAs and other small RNA
species in the brain (Jacquier, 2009; Lee et al., 2009; Ling et al.,
2011; Inukai et al., 2012). Naturally, sequencing-based approaches
do entail some limitations. In addition to the still relatively
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complex analysis, the major disadvantages relate mainly to scal-
ability and input material requirements. One of the steps in
sample preparation is PCR amplification. It is a well-known
source of biases and, if overdone, can cause excessive duplica-
tion levels, which leads to information loss during the analysis.
Although the amount of input material is generally not prob-
lematic in most model system approaches, when dealing with
human tissue, and, in particular, in the field of biomarker devel-
opment, where sample access is limited (i.e., in the case of blood
or cerebrospinal fluid), the ability to scale down starting mate-
rial requirements is critical. The field of small RNASeq is still
under heavy development and there is reason to believe that
downscaling can indeed be achieved with high fidelity, at least
pertaining to miRNA detection (authors’ unpublished data). As
sequencing technologies continue to develop, we will be able to
detect small RNAs from very low amounts of starting biological
material.

DATA ANALYSIS AND PATTERN DISCOVERY

RNA-Seq data analysis entails serial steps including quality con-
trol, alignment to reference genome, read quantification (read
counting), and statistical comparison of conditions of interests
(Pepke et al., 2009). A comprehensive review of the method
is out of the scope of this article, but it is worth mention-
ing that in the case of small RNAs, there are some additional
considerations to be made. Because of the short length of tar-
get molecules, sequencers will read into the adapter primers
used during the library preparation. These sequences have to
be trimmed before alignment, since they would otherwise inter-
fere with this step. The alignment step itself is also distinc-
tive from the approach generally taken for RNA-Seq. Although
alignment to the genome is possible, most current strategies
take a hierarchical approach in which reads are serially aligned
to different databases of small RNA species. After alignment,
read counting and differential expression analysis can be car-
ried out using standard procedures as those used in RNASeq
(Pepke et al., 2009). Although the analytical procedure for small
RNASeq is still under development, a number of publicly avail-
able tools exist that deal with the most standard approaches [the
pros and cons of some of which are reviewed in Zhou et al.
(2011)].

As small RNA studies evolve from investigation of single candi-
dates to global transcriptional profiling, novel methods of analysis
need to be adopted to interpret the large amounts of data gener-
ated. When targeted approaches are used, investigators typically
use p-values or p-values corrected for multiple testing. With larger
datasets, where differential expression analysis is the norm, filter-
ing, and normalization is often of critical importance. These data
also lend themselves very well to machine learning approaches,
which have already been used in miRNA biomarker studies for
multiple sclerosis and glioblastoma (Roth et al., 2011; Noerholm
etal., 2012).

In biomarker research, the most commonly used unsuper-
vised learning approaches are clustering and principle component
analysis (PCA), typically used to detect a feature pattern with-
out prior knowledge about sample grouping. In situations where
the RNA profiles of the groups under comparison exhibit a high

level of dissimilarity, they cluster into distinct groups by an unsu-
pervised clustering algorithm. Alternatively, a “modified unsu-
pervised clustering” where clustering is performed after feature
selection may also be used (Noerholm et al., 2012). In most stud-
ies, the differences in RNA expression profiles are often subtle,
requiring selection of candidates followed by application of super-
vised machine learning algorithms. Optimally applied, supervised
machine learning algorithms such as support vector machines
(the most popular so far in RNA biomarker studies), random
forests, or artificial neural networks are trained to make classi-
fications based on selected features and then tested on an inde-
pendent data set to estimate prediction accuracy. However, flawed
application of these specialized analysis techniques can lead to
reporting of falsely high accuracy rates, hindering reproducibility.

For biomarkers to be used in the clinical setting, they should
be applicable (with a certain margin of error) to a single individ-
ual. Therefore, predictions of sensitivity, specificity, and accuracy
are often more useful than estimates of significant differences
between patient and control groups.

LANDMARK CNS BIOMARKER WORK

Blood cells, plasma, and CSF have all been used as starting mate-
rial to develop miRNA biomarkers for CNS malignancies as well
as neurodegenerative and other neurological diseases. One of the
first studies to compare miRNA profiles from blood mononuclear
cells between patient and control populations showed mir-34a
and mir 181b to be upregulated in mononuclear cells from the
blood of patients with Alzheimer’s disease. In addition, gen-
der and APOE4 status were also found to influence the PBMC
miRNA profiles within the group of AD patients (Schipper et al.,
2007). This approach has since been used to identify potential
biomarkers for other CNS diseases such as multiple sclerosis,
schizophrenia (Lai et al., 2011; Gardiner et al., 2012), Parkinson’s
disease (Martins et al., 2011; Soreq et al., 2013), and amyotrophic
lateral sclerosis (De Felice et al., 2012). For multiple sclerosis in
particular, a large number of studies exist that profile miRNA in
peripheral blood immune cells (Keller et al., 2009; Cox et al., 2010;
De Santis et al., 2010; Lindberg et al., 2010; Martinelli-Boneschi
etal., 2012).

Plasma and serum have also been investigated as a source of
miRNA biomarkers for multiple sclerosis (Siegel et al., 2012).
Cerebrospinal fluid miRNA has been studied in Alzheimer’s dis-
ease (Cogswell et al., 2008), multiple sclerosis (Haghikia et al.,
2012), and to a larger extent in glioblastoma (Baraniskin et al.,
2012; Teplyuk et al., 2012). A single study of miRNA in pooled
CSF microparticles from patients with neurotrauma showed that
the contents of CSF could also be useful in diagnosing brain injury
(Patzetal.,, 2013) (Table 1). Among the CNS malignancies, a vari-
ety of starting biological materials has been used; the majority
of studies investigate samples from patients with glioblastoma,
probably because drawing CSF pre and post-operatively is rou-
tine procedure in glioblastoma diagnosis. (Roth et al., 2011;
Baraniskin et al., 2012; Ilhan-Mutlu et al., 2012; Teplyuk et al.,
2012; Wang et al., 2012), and a single study of patients with
astrocytoma (Yang et al., 2013) (Table 1).

Over the last year there has been a sharp increase in published
studies about circulating microRNA as biomarkers for various
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neurological diseases. Many of these used unbiased, genome-
wide profiling approaches to compare patients with controls and
derive. For Alzheimer’s disease alone there are now a total of 5
published studies from various blood fractions and 3 from CSE.
While these individual studies report high accuracy rates, and
some of them include large numbers of patients, it is curious that
their results do not match or even overlap with each other. The
blood studies all used different fractions of blood and compar-
isons are perhaps unrealistic, but the CSF studies also showed
differing results. For example, hsa-miR-146a is reported in one
of the 3 studies to be upregulated in AD (Alexandrov et al., 2012),
in a second study to be downregulated (Miiller et al., 2014), while
the third shows no effect on it at all, reporting a downregulation
of hsa-miR-146b instead (Cogswell et al., 2008) (Table 1). Perhaps
in the future, a larger number of studies and their metaanaly-
sis would shed more light on which non-coding RNAs are truly
useful biomarkers of disease.

FROM BIOMARKERS TO FUNCTION

Although several classes of non-coding RNA have been discovered
(Taft et al., 2010), miRNAs are the most extensively character-
ized. Computational tools that predict miRNA targets are quite
frequently used to ascribe function to putative miRNA biomark-
ers. Since miRNAs and the genes they target are expressed in a
tissue- and pathology-specific manner, predicted targets usually
require experimental confirmation. Tools that combine predic-
tion algorithms with large scale wet lab experimental methods
such as polysome profiling, immunoprecipitation of members of
the RISC complex or degradome sequencing are likely to provide
more specific results (Thomson et al., 2011). Since the publica-
tion of a miRNA mRNA map based on argonaute HITS-CLIP
data from the brain (Chi et al., 2009), more specific predictions
are also available.

As our understanding of non-coding RNA biology devel-
ops, we see that miRNAs are evolutionarily conserved across
species but have overlapping targets and are often functionally
redundant. While landmark advances have been made toward
understanding the role of single miRNAs in the CNS (Kim et al,,
2007; Rajasethupathy et al., 2009; Edbauer et al., 2010; Zovoilis
et al.,, 2011), we see a gradual shift from studying the single-
miRNA-target interaction toward viewing these critical regulators
as part of a network, tuning or buffering key gene regulation node
(Zhang and Su, 2009).

Clearly, miRNAs exert their influence on biological path-
ways in concert with transcription factors and other modula-
tors of gene expression. A few of the more recent biomarker
studies attempt to view the larger picture by concurrently pro-
filing miRNA expression, gene expression, and protein-DNA
interaction. In particular, researchers studying biomarkers for
Parkinson’s disease have pioneered these analyses by combining
miRNA expression with tissue-specific gene isoform expression
(Soreq et al., 2013) or data from ChIP-sequencing data with
miRNA target prediction (Martins et al., 2011) to build a picture
of the regulatory network in health vs. disease.

Biomarkers are ultimately validated when they can be con-
nected with molecular mechanisms across different levels of
biological complexity. A systems biology approach could achieve

this by integrating data, where it is available, across different
levels such as genes, molecules, phenotypes, cell, and tissues.
Various computational tools are available to integrate these data
types and more are being developed (Villoslada and Baranzini,
2012). Simple, readily available and widely used methods to link
a set of differentially expressed genes with biological processes or
pathways include gene ontology term search and gene set enrich-
ment analysis. The availability of large and complex data sets and
computing power has spurred rapid advances in network biology.

Moreover, RNA data can be analyzed in combination with
patient information, disease history, genomic data like APOE4
allele, disease-specific clinical tests like MEP (motor-evoked
potential for MS or mini-mental state examination for dementia),
and data from proteomics and other high throughput approaches.
Proteomics-based biomarkers for neurodegenerative and other
neurological diseases have been studied and new avenues for
biomarker discovery such as metabolomics continue to emerge;
an LC/MS based approach (Trushina et al., 2013) to study the
metabolic profiles of CSF and plasma from AD patients found
around 150 metabolites each in CSF and plasma that were signif-
icantly different in patients with Alzheimer’s disease or patients
with mild cognitive impairment (MCI) than healthy individuals,
allowing them to identify putative pathways that may be altered
(Trushina et al., 2013). These kinds of data could lend themselves
to a combinatorial analysis provided that patient information and
other variables are fully documented and available.

CURRENT LIMITATIONS AND FUTURE MILESTONES OF
miRNA-BASED BIOMARKER DISCOVERY

The use of non-coding RNA and miRNA in particular has gained
significant attention since the discovery that these RNA species
can be detected extra- and intracellularly in peripheral tissue.
The growing use of powerful detection methods such as massive
sequencing has given a significant boost to the search for mini-
mally invasive disease indicator. In addition, the discovery of the
existence of free or exosomal circulating RNA in blood and CSF
has also fostered research in this direction. Although this is still
a relatively young field, it is rapidly evolving and promises great
advances in the field of biomarker discovery, especially for ner-
vous system pathology. The CNS is the least accessible of all tissues
and would therefore greatly benefit from advances in this field.
Current limitations to this approach include those inherently
associated with biomarker discovery (i.e., working with material
from different sources, extraction methods, patient history, etc.),
as well as those specifically associated with sequencing-based
detection methods and extraction strategies.

As is often the case when working with human tissue, samples
from different sources show wide variability in profile as a result
of handling, sample preparation and preservation. These are espe-
cially pronounced when a highly sensitive technique like sequenc-
ing is used. In addition, because the source of tissue are primarily
human patients that may be on medication, proper considera-
tion of these (potentially confounding) cofactors is essential, as
medication pursues restoration of the biological balance and this
may include alterations in the molecule of interest. When RNA
profiles are altered after drug treatment, it can be a challenge to
dissect the direct effects of treatment on RNA expression from
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those connected with disease remission (Rong et al., 2011). An
analysis of highly cited (more than 400 citations) biomarker pub-
lications (including protein, genetic, and other blood biomarkers)
showed that individual studies usually report high association
between the marker and disease outcome; however when the same
biomarker is subsequently compared with larger studies or meta-
analyses, the effect size is often significantly smaller than initially
believed (Ioannidis and Panagiotou, 2011).

Another issue inherently associated with large human studies
and generally with studies handling big datasets is information
availability and reproducibility. As is known from the field of
microarrays, data is often incomplete or incompletely annotated
and the analyses hard to reproduce (loannidis et al., 2009) and
this is still an issue in the field of small RNA-based biomarker
development (Ioannidis et al., 2009).

In addition to these limitations, there is also those specifically
associated with the extraction and quantification methods used
for peripheral miRNA detection. As already mentioned in sec-
tion Current microRNA Detection and Analysis Technologies, a
variety of extraction techniques exist, each with specific biases
that can greatly influence the relative weight of a certain molec-
ular species in the sample. In addition, because the technology is
rapidly evolving, there is still no clear-cut consensus as to what is
the best approach to analyze large-scale small RNA profiles. These
issues will settle with time, as techniques become more robust and
analysis methods stabilize, but until then, they are to be carefully
considered in the experimental design.

Finally, as already mentioned, there is the issue of how faithful
the peripheral profile is to the original biological situation in the
CNS. Although this is not most critical for biomarker discovery
per se (as mentioned above, a biomarker can be simply defined
as a “handle” that allows detection of a remote biological process
and does not necessarily need to correlate with it), often stud-
ies strive to uncover molecules that can serve as a biomarker and
be used as therapeutic targets. Evidence from PBMCs indicates
that there is indeed a considerable coherence between the central
neuronal response and the peripheral response in blood and that
there is a cross-talk between these two tissues. It remains to be
experimentally established whether this correlation can also serve
to better understand neuronal physiology in the healthy and the
disease situation. In this respect, the development of novel, unbi-
ased technologies to detect even the smallest amounts of miRNAs
peripherally in combination with studies in model systems has
proven critical.

All in all, despite current limitations, miRNA-based biomark-
ers constitute an exciting field in biomedical research. For neu-
roscience, where the search for remotely accessible markers to
understand the brain is essential for human studies, the field has
elicited considerable interest and as the costs of NGS continue
to decrease, it is likely to become a routine approach to gen-
erate individual patient profiles and allow targeted therapeutic
intervention.
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