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RNA interference (RNAi) knockdown is an efficacious therapeutic strategy for silencing
genes causative for dominant retinal dystrophies.To test this, we used self-complementary
(sc) AAV2/8 vector to develop an RNAi-based therapy in two dominant retinal degeneration
mouse models. The allele-specific model expresses transgenic bovine GCAP1(Y99C)
establishing a rapid RP-like phenotype, whereas the nonallele-specific model expresses
mouse GCAP1(L151F) producing a slowly progressing cone-rod dystrophy (CORD). The
late onset GCAP1(L151F)-CORD mimics the dystrophy observed in human GCAP1-CORD
patients. Subretinal injection of scAAV2/8 carrying shRNA expression cassettes specific
for bovine or mouse guanylate cyclase-activating protein 1 (GCAP1) showed strong
expression at 1 week post-injection. In both allele-specific [GCAP1(Y99C)-RP] and nonallele-
specific [GCAP1(L151F)-CORD] models of dominant retinal dystrophy, RNAi-mediated gene
silencing enhanced photoreceptor survival, delayed onset of degeneration and improved
visual function. Such results provide a “proof of concept” toward effective RNAi-based
gene therapy mediated by scAAV2/8 for dominant retinal disease based on GCAP1
mutation. Further, nonallele-specific RNAi knockdown of GCAP1 may prove generally
applicable toward the rescue of any human GCAP1-based dominant cone-rod dystrophy.

Keywords: photoreceptor guanylate cyclase, guanylate cyclase-activating protein 1, short-hairpin RNA, RNA
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INTRODUCTION
Cone-rod dystrophies constitute a rare (1/40,000 prevalence) and
heterogeneous class of hereditary retinal disease (Hamel, 2007).
Symptoms of cone-rod dystrophy (CORD) may include pho-
toaversion, attenuation of central visual acuity, achromatopsia,
and eventually, extinction of peripheral vision. To date, ten
genes are associated with dominant CORD: PROM1 (Prominin-1),
PRPH2 (Peripherin/rds), GUCA1A (GCAP1), RIMS1 (Regu-
lating Synaptic Membrane Exocytosis), GUCY2D (Guanylate
Cyclase 1), AIPL1 (Arylhydrocarbon-Interacting receptor Protein-
Like 1), PITPNM3 (Phosphatidyl Inositol Transfer Membrane-
associated family member 3), UNC119 (Uncoordinated 119
or HRG4), CRX (Cone-Rod otX-like photoreceptor homeobox
transcription factor), and SEMA4A (Semaphorin 4A; RETNET
at https://sph.uth.edu/retnet/disease.htm). GUCA1A, encoding
guanylate cyclase-activating protein 1 (GCAP1), is one of the
most fully-characterized dominant CORD genes (Baehr and Pal-
czewski, 2009) and involves about one dozen families with >100
affected members harboring various GUCA1A mutations (Jiang
et al., 2011).

Guanylate cyclase-activating protein 1 plays a key role in
inhibiting photoreceptor guanylate cyclase activity at high free
Ca2+, and accelerating guanylate cyclase activity in low free Ca2+.
Hydrolysis of cyclic guanosine monophosphate (cGMP) by the
phototransduction cascade closes cGMP-gated channels, reducing

influx of Ca2+ ions (Figure 1). Continuous extrusion of Ca2+ by
the light-insensitive NCKX exchanger lowers cytoplasmic Ca2+,
thereby activating GCAP1, and GC and re-establishing dark cGMP
levels. In rods, cGMP levels are regulated by two guanylate cyclases
(GC1 and GC2; Goraczniak et al., 1994, 1997; Lowe et al., 1995;
Duda et al., 1996) and two GCAPs (GCAP1 and GCAP2; Dizhoor
et al., 1994, 1995; Palczewski et al., 1994; Gorczyca et al., 1995),
while cone phototransduction relies on GC1 and GCAP1 exclu-
sively. The two GCAPs overlap partially in regulating the GCs of
rods (Makino et al., 2008; Dizhoor et al., 2010; Peshenko et al.,
2011), but with differential signaling modes (Duda et al., 2005,
2012). Both GCAPs contribute to rod recovery after photolysis
(Mendez et al., 2001; Howes et al., 2002; Makino et al., 2008, 2012).
Germline deletion of both GCAPs renders GC activity in rods and
cones Ca2+-insensitive (Mendez et al., 2001). Transgenic GCAP1
could restore normal rod and cone response recovery (Howes et al.,
2002; Pennesi et al., 2003).

GCAPs feature four EF hand motifs, of which three (EF2-4)
are high-affinity Ca2+ binding sites and one (EF1) is inac-
tive (Palczewski et al., 2004; Baehr and Palczewski, 2009). Six
missense mutations in GCAP1 associated with autosomal dom-
inant CORD3 are found in EF3 (E89K, Y99C, D100E, D100G,
N104K, I107T; Dizhoor et al., 1998; Payne et al., 1998; Sokal
et al., 1998; Jiang et al., 2008; Kitiratschky et al., 2009; Kame-
narova et al., 2013; Nong et al., 2014). In EF4, only four missense

Frontiers in Molecular Neuroscience www.frontiersin.org April 2014 | Volume 7 | Article 25 | 1

http://www.frontiersin.org/Molecular_Neuroscience/
http://www.frontiersin.org/Molecular_Neuroscience/editorialboard
http://www.frontiersin.org/Molecular_Neuroscience/editorialboard
http://www.frontiersin.org/Molecular_Neuroscience/editorialboard
http://www.frontiersin.org/Molecular_Neuroscience/about
http://www.frontiersin.org/Journal/10.3389/fnmol.2014.00025/abstract
http://community.frontiersin.org/people/u/143118
http://community.frontiersin.org/people/u/92475
mailto:li.jiang@hsc.utah.edu
https://sph.uth.edu/retnet/disease.htm
http://www.frontiersin.org/Molecular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_Neuroscience/archive


Jiang et al. RNA interference and retinitis pigmentosa

FIGURE 1 | Phototransduction feedback loop regulates levels of

cGMP and Ca2+. Dark levels of cGMP and Ca2+ are high in rod and
cone photoreceptors. Light activation of rhodopsin initiates rod
phototransduction, activated PDE6 rapidly hydrolyzes cytoplasmic cGMP,
and cGMP-gated cation channels close. Continued extrusion of Ca2+ by
the light-insensitive Na+-K+/Ca2+ exchanger (NCKX) lowers free Ca2+
which activates guanylate cyclase-activating proteins (GCAPs) and
guanylate cyclases (GCs). Restoration of cGMP dark levels re-opens cation
channels and Ca2+ levels equilibrate to dark levels.

mutations have been identified (I143NT, L151F, E155G, E155A,
G159V; Wilkie et al., 2001; Nishiguchi et al., 2004; Jiang et al.,
2005; Sokal et al., 2005; Huang et al., 2013; Figure 2). These
dominant GCAP1 mutations alter Ca2+-association, decrease
Ca2+ sensitivity, and produce constitutive activity of photore-
ceptor GC1 at normal “dark” Ca2+ levels. Persistent stimulation
of GC1 in the dark increases cGMP to toxic levels. (Dizhoor
et al., 1998; Sokal et al., 1998; Woodruff et al., 2007). Elevated

FIGURE 2 | Structure of myristoylated GCAP1 (PDB 2R2I; Baehr and

Palczewski, 2009). N, N-terminal. C, C-terminal. EF hand helix-loop-helix
structures are shown: EF1 (inactive and gray), EF2 (red), EF3 (dark blue),
and EF4 (turquoise). Ca2+-binding loops (green) and approximate positions
of relevant missense mutations associated with adCORD (red arrows) are
indicated. The N-terminal myristoyl group (orange–brown) is buried and
nearly invisible.

levels of cGMP open more CNG channels, elevate free Ca2+ in
outer segments, and trigger cell death by unknown mechanisms.
Elevated Ca2+ levels have been suspected to trigger cell death,
however a massive accumulation of cGMP in Cnga3−/−;Nrl−/−
mice lacking cation channels and elevated Ca2+ also correlated
with photoreceptor apoptotic death. This result excludes Ca2+
as a death trigger and supports a role of cGMP accumulation
as the major contributor to cone death and a role cGMP-
dependent protein kinase G (PKG) regulation in cell death (Xu
et al., 2013).

In a four-generation British family, CORD was mapped to chro-
mosome 6p21.1 (Payne et al., 1998). The disease-causing mutation
was identified as Y99C, a change that was absent in over 200
unrelated controls. The same mutation was later identified inde-
pendently in two ancestrally related families (Downes et al., 2001).
The Y99C mutation in GCAP1 has also been reported to cause
isolated macular dysfunction (Michaelides et al., 2005). Thus far,
families presenting with cone and CORD have been indepen-
dently linked to a GCAP1(L151F) mutation. In the first family
(Sokal et al., 2005), hemeralopia, dyschromatopsia and reduced
visual acuity became evident by the second-to-third decades of
life with non-recordable photopic ERG responses. In the sec-
ond pedigree spanning five-generations (Jiang et al., 2005), 11
of 24 individuals displayed photoaversion, color vision defects,
and central acuity loss with onset of legal blindness during the
second-to-third decades of life. The GCAP1(L151F) gene prod-
uct, known to disrupt Ca2+ coordination at EF-hand four, and
alter Ca2+ sensitivity (Sokal et al., 2005), represents a conservative
substitution.

GCAP1 MUTANT MOUSE MODELS
To study GCAP1-associated retinal degeneration disease, several
GCAP1 mouse models have been generated, expressing differ-
ent GCAP1 mutants. The first generated GCAP1 transgenic mice
expressing bovine GCAP1(Y99C) mutant gene displayed severe
retinitis pigmentosa-like phenotypes as the mutant transgene was
specifically expressed in rod photoreceptors under control of a
rhodopsin promoter (Olshevskaya et al., 2004). A GCAP1(E155G)
knock-in mouse could mimick human patients and presented late-
onset and slowly progressive cone-rod photoreceptor degeneration
(Buch et al., 2011). Expressing GCAP1(E155G) in mouse rods
also caused severe early-onset rod-cone degeneration (Woodruff
et al., 2007). Our laboratory generated three transgenic mouse
lines expressing wild-type GCAP1-EGFP, as well as mutant
GCAP1(L151F), and GCAP1(L151F)-EGFP (Jiang et al., 2013;
Figure 3). The three transgenes were modified from mouse
genomic Guca1a gene fragment, containing its native regulatory
elements. They are expressed at a level comparable with endoge-
nous GCAP1 in the transgenic mice, and the mutant transgenic
mice develop retina pathology slowly and recapitulate features of
human CORD (Jiang et al., 2013).

Our aim was to develop first a self-complementary AAV2/8
(scAAV2/8) knockdown virus that expresses an allele-specific
short hairpin RNA (shRNA) targeting the mutant Guca1a gene
in the GCAP1(Y99C) transgenic mice. Further, we intended
to target both mutant and native Guca1a in GCAP1(L151F)-
EGFP transgenic mice (nonallele-specific shRNA targeting). In
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FIGURE 3 | Schematic representation of GCAP1 transgenes used to

generate RP and CORD mouse models. (A), bovine GCAP1(Y99C)
transgene. Bovine Guca1a cDNA (blue) is expressed under the control of the
Rho promoter (red). Approximate position of the Y99C mutation in EF3 is

indicated (Jiang et al., 2011). (B), mouse GCAP1 transgene under the control
of its native promoter (red). Exons (blue) are numbered; the L151F mutation is
located in exon 4 and EGFP is fused in-frame to the GCAP1 C-terminus [see
Figure 2 (Jiang et al., 2013)].

the first set, we used two transgenic mouse lines expressing
bGCAP1(Y99C) cDNA under the control of the rhodopsin pro-
moter (Figure 3). One line expressed GCAP1 at near normal levels
and the second line overexpressed GCAP1 (3–4X; Olshevskaya
et al., 2004). These lines are models for dominant retinitis pig-
mentosa representing moderate (line L52H) or severe (line L53)
retinal degeneration phenotypes (Olshevskaya et al., 2004). An
allele-specific knockdown bGCAP1(Y99C) is expected to sig-
nificantly slow down the dystrophy and even delay onset of
degeneration.

The second set of transgenic mice contained the L151F muta-
tion introduced in exon 4 of the Guca1a gene. We employed the
entire Guca1a gene including promoter, all exons and introns,
and the 3′-UTR containing the polyadenylation signals. We estab-
lished two mutant GCAP1 mouse lines, GCAP1(L151F), and
GCAP1(L151F)-GFP (Figure 3). A third line expressing a GCAP1-
EGFP fusion protein (no L151 mutation) served as a WT control
(Figure 3). The EGFP tag allowed detection of transgene expres-
sion by live fluorescence microscopy, and distinction of transgenic
GCAP1-EGFP (50 kDa) from native GCAP1 (23 kDa). We

FIGURE 4 | In vitro screening strategy to identify a potent shRNA

knockdown sequence. (A), a construct expressing the GCAP1-EGFP
fusion protein under the control of the CMV promoter. (B), the shRNA
expression construct. shRNA (hp yellow box) is under the control of
the H1 promoter, and the reporter gene mCherry is under the control
of the CMV promoter. Hp consists of a sense-loop-antisense construct

(the hairpin). Tts, transcription terminator signal. (C), four candidate
shRNAs for suppression of bovine GCAP1, and a 2-nucleotide mismatch
control. (D), four candidate shRNAs for suppression of both wild-type
and mutant mouse Guca1a mRNA, and a 2-nucleotide mismatch
control. See also Figure 1 (Jiang et al., 2011), and Figure 6 (Jiang
et al., 2013).
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FIGURE 5 | In vitro knockdown of bGCAP1-EGFP. (A), In vitro transfection
of HEK cells expressing bGCAP1-GFP (top) with bG1hp1-4 (bottom). Top
panels show that hp1 and hp4 are highly effective. Bottom panels
demonstrate fairly uniform transfection of four shRNA expression plasmids.
(B), Representative semi-quantitative immunoblot of GCAP1 knockdown.
Bar graph (top, n = 3) identifies hp4 as the most potent shRNA. See also
Figure 2 (Jiang et al., 2011), and Figure 7 (Jiang et al., 2013).

intended to knockdown both WT and mutant GCAP1s as removal
of photoreceptor GCAP1 does not affect retina development or
morphology, and GCAP1/2 double knockout mice do not exhibit
retina degeneration.

IN VITRO SCREENING FOR POTENT shRNA SEQUENCES
For successful knockdown via shRNA, it is essential to screen
candidate knockdown sequences for specificity and efficacy.
We developed an in vitro screening strategy consisting of a
shRNA expression vector with reporter gene, to be co-expressed
with a second vector expressing GCAP1-GFP as a prey
(Figures 4A,B). This in vitro screening system permits the
testing of a number of candidates and eventual identification
of the most powerful shRNA. The shRNA vector, hH1pro,
contained an shRNA expression cassette driven by a human
H1 pol-III promoter, and a CMV-driven mCherry reporter
gene arranged in a tail-to-tail array (Figure 4B). For allele-
specific targeting we generated four shRNA constructs, bovine
(b) G1hp1-4, expressing four candidate anti-bovine GCAP1
shRNAs specifically targeting bGuca1a mRNA (Figure 4C). Sim-
ilarly, we generated four anti-mouse GCAP1 shRNA expres-
sion constructs, mG1hp1-4, for nonallele-specific targeting
of both transgenic and endogenous mouse GCAP1 mRNAs.
(Figure 4D).

In HEK293 cell culture, we tested the knockdown efficien-
cies of four putative bGCAP1 shRNA by cotransfection of each
expression construct (bG1hp1-4) with the target bGCAP1-EGFP
(Figure 5A). The expression levels of bGCAP1-EGFP in the trans-
fected cells were detected by live cell fluorescence microscopy and
immunoblotting assay 48–50 h after cotransfection. Under a simi-
lar expression level indicating by the mCherry reporter (Figure 5A,
lower panel), four bGCAP1 shRNA candidates suppressed
GCAP1-GFP expression at different efficiencies (Figure 5A, upper
panel). Among them, bG1hp4 was shown the highest knockdown
efficiency, presented by the lowest GFP fluorescence in the cotrans-
fected cell cultures, and 79% reduction of GCAP1-GFP compared
to 68, 47, and 58% for other three shRNAs in semi-quantitative
immunochemistry assay (Figure 5B). By using the same in vitro

FIGURE 6 |Transduction efficiencies of four gene delivery methods

for mouse photoreceptors tested by expression of fluorescent

protein reporter. (A), Fluorescence microscopy of retina transverse-
sections of mice injected subretinally with pCMV-Zeo-GFP,
peptide/polymer nanoparticles. Below, retina section probed with
anti-GFP antibody. (B), Fluorescence microscopy of retina transfected

with pCAG-GFP using recombinant adenovirus 5, Ad5�RGD.
Below, section at higher magnification. (C), pCMV-GFP-transfected
retina using recombinant AAV vector, AAV2. Underneath, section at
higher magnification. (D), pCMV-mCherry-transfected retina using
electroporation. Micrographs were recorded at various days
post-injection (PI).
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FIGURE 7 | Long-term expression of shRNA in vivo. (A), Schematic
of scAAV2/8 shuttle vector for anti-bGCAP1 shRNA. ITR, inverted
terminal repeats; hH1, human H1 promoter; hp, shRNA cassette;
pCAG, chicken actin promoter driving mCherry. (B), Upper panel, in
vivo fluorescence fundus images of wild-type mice at 1 week and

months (indicated) post-subretinal injection of scAAVhp4 viral particles.
Lower panel, fluorescence microscopy of corresponding mouse retina
transverse cryosections (Jiang et al., 2011). RPE, retinal pigmented
epithelium; OS, outer segments; IS, inner segments; ONL, outer
nuclear layer.

screening experiment, we demonstrated that among four anti-
mouse GCAP1 shRNAs (mG1hp1-4), mG1hp4 is the most effi-
cient, as it deceased mGCAP1-GFP expression by more than 70%
in cell culture. Knockdown specificities of bG1hp4 and mG1hp4
were tested with their 2-nucleotide mismatch shRNA controls,
bG1hp4m2 and mG1hp4m2. Compared to bG1hp4 and mG1hp4,
the respective mismatch controls were unable to suppress
expression of co-transfected bGCAP1-GFP and mGCAP1-GFP
(Figure 4).

GENERATION OF SELF-COMPLEMENTARY
ADENO-ASSOCIATED VIRUS
To efficiently express the shRNAs in mouse photoreceptors, we
tested four currently used gene delivery vectors: a peptide/polymer
nanoparticle (CK30PEG; Farjo et al., 2006), recombinant aden-
ovirus (Ad5�RGD; Cashman et al., 2007; Sweigard et al., 2010),
recombinant AAV2 (Wu et al., 2006), and electroporation with
naked DNA. No GFP reporter gene expression was detected in the
CK30PEG-transduced retina (Figure 6A), and the Ad5�RGD-
transduced retina had much more robust GFP expression in RPE
cells than in photoreceptors (Figure 6B). The AAV2-transduced
retina showed the most robust GFP expression in photoreceptors
(Figure 6C), suggesting AAV vector is a highly efficient gene vector
for shRNA delivery to mouse photoreceptors. Although neona-
tal electroporation of subretinally injected plasmid DNA showed
specific and efficient photoreceptor transfection (Figure 6D),
this method is only useful for undifferentiated and mitotic
photoreceptors and is therefore, not applicable for human gene
therapy.

Among currently available AAV vectors, the scAAV vector,
scAAV2/8, shows the most effective and stable transgene expres-
sion in mouse photoreceptors (Natkunarajah et al., 2008). We
packaged the shRNA expression cassette with an mCherry reporter
into the recombinant viral vector to generate two scAAV2/8
viral constructs expressing shRNAs targeting bovine and mouse
GCAP1s, respectively, scAAVbG1hp4 and scAAVmG1hp4. By
examining the mCherry reporter expressed in the scAAVbG1hp4-
transduced mouse retinas, we demonstrated that scAAV2/8 vector
could generate a long-term transgene expression lasting to 1 year
(Figure 7).

THERAPEUTIC EFFECTS OF KNOCKDOWN VIRUS
To test allele-specific knockdown of GCAP1 in vivo, we injected
the scAAVbG1hp4 virus into the mouse subretinal space using two
different bGCAP1(Y99C) transgenic mouse lines, L53, and L52H.
Expression of the mutant bGCAP1(Y99C), but not that of endoge-
nous mouse GCAP1, was significantly suppressed by scAAV2/8-
mediated bG1hp4 expression in the retinas of transgenic mice. In
the severe and rapid retinal degeneration mouse line L53, bG1hp4
significantly delayed photoreceptor cell death, which was observed
at 30 and 45 days post-injection. With the moderate retinal degen-
eration line L52H, we demonstrated a long-term therapeutic effect
of scAAVbG1hp4 virus from 1 month up to 11 months post-
injection, assayed by retinal morphology (Figure 8A) and function
(Figures 8B,C).

As deletion of GCAPs in mouse apparently has no detrimental
morphological nor disease-causing defect, except for increased
sensitivity and delayed recovery from the dark state (Mendez
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FIGURE 8 | Long-term therapeutic efficiency of allele-specific shRNA

vector, scAAV2/8-bG1hp4. (A), Direct fluorescence microscopy of retinal
cross-sections examines retinal morphology of the bG1hp4 treated and
untreated L52H transgenic mice. Viral vectors were injected subretinally at
mouse ages P21–P30. Both treated and untreated eyes were harvested at
four representative times from 1–11 months post-injection. Red, mCherry
expression demonstrating scAAV2/8 virus transduction. Blue, DAPI staining

of nuclei. Note significant preservation of ONL thickness at 11 months
post-treatment (∼12 months of age) compared to non-treated controls.
(B,C). Scotopic and photopic ERG amplitudes recorded from
bG1hp4-treated (red) and untreated (blue) L52H transgenic mice (Jiang
et al., 2011). Subretinal injection of scAAV2/8-bG1hp4 in the transgenic
mouse models delayed progression of both rod and cone dysfunction
significantly.

FIGURE 9 | Knockdown of mGCAP1 by nonallele-specific shRNA

vector, scAAV2/8-mG1hp4. (A), Fluorescence fundus images of
mG1(L151F)-GFP transgenic mice with subretinal injection of the virus
vectors at P21–P30 (left) and non-injected control (right). GFP signal
(top) represents the mG1(L151F)-GFP expression level in photoreceptors,
and mCherry (bottom) signal indicates scAAV2/8 virus transduction.

(B), Immunoblot of the transgenic mG1(L151F)-GFP and endogenous
GCAP1 protein levels in the injected and the non-injected retinas at
30 days PI. Transgenic mG1(L151F)-GFP (∼50 kD) and endogenous
GCAP1 (∼25 kD) proteins were detected by UW101 antibody directed
against GCAP1. -actin served as endogenous loading control. See also
Figure 9 (Jiang et al., 2013).
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et al., 2001), we assumed that nonallele-specific shRNA knock-
down of both wild-type and mutant GCAP1s may be a general
therapeutic strategy to treat retinal degeneration in patients carry-
ing GCAP1 mutations. We tested in vivo knockdown efficiency of
scAAV2/8-mediated mG1hp4 in the mGCAP1(L151F)-GFP trans-
genic mice. Fluorescence fundus imaging indicated significant
suppression of the mGCAP1(L151F)-GFP mutant transgene, but
not in uninjected eyes (Figure 9A). Broad and robust mCherry
reporter gene expression in scAAVmG1hp4-treated mouse reti-
nas signaled even expression levels of the virus. Semi-quantitative
analysis of GCAP1 levels in treated retinas revealed that mG1hp4
simultaneously knocked down in vivo expression of the mutant
mGCAP1(L151F)-GFP transgene by 70% and endogenous wild-
type GCAP1 by 90% (Figure 9B). Thus our experiment provides
“proof of principle” that nonallele-specific RNA interference
(RNAi) knockdown may be a strategy applicable to all GCAP1
mutations.

CONCLUSION
The experimental goal was to test whether allele-specific or
nonallele-specific knockdown of a dominant GCAP1 mutant is
able to ameliorate photoreceptor dystrophy. We demonstrated
the feasibility of shRNA knockdown first with an allele-specific
approach in a retinitis pigmentosa mouse model expressing
GCAP1(Y99C). A scAAV robustly expressed shRNAs in pho-
toreceptors at 1 week post-injection and gene silencing activity
persisted as long as 1 year without any apparent off-target
interference. Delayed disease onset, significantly improved rod
photoreceptor survival and increased visual function support that
the methodology can be useful for human gene therapy.

For nonallele-specific knockdown, we generated a sophisticated
set of transgenic mouse models expressing GCAP1-EGFP fusion
proteins with and without L151F mutation. The L151F muta-
tion, discovered in our lab, was shown to cause dystrophy in two
unrelated families. Nonallele-specific shRNA knockdown of both
wild-type and mutant GCAP1s may serve as a therapeutic strategy
to rescue the dominant degeneration caused by any of the eleven
known EF-hand GCAP1 mutations. An advantage of dominant
GCAP1 mutations is that a nonalle-specific approach promises
to be successful, while mutations in other CORD genes require
gene replacement to rescue the disease. Successful knockdown by
RNAi suppression of both wild-type and mutant GCAP1s may
be a potent therapeutic strategy, applicable to all affected family
members with CORD based on GCAP1 mutations in EF3 and
EF4, as long as the shRNA guide strand is located external to the
disease-causing mutations.
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