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The phosphoinositide 3-kinase (PI3K) complex plays important roles in virtually all cells of the
body.The enzymatic activity of PI3K to phosphorylate phosphoinositides in the membrane
is mediated by a group of catalytic and regulatory subunits. Among those, the class I
catalytic subunits, p110α, p110β, p110γ, and p110δ, have recently drawn attention in the
neuroscience field due to their specific dysregulation in diverse brain disorders. While in
non-neuronal cells these catalytic subunits may have partially redundant functions, there is
increasing evidence that in neurons their roles are more specialized, and confined to distinct
receptor-dependent pathways.This review will summarize the emerging role of class I PI3K
catalytic subunits in neurotransmitter-regulated neuronal signaling, and their dysfunction
in a variety of neurological diseases, including fragile X syndrome, schizophrenia, and
epilepsy. We will discuss recent literature describing the use of PI3K subunit-selective
inhibitors to rescue brain disease-associated phenotypes in in vitro and animal models.
These studies give rise to the exciting prospect that these drugs, originally designed for
cancer treatment, may be repurposed as therapeutic drugs for brain disorders in the future.
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INTRODUCTION
Signaling through phosphoinositide 3-kinases (PI3Ks) has diverse
roles in the human body, regulating essential functions such as cell
growth, migration, differentiation and survival. PI3K signaling
is important for adequate immune response (Okkenhaug, 2013),
hematopoiesis (Polak and Buitenhuis, 2012), and organ growth
(Shioi et al., 2000). Mutations in PI3K catalytic subunits were
found in primary immune deficiencies (Angulo et al., 2013) and
in different forms of human cancer, including leukemia (Samuels
et al., 2004; Gutierrez et al., 2009). Apart from a role in dividing
cells, PI3K activity is also a key regulator of neuronal function.
PI3K signaling transduces signals from cell surface receptors to
the Akt/mTOR pathway and is essential for synapse and dendritic
spine development (Jaworski et al., 2005; Chan et al., 2010; Cuesto
et al., 2011; Lee et al., 2011) and for enduring forms of synap-
tic plasticity underlying learning and memory (Sanna et al., 2002;
Man et al., 2003; Opazo et al., 2003; Sui et al., 2008; Hoeffer and
Klann, 2010). Therefore, it is not surprising that an increasing
body of evidence suggests dysregulated PI3K activity and down-
stream signaling as a key contributor and potential therapeutic
target for mental disorders (Kalkman, 2006; Levitt and Campbell,
2009; Karam et al., 2010; Waite and Eickholt, 2010; Krueger et al.,
2013).

SPLITTING THE WORK – NEURONAL PI3K ACTIVITY IS MEDIATED BY
SEVERAL CATALYTIC SUBUNITS
In vertebrates, PI3K enzymatic activity is brought about by eight
different catalytic subunits. These catalytic subunits are divided
into class I, class II, and class III PI3K enzymes according to their

protein structure, function and associated regulatory subunits
(Hawkins et al., 2006). Here, we will focus on class I PI3K catalytic
subunits, which are further sub-divided into class IA and IB. The
class IA isoforms, p110α (PIK3CA), p110β (PIK3CB), and p110δ

(PIK3CD), are associated with any one of the following regulatory
(inhibitory) subunits, which are encoded by three different genes:
p50α, p55α, p85α (PIK3R1); p85β (PIK3R2) and p55γ (PIK3R3).
In contrast, the (sole) class IB subunit p110γ (PIK3CG) asso-
ciates with p101 (PIK3R5) or p87 (a.k.a. p84, PIK3R6). Class I
PI3Ks predominantly function as lipid kinases and catalyze the
phosphorylation of the third hydroxyl group of the inositol ring
of phosphatidylinositol (PI), PtdIns-4-phosphate (PI(4)P), and
PtdIns-4,5-biphosphate (PI(4,5)P2). The PI3K products PI(3,4)P2

and PI(3,4,5)P3 recruit proteins that contain pleckstrin homol-
ogy (PH) domains to the membrane, leading to their activation
(Lemmon, 2007). These PI3K-regulated proteins can have diverse
functions, for example as signal transduction molecules, including
protein kinases and GTPase-modifying enzymes (Rodrigues et al.,
2000; Fayard et al., 2010).

There are two major modes of activation of class I catalytic
PI3K subunits by extracellular stimuli, namely via receptor tyro-
sine kinases (RTKs) and via G protein-coupled receptors (GPCRs).
Activation of p110 subunits via RTKs is mediated through interac-
tion of the SH2-domain of the regulatory subunits (e.g., p85a/β)
with a phospho-tyrosine on the C-terminal tail of the RTKs or
on RTK-associated proteins (Hawkins et al., 2006). Activation by
GPCRs is mediated via heterotrimeric G-proteins or the scaffold-
ing protein Homer and the PI3K enhancer PIKE-L (Rong et al.,
2003; Hawkins et al., 2006). Association of p110 subunits with
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these receptors leads to their recruitment to the cell membrane
where they are in close proximity to their substrates. Notably,
the different p110 isoforms appear to have preferences for either
one or the other type of receptor, implying isoform-specific PI3K
activation (Guillermet-Guibert et al., 2008).

Earlier reports suggested some functional redundancy between
the class I isoforms, specifically in their ability to maintain cell
proliferation (Foukas et al., 2010). However, later work in non-
neuronal cells has shown that the p110 isoforms can have distinct
cellular functions, and are signaling downstream of specific mem-
brane receptors (Vanhaesebroeck et al., 2010). This observation
led to the development of subunit-selective antagonists as ther-
apeutics for cancer (Zhao and Vogt, 2008), which are currently
tested in clinical trials (Akinleye et al., 2013). Most recently, p110
subunit-specific functions and mechanisms have begun to be dis-
covered in the brain. The different p110 isoforms appear to have
unique roles in mediating distinct forms of neuronal function and
synaptic plasticity, suggesting the use of subunit-selective p110
inhibitors for certain brain disorders. The importance of PI3K cat-
alytic subunit-selective roles in neurons is illustrated by functional
and genetic studies that have linked dysregulation or mutations of
specific p110 isoforms with distinct brain disorders. Given the
essential function of PI3K signaling in non-neuronal cells, a pre-
cise knowledge of the molecular mechanisms of neuron-specific
PI3K enzyme regulation and dysregulation in disease is manda-
tory for the development of therapeutic strategies ameliorating
brain disorders without compromising other essential functions
of the body. Here, we will review and discuss recent progress and
open questions in our understanding of how the specific class I
PI3K catalytic isoforms p110α, p110β, p110γ, and p110δ are regu-
lated in neurons and how their dysfunction might lead to mental
diseases (summarized in Table 1 and Figure 1).

p110α – insulin signaling to epilepsy and cognitive decline?
Each of the class I catalytic subunits has unique molecular features.
P110α distinguishes itself from the other class I catalytic subunits
by the absence of cell-transforming activity when overexpressed
(Kang et al., 2006). Nevertheless, the majority of cancer-associated
mutations in class I PI3K catalytic subunits were identified in the
coding region of p110α. These mutations activate the enzymatic
function and lead to oncogenic transformation (Samuels et al.,
2004). In contrast, no oncogenic mutation in any of the other class
I PI3K subunits has been reported so far. Interestingly, mutations
in the kinase domain that activate p110α do not have an effect
on p110β (Zhao et al., 2005) further corroborating the different
modes of regulation of p110 catalytic subunits.

The important function of p110α in the brain is illustrated
by enzyme-activating mutations in the p110α gene, PIK3CA that
are associated with megalencephalies and hemimegalencephalies.
These brain malformations lead to increased brain growth, devel-
opmental delay and epilepsy (Lee et al., 2012; Riviere et al., 2012).
The p110α subunit is mainly activated by RTKs, and was shown
to be a key mediator of insulin signaling in the liver (Sopasakis
et al., 2010). Inhibitors of p110α but not p110β block insulin sig-
naling in cultured cells (Knight et al., 2006). In the brain, insulin
is important for cell survival and energy metabolism, but is also
essential for PI3K-mediated regulation of synapse development

(Lee et al., 2011) and enduring forms of synaptic plasticity (Zhao
and Alkon, 2001). A brief exposure to insulin can induce long-
term depression (LTD) at CA1 synapses that depends on PI3K
signaling (Huang et al., 2003, 2004). It will be interesting to inves-
tigate if this form of LTD is mediated by p110α activity, whether
it stimulates protein synthesis and how it might be affected by
epilepsy-associated mutations in PIK3CA. Interestingly, correcting
imbalances in insulin levels was suggested as therapeutic strat-
egy for certain forms of epilepsy (Kim et al., 2013). Moreover,
early stages of Alzheimer’s disease (AD) show signs of insulin
resistance (Bosco et al., 2011), and insulin treatment is currently
tested as a therapy in AD (de la Monte, 2013; Freiherr et al.,
2013). Considering the predominant role of p110α in insulin
signaling, selective manipulation of p110α activity may be ben-
eficial to treat epilepsy or ameliorate cognitive decline in AD
(Figure 1).

p110β – GPCRs, neuronal protein synthesis and autism
The p110β catalytic subunit is the predominant subunit associated
with GPCRs (Guillermet-Guibert et al., 2008). This puts it in the
unique position of being a key regulator of, e.g., metabotropic glu-
tamate receptor 1/5 (mGlu1/5)-dependent forms of plasticity and
protein synthesis in the brain. Interestingly, the regulatory sub-
units p85α and p85β have only reduced inhibitory effect toward
p110β compared to other p110 subunits (Dbouk et al., 2010).
RTKs activate PI3K signaling by releasing p85α/β-mediated inhi-
bition of p110 subunits; lack of inhibition of p110β by p85α/β may
thus contribute to the diminished stimulation of p110β signaling
by RTKs (Kurosu et al., 1997; Guillermet-Guibert et al., 2008). Rel-
atively low levels of p85α/β-mediated suppression of p110β may
also cause the unusually high basal activity of p110β compared to
other class I PI3K subunits.

The lack of this p85α/β-mediated inhibitory regulatory mech-
anism to suppress p110β activity under basal conditions suggests
that increasing p110β protein levels through elevated p110β

mRNA translation would directly lead to enhanced PI3K activ-
ity. In line with this assumption, the controlled expression of
p110β appears to be an important mode of regulating p110β

activity and PI3K-mediated protein synthesis in brain. Agonist-
induced mGlu1/5 activation in mouse cortical synaptic fractions
leads to increases in p110β protein levels and PI3K activity, which
correlates with the PI3K-dependent stimulation of protein syn-
thesis (Gross et al., 2010). p110β mRNA associates with and is
translationally regulated by the fragile X mental retardation pro-
tein (FMRP), which is deficient in fragile X syndrome (FXS),
the most common form of inherited intellectual disability and
monogenic cause of autism (Gross et al., 2010; Sharma et al.,
2010; Darnell et al., 2011). PI3K activity and protein synthe-
sis are altered in FXS, and FXS mouse models and patient cells
have increased p110β protein levels, which contributes to the
observed elevated PI3K activity, downstream signaling and protein
synthesis, and thus neuronal dysfunctions. Moreover, a dupli-
cation in the gene locus of p110β, PIK3CB, most likely leading
to enhanced p110β-mediated PI3K activity, has been associated
with autism (Cusco et al., 2009), further supporting an essential
role of p110β expression in neuronal function. A p110β-selective
inhibitor reduced the elevated protein synthesis rates in FXS mice
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Table 1 |This table summarizes the current knowledge about neuron-specific signaling and function of class I PI3K catalytic subunits and lists

available tools for their future study (transgenic mouse models and drugs).

PI3K subunit

(gene symbol)

Neuronal signaling

pathway

Physiological

function in the brain

Neurological disease Transgenic mouse models Antagonists

Class IA p110α

(PIK3CA)

Insulin receptor Insulin-dependent

plasticity/LTD

megalencephaly,

hemimegalencephaly

Riviere et al. (2012)

Epilepsy

Alzheimer’s disease

→knockout (not viable)

Bi et al. (2002)

→transgenes with cancer

mutations Koren and

Bentires-Alj (2013)

INK1117a

BYL719a

A66

p110β

(PIK3CB)

mGlu1/5

S6, protein synthesis

Rac, Rab5

protein synthesis

Gross and Bassell

(2012)

FXS Gross et al. (2010)

Autism Cusco et al.

(2009)

Alzheimer’s disease

→knockout (not viable)

Bi et al. (2002)

→conditional knockout (liver)

Jia et al. (2008)

TGX-221b

GSK2636771a

AZD-6482a

AZD8186a

p110δ

(PIK3CD)

Nrg1/ErbB4

RhoA

axon outgrowth and

regeneration in

sensory neurons

Eickholt et al. (2007)

Schizophrenia Law

et al. (2012)

→knockout Jou et al. (2002)

→kinase-negative

transgeneb

Okkenhaug et al. (2002)

CAL-101a

IC87114b

TGR 1202a

AMG319a

PIK-294

Class IB p110γ

(PIK3CG)

NMDA

Rap1, p38

PDE3B

NMDA-LTD,

behavioral flexibility

Kim et al. (2011)

Autism Serajee et al.

(2003)

Excitotoxicity/Brain

ischemia/Epilepsy

→knockoutb Sasaki et al.

(2000)

→kinase-negative transgene

Patrucco et al. (2004)

AS-605240b

CZC24832

Italics point out that there is only indirect evidence to support the indicated roles.
ahas been or is currently being used in clinical trials (cancer)
bused to analyze neuronal phenotypes

and FXS patient cells suggesting that p110β has a crucial function
to control neuronal protein synthesis (Gross and Bassell, 2012),
and may be a promising therapeutic target for FXS and other
autism spectrum disorders. However, more work is needed to
assess the role of p110β and other p110 subunits in neuronal pro-
tein synthesis regulation and how this may be altered in human
disease.

Defects in mGlu1/5-mediated signaling have not only been
shown in FXS and other autism spectrum disorders (Williams,
2012), but also recently in AD (Ostapchenko et al., 2013; Um et al.,
2013). The PI3K catalytic subunit p110β, similarly as discussed for
p110α (see above), may thus also be a beneficial therapeutic target
in certain forms of AD (Figure 1).

Signaling through p110β is unique, because it is not directly
activated by the small GTPase Ras, as all other class I PI3K cat-
alytic subunits (Zheng et al., 2012). Instead, it interacts with and
is activated by Rac, a key regulator of the actin cytoskeleton
(Fritsch et al., 2013), and by Rab5, a small GTPase essential for
receptor-mediated endocytosis (Kurosu and Katada, 2001). The
specific functions of Rac- and Rab5-mediated activation of p110β

in neurons are unknown.
The phosphatase and tensin homologue (PTEN), a negative

regulator of PI3K activity, which de-phosphorylates PI(3,4,5)P3,

was shown to preferentially bind to p110β compared to other

PI3K catalytic subunits in non-neuronal cells. P110β is thus a
key treatment target in cancers associated with PTEN mutations
(Shepherd and Denny, 2012). Of note, PTEN loss-of-function
mutations lead to autism (Zhou and Parada, 2012), and PTEN
was shown to inhibit axonal regeneration in adult neurons (Park
et al., 2008; Christie et al., 2010; Liu et al., 2010); however, the role
of p110β-regulation of PTEN in brain function still remains to be
discovered. Considering the predominant role of p110β down-
stream of GPCRs, it will be interesting if PTEN mutations in
autism preferentially lead to impaired GPCR signaling, as opposed
to other forms of plasticity.

P110γ – a key mediator of NMDA-dependent plasticity
The PI3K subunit p110γ is categorized as class IB due to the specific
regulatory subunits it is associated with (p101 and p87), which are
different from those associating with p110α, p110β, and p110δ.
While p110γ has been shown to play a role in the immune system
and the heart several years ago (Okkenhaug et al., 2002; Oudit and
Kassiri, 2007), its functions in the brain have just recently begun to
be discovered. Using PIK3CG knockout mice as well as a p110γ-
selective inhibitor (Camps et al., 2005), Kim and colleagues showed
the requirement of p110γ for establishing NMDA-dependent LTD
in the CA1 region of the hippocampus (Kim et al., 2011; Figure 1).
In contrast, other forms of long-term plasticity, such as long-term
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FIGURE 1 | Schematic illustrating membrane receptor-specific signaling

of class I PI3K subunits and their potential link to mental disorders.

Shown are examples of neuronal membrane receptors and the specific p110
catalytic subunits, through which they preferentially signal. All of these
receptor-PI3K complexes were implicated in mental disorders, which are
printed in red above the receptors. Both insulin signaling through p110α and
metabotropic glutamate receptor signaling through p110β are affected in
Alzheimer’s disease. Moreover, metabotropic glutamate receptor signaling
through p110β is altered in fragile X syndrome and other autism spectrum

disorders. The NMDA receptor complex (associated with p110γ-selective
activity) plays a role in excitotoxicity and epilepsy, and p110δ-mediated
signaling through ErbB4 is dysregulated in schizophrenia. InsR, insulin
receptor; IRS-2, insulin receptor substrate 2; DHPG, dihydroxyphenylglycine,
mGlu1/5 agonist; mGlu1/5, metabotropic glutamate receptor 1/5; NMDA,
N-Methyl-D-aspartic acid; NMDAR, NMDA receptor;
Nrg, Neuregulin; PIP2, phosphatidylinositol-4,5-biphosphate; PIP3,
phosphatidylinositol-3,4,5-triphosphate. See text for references and further
details.

potentiation, as well as mGlu5-dependent LTD were not affected
by p110γ deletion or inhibition. Moreover, a p110α-selective
inhibitor, and a broad-spectrum class IA inhibitor both did not
affect NMDA-LTD, strongly suggesting a unique role of p110γ in
NMDA-LTD in the hippocampus. The physiological role of p110γ

for neuronal function was further corroborated by the observa-
tion that p110γ deletion led to impairments in reversal learning in
mice.

NMDA receptor-mediated excitotoxicity depends on PI3K sig-
naling (Brennan-Minnella et al., 2013). In view of the study by
Kim et al. (2011), it will be interesting to examine if p110γ is crit-
ical for excitotoxicity and thus may have therapeutic potential to
prevent excitotoxic events in the brain (Figure 1). P110γ asso-
ciates with and activates phosphodiesterase 3B (PDE3B) in the
heart, leading to increased cAMP levels in its absence (Patrucco
et al., 2004). PDE3B is expressed throughout the brain (Reinhardt
and Bondy, 1996) and up-regulated in cortical astrocytes and neu-
rons after ischemic insult (Mitome-Mishima et al., 2013), but the
function of p110γ-mediated regulation of PDE3B in neurons is
unknown.

Corroborating an essential role of p110γ for neuronal plas-
ticity, there is also a genetic link between p110γ dysfunction
and mental disorders, particularly autism. The PIK3CG gene is
located within the autism susceptibility locus AUTS1 on chro-
mosome 7q22 (International Molecular Genetic Study of Autism
Consortium, 2001; Kratz et al., 2002). Single nucleotide poly-
morphisms in PIK3CG, TSC1/2, which is mutated in the autism
spectrum disorder tuberous sclerosis (TS), and INPP1, inosi-
tol polyphosphate-1-phosphatase, were shown to be in linkage
disequilibrium in patients with autism (Serajee et al., 2003).

This polymorphism was detected in the accessory domain (PIK
domain) of p110γ, which is involved in substrate recognition
(Domin and Waterfield, 1997). However, the polymorphism does
not change the amino acid composition, and the effect it may
have, e.g., on p110γ expression is unknown. Future work will
have to show if p110γ dysregulation, either functional up- or
down-regulation, can lead to autistic behavior in animal models.

P110δ – essential for developing axons and dysregulated in
schizophrenia
The catalytic subunit p110δ was originally identified as key com-
ponent of lymphocyte signaling (Okkenhaug, 2013) and a recent
study reporting a specific enzyme-activating mutation in p110δ in
humans with recurrent respiratory infections further supports an
essential role of the p110δ subunit in the immune system (Angulo
et al., 2013). In addition, a critical role for p110δ in neurons has
become increasingly evident over the last years. A study using
knockout mice and dominant negative forms of p110δ has shown
that p110δ is essential for axonal outgrowth during development
and in regenerating neurons (Eickholt et al., 2007).

More recently, increased p110δ mRNA expression and dysregu-
lated p110δ-mediated signaling was associated with schizophrenia
(Law et al., 2012), suggesting p110δ-selective inhibitors as a novel
treatment strategy for schizophrenia and other psychotic diseases
(Rico, 2012). Law and colleagues showed that p110δ is the major
PI3K catalytic isoform signaling downstream of the neuregulin 1
(Nrg-1) receptor ErbB4 (Law et al., 2012; Figure 1). Both ErbB4,
as well as Nrg-1 have been identified as risk genes for schizophre-
nia (Stefansson et al., 2002; Law et al., 2006; Norton et al., 2006;
Silberberg et al., 2006). There are several isoforms of ErbB4,
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which have different capabilities of binding to, and activating
PI3K catalytic subunits (Veikkolainen et al., 2011). Schizophrenia-
associated polymorphisms lead to increased expression of the
CYT-1 isoform of ErbB4, which is coupled to PI3K signaling (Law
et al., 2007). These findings suggest dysregulation of the Nrg1-
ErbB4-p110δ signaling complex as a risk factor for schizophrenia,
and corroborate the importance of PI3K isoform-specific signal-
ing mechanisms in neurons. It will be interesting to assess whether
schizophrenia-associated mutations result in impairments in
Nrg1-induced activation of p110δ-associated PI3K signaling and
protein synthesis, suggesting parallels with p110β dysregulation
in FXS.

Interestingly, ErbB4 was shown to be predominantly expressed
in GABAergic interneurons in both the frontal cortex as well as the
hippocampus (Vullhorst et al., 2009; Neddens et al., 2011). Using
transgenic mice with cell type-specific ErbB4 deletions or over-
expression, a recent study confirmed a major role of ErbB4 in
dendritic spine morphology in parvalbumin-positive interneu-
rons, but not pyramidal neurons (Yin et al., 2013). Studies in
Drosophila corroborated the role of PI3K signaling in dendritic
spine formation and synaptic plasticity in brain interneurons
(Acebes et al., 2011, 2012); however, the role of p110δ or any
other class I p110 subunit in vertebrate interneurons is unknown.
To further elucidate the defects of ErbB4-p110δ signaling in
schizophrenia it will be important to examine the specific roles of
p110δ and other p110 isoforms in interneurons and other neuronal
subtypes.

CHALLENGES AND OPEN QUESTIONS
The discussed studies are most likely just the tip of the iceberg
illustrating the diverse and unique functions of the different class I
p110 isoforms in the brain. These mechanisms of specialized PI3K
signaling and regulation add to the variety of tools neurons utilize
to achieve circuit-, cell-, synapse-, and stimulus-specificity. Future
challenges will be to understand how receptor complex-specificity
of the different PI3K subunits is achieved, how they are regulated
developmentally and whether there are cell type- or brain circuit-
specific differences in isoform signaling, as implied in the case of
ErbB4 and p110δ. In particular, it will be interesting if distinct
p110 subunits are selective transducers of mTOR-mediated pro-
tein synthesis regulation by different receptors in neurons. Possible
mechanisms of p110-regulation may include control of local trans-
lation [as suggested by the presence of p110β mRNA in neuronal
dendrites (Gross et al., 2010)] or the generation of local micro-
domains of PI3K signaling by receptor and scaffold clustering (Gao
et al., 2011).

As mentioned throughout this review, class I PI3K catalytic sub-
units were shown to be dysregulated in various forms of mental
disorders. They seem to play important roles in the disease phe-
notypes, as shown by the therapeutic effect of isoform-selective
inhibitors in preclinical studies. The discussed examples for p110δ

in schizophrenia and p110β in FXS provide models, which are
corroborated in mice and human patient cells. In the future, it
will be interesting to determine if the disease phenotypes caused
by p110 dysfunction are unique to specific p110 isoforms or if
defects in the same isoform can lead to different types of brain
diseases.

PI3K activates the mTOR pathway, which has been shown to
be dysregulated in autism spectrum disorders of different eti-
ologies, and was suggested as a therapeutic target (Wang and
Doering, 2013). Targeting mTOR is an alternative approach to
p110 subunit-modulating drugs that might be advantageous in
some cases, because it might correct defects in several upstream
pathways impinging on mTOR. The utility of mTOR inhibitors
for TS has been shown in a mouse model (Tsai et al., 2012). In
TS, the effected protein complex, TSC1/TSC2, lies almost directly
upstream of mTOR (Inoki et al., 2002). A potential disadvan-
tage of targeting mTOR is that it plays a crucial role in protein
synthesis regulation in many different receptor pathways. In con-
trast, the specific manipulation of single PI3K catalytic subunits
has the potential of being more selective to the receptor path-
way that is primarily effected, and thus disease-targeted, leading
to enhanced efficacy (Figure 1, Table 1). In the future, it will be
interesting to investigate if mTOR is equally activated by all p110
subunits, or if specific p110 isoforms play more important roles
than others, which could aid the development of future thera-
peutic strategies targeting mental disorders with impairments in
mTOR.

Subunit-selective inhibitors potentially represent powerful
therapeutic tools as they should not have deleterious effects on
global PI3K activity, but rather only achieve selective inhibition
of PI3K-activity coupled to specific receptors. Future research
on the involvement of specific receptor-associated PI3K-signaling
complexes may thus lead to the development of novel therapeutic
strategies for autism, epilepsy or schizophrenia.
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